198 research outputs found

    Algorithms for Enumerating Circuits in Matroids

    Full text link
    We present an incremental polynomial-time algorithm for enumerating all circuits of a matroid or, more generally, all minimal spanning sets for a flat. This result implies, in particular, that for a given infeasible system of linear equations, all its maximal feasible subsystems, as well as all minimal infeasible subsystems, can be enumerated in incremental polynomial time. We also show the NP-hardness of several related enumeration problems

    A Family of matroid intersection algorithms for the computation of approximated symbolic network functions

    Get PDF
    In recent years, the technique of simplification during generation has turned out to be very promising for the efficient computation of approximate symbolic network functions for large transistor circuits. In this paper it is shown how symbolic network functions can be simplified during their generation with any well-known symbolic network analysis method. The underlying algorithm for the different techniques is always a matroid intersection algorithm. It is shown that the most efficient technique is the two-graph method. An implementation of the simplification during generation technique with the two-graph method illustrates its benefits for the symbolic analysis of large analog circuits

    Computing Algebraic Matroids

    Full text link
    An affine variety induces the structure of an algebraic matroid on the set of coordinates of the ambient space. The matroid has two natural decorations: a circuit polynomial attached to each circuit, and the degree of the projection map to each base, called the base degree. Decorated algebraic matroids can be computed via symbolic computation using Groebner bases, or through linear algebra in the space of differentials (with decorations calculated using numerical algebraic geometry). Both algorithms are developed here. Failure of the second algorithm occurs on a subvariety called the non-matroidal or NM- locus. Decorated algebraic matroids have widespread relevance anywhere that coordinates have combinatorial significance. Examples are computed from applied algebra, in algebraic statistics and chemical reaction network theory, as well as more theoretical examples from algebraic geometry and matroid theory.Comment: 15 pages; added link to references, note on page 1, and small formatting fixe

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids

    Full text link
    Finding a maximum cardinality common independent set in two matroids (also known as Matroid Intersection) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an ``intersection'' of these problems: Given two matroids and a threshold τ\tau, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least τ\tau. We show that this problem can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all maximal common independent sets of two matroids in non-increasing order of their cardinalities

    Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids

    Get PDF
    Finding a maximum cardinality common independent set in two matroids (also known as Matroid Intersection) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an "intersection" of these problems: Given two matroids and a threshold ?, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least ?. We show that this problem can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all maximal common independent sets of two matroids in non-increasing order of their cardinalities

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2
    corecore