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Abstract

Constraint-based approaches recently brought new insight into our understanding of metabolism.
By making very simple assumptions such as that the system is at steady-state and some reactions are
irreversible, and without requiring kinetic parameters, general properties of the system can be derived. A
central concept in this methodology is the notion of an elementary mode (EM for short). The computation
of EMs still constitutes a limiting step in metabolic studies and several algorithms have been proposed
to address this problem leading to increasingly faster methods. However, although a theoretical upper
bound on the number of elementary modes that a network may possess has been established, surprisingly,
the complexity of this problem has never been systematically studied.

In this paper, we first establish results regarding network consistency. Most consistency problems
can be solved in polynomial time (are easy). We then establish the complexity of finding and counting
elementary modes. We show in particular that finding one elementary mode is easy but that this task
becomes hard when a specific EM (i.e. an EM containing some specified reactions) is sought. We also
examine a number of EM related problems and establish their complexity. We emphasise that the easy
problems can be solved by existing software.

We then analyse the complexity of a closely related task which is the computation of so-called minimal
reaction cut sets. In this case again, we show that this problem is hard. We then present two positive
results which both allow to avoid computing EMs as a prior to the computation of reaction cuts. The
first one is a polynomial approximation algorithm for finding a minimum cut set. The second one is a
test for verifying if a set of reactions constitutes a reaction cut; this test could be readily included in
existing algorithms to improve their performance. Finally, we discuss the complexity of other cut-related
problems.

1 Introduction

Metabolism is usually defined as the union of two processes: anabolism (synthesis of molecules through the
use of energy and reducing power) and catabolism (degradation of molecules yielding energy and reducing
power). From a modeller’s perspective, metabolism can be seen as a network of interconnected reactions,
each reaction corresponding to the transformation of metabolites into other metabolites. This network can
then be studied either from a structural perspective, or from a dynamic perspective.

Studying the dynamics of metabolic networks is usually performed using models related to differential
equations whereas structural analyses are mainly based on graph-related formalisms or, as far as metabolism
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is concerned, on constraint-based modelling. The choice of a particular model heavily depends on the type
of question one wishes to address (structural or dynamic) but also on the type of data that is available
(qualitative or quantitative). Another type of criterion that may be taken into account is the computational
cost of a given analysis, and therefore its scalability to large datasets (such as genome-scale metabolic
networks).

The limited amount of available quantitative data (such as kinetic parameters) has led to an increase
in popularity of the models which do not use such information. Graphs and constraint-based models fall
into this category. However, while the first typically scales well to large datasets, the latter still needs
improvements to be more widely used.

In a constraint-based approach, only admissible flux distributions are studied. An admissible flux dis-
tribution corresponds to a set of reactions, which, when taken together in given proportions, perform the
transformation of available substrates into removable products with the special property that all intermediate
compounds are balanced (steady-state assumption) and irreversible reactions are taken in the appropriate
direction (thermodynamic constraint). Such an admissible flux distribution is called a mode.

Even though each mode is potentially interesting, not all of them are generally considered. Classically,
two major sub-problems have been introduced. The first one is known as flux balance analysis. It consists
in searching for a mode that optimises a given objective function. Examples of objective functions include
biomass (usually represented as a pseudo-reaction of the network, in general determined from experimental
data) or ATP production. This optimisation problem has several applications [17] and can be solved using
linear programming (LP).

The second sub-problem is the one we discuss in this paper. In the case where no particular function is
to be optimised, all modes are equally interesting. A sensible strategy is then to try to find a set that could
generate them all. Such a generating set has been proposed and called the set of elementary modes [20],
EM for short. Intuitively, an elementary mode is a special mode that has the property of not containing any
other mode.

Instead of elementary modes, extreme pathways may also be considered. Both notions are very close,
the difference being mainly due to the way reversible reactions are handled. Indeed, extreme pathways and
elementary modes appear to be identical in the special case where all reactions in the network are irreversible.
For a detailed comparison of both approaches, see [14].

Elementary modes have been said to represent a formalised definition of a biological pathway. Indeed, a
biological interpretation can be given to such flux vectors: a mode is a set of enzymes that operate together
at steady state [19] and a mode is elementary when the removal of one enzyme causes it to fail.

The computation of elementary modes is far from trivial and led to the development of several algorithms.
The major ones that have been proposed are by Schuster [21], Urbanczik and Wagner [23], Klamt and
Gagneur [7].

Another concept we use in the paper is closely connected to the notion of elementary mode. This is
the concept of a minimal reaction cut set, recently introduced in [12]. In order to avoid any confusion with
other types of cuts in graphs or hypergraphs that may be found in the literature [22], we explicitly choose
here to use the term reaction cut. An elementary mode may be seen as a set of reactions that, when used
together, perform a given task while a minimal reaction cut set is a set of reactions one needs to inhibit to
prevent a given task, also called target reaction, from being performed. As mentioned in [10], the task to
be silenced can be a combination of reactions. Minimal reaction cut sets have been operationally defined
as corresponding to a set of reactions whose deletion from the network stops each elementary mode that
contains the target reaction(s).

In this paper, we first establish results regarding network consistency (Section 2.1). Most consistency
problems can be solved in polynomial time (are easy). We then establish the complexity of finding and
counting elementary modes (Sections 3.1 and 3.2). We show in particular that finding one elementary mode
is easy but that this task becomes hard when a specific EM (i.e. an EM containing some specified reactions)
is sought. We also examine a number of EM related problems and establish their complexity. We emphasize
that the easy problems can be solved by existing software.

We then analyse the complexity of a closely related task which is the computation of so-called minimal
reaction cut sets. In this case again, we show that this problem is hard (Sections 4.1 and 4.3). We then
present two positive results which both allow to avoid to compute EMs as a prior to the computation of
reaction cuts. The first one (Section 4.2) is a polynomial approximation algorithm for finding a minimum
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cut set. The second one (Section 4.3 using a result of Section 4.1) is a test for verifying if a set of reactions
constitutes a reaction cut; this test could be readily included in existing algorithms for enumerating minimal
reaction cuts to improve their performance. Finally, we discuss the complexity of other cut-related problems
(Section 4.4).

2 Modes

In the following, we define more precisely several objects, classically used in constraint-based modelling.
The stoichiometric matrix S of a network is a matrix with n rows and m columns, n being the number

of internal metabolites and m the number of reactions. A cell S(i, j) of the matrix takes value k if reaction j
produces k units of metabolite i. It takes value −k if reaction j consumes k units of metabolite i. Otherwise,
it takes value 0. The value k corresponds to the stoichiometric coefficient of metabolite i in reaction j. The
stoichiometric matrix summarises the structure of the metabolic network. Observe that the reversibility of
the reactions has to be inserted as separate information.

The set of reactions is partitioned into two subsets: Rev and Irrev, the set of, respectively, reversible
and irreversible reactions.

A mode is a flux vector v ∈ Rm such that:

1. Sv = 0

2. vj ≥ 0 ∀j ∈ Irrev

We introduce the support of the solution v, denoted by R(v) = {j | vj > 0}, i.e., the set of reactions
participating (with non-zero flux) in v.

An elementary mode is a vector v that satisfies conditions 1 and 2 and

3. there is no non-trivial flux vector r such that: R(r) ⊂ R(v).

Modes and elementary modes can be given a geometrical interpretation. Indeed, the set of vectors
{v ≥ 0 | Sv = 0} defines a convex cone in the flux space. When all reactions are irreversible, the elementary
modes exactly correspond to the extreme rays of this cone. Klamt and Gagneur showed [7] that even when
some reactions are reversible, one can define a pointed cone in a higher dimensional space (all reversible
reactions are split into two irreversible reactions) with the rays corresponding to a superset of the original
EMs.

This geometrical interpretation has been particularly fruitful since most algorithms used for computing
EMs are based on the double description method, a method borrowed from computational geometry [6].

From now on we assume that all reactions are irreversible unless explicitly stated otherwise.

2.1 Consistency of the stoichiometric matrix

One of the applications of constraint-based modelling is in checking the consistency of reconstructed metabolic
networks [19]. A network is said to be consistent if all its reactions belong to at least one elementary mode.
When a network is consistent, we say equivalently that its stoichiometric matrix is consistent: the stoichio-
metric matrix S is consistent if Sv = 0 has a solution vj > 0 ∀j, or equivalently, each reaction is part of
some mode (elementary mode).

We give some statements about the consistency of a stoichiometric matrix. Clearly, if a matrix S is
not consistent, then there must be a mismodelling of the metabolic network. In that sense, detecting
inconsistency is a valuable tool for finding deficiencies in the metabolic network description.

Theorem 1. Given a stoichiometric matrix S, checking the consistency of S can be done using LP.

Proof. Consider the following LP, where we insert a bound on the sum of the values of the vj ’s to avoid
unboundedness of the problem.

max z

s.t. vj ≥ z ∀j
Sv = 0∑
j vj ≤ 1
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S is consistent if the optimal value is strictly positive, otherwise it is not.

In case of inconsistency, it is also easy to find a consistent submatrix containing a maximum number of
reactions.

Theorem 2. Given a stoichiometric matrix S, detecting a minimum number of reactions to be deleted to
make S consistent can be done using LP.

Proof. For each reaction h, solve the LP

max z

s.t. vh ≥ z

Sv = 0∑
j vj ≤ 1
v ≥ 0

If for reaction h, the optimal value is strictly positive, then h is part of some mode, and one such a mode is
given by the optimal solution. Otherwise there is no mode in which reaction h appears.

A question complementary to the previous one is hard.

Theorem 3. Given a stoichiometric matrix S, and some other set of reactions represented by a stoichiomet-
ric matrix S′, find a subset of reactions of S′ of minimum cardinality such that the corresponding submatrix
added to S yields a consistent matrix is NP-hard.

Proof. Taking for S an empty matrix and for S′ the stoichiometric matrix of the network, the problem is a
special case of finding an elementary mode with a minimum number of reactions in its support. NP-hardness
of the latter problem will be established in Theorem 6.

2.2 Difference between hypergraph and stoichiometric matrix

The stoichiometric matrix enables to represent the structure of a metabolic network. In some cases, particu-
larly for visualization, hypergraphs may also be used. An hypergraph representation of a metabolic network
can be done as follows: metabolites are represented as nodes and there is a (directed) hyperedge for each
reaction going from its substrates to its products. In fact, this hypergraph can on its turn be represented by
its vertex-edge incidence matrix, which is very similar to the stoichiometric matrix; the former matrix has
a 1 at each entry where the latter has a positive integer, a −1 where the latter has a negative integer, and
their 0 entries coincide.

The hypergraph description does not take into account all parameters of the stoichiometric matrix as
can be seen by the following toy example in which two different networks are presented having the same
hypergraph description.

Network 1
input: a,b
output: f
Reaction 1: a+b → c+d
Reaction 2: c+ d → f

Network 2
input: a,b
output: f
Reaction 1: a+b → c+2d
Reaction 2: c+ 3d → f

Observe that the first network is consistent while the second one is not. Therefore, consistency of a network
cannot be checked using a hypergraph (regardless of the stoichiometry). Thus, hypergraphs need to be
supplemented with weights on vertices-edge combinations if one wants to use them interchangeably with the
stoichiometric matrix.
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3 Elementary modes

As mentioned in the introduction, we may see an elementary mode as an extreme ray of the cone {v ≥
0 | Sv = 0}, due to the observation in [7] that an elementary mode is characterised completely by its set
of reactions, i.e., given S and the support R(v) of an elementary mode v, up to scalar multiplication, v is
uniquely determined.

In this section, we assume consistency of the stoichiometric matrices of the problem instances we consider.

3.1 Finding elementary modes

Surprisingly few results have been established on the complexity of problems concerning detection, counting
and enumeration of elementary modes. In their paper, Klamt and Stelling [13] mainly focus on finding an
upper bound on the number of elementary modes.

In fact, as mentioned in [6], the complexity of the general problem, given a description of a cone (or
polytope) in terms of its facets (inequalities), find a description in terms of (enumerate all) its extreme rays
(vertices), as a function of the length of the output (number of rays or vertices) is a long-standing open
question in computational geometry.

In this section, we show some difficult aspects of computing elementary modes. In particular, we try to
show where the hardness comes from when enumerating elementary modes. We show that the three following
tasks are easy: (i) finding a mode, (ii) finding an elementary mode, (iii) finding a mode that contains one
specified reaction. However, the last task is hard: (iv) finding an elementary mode that contains a specified
set of reactions.

As observed already in [11], standard linear algebra teaches us how to check that Sv = 0 in order to
decide if v ≥ 0 is a mode. It is also easy to decide if a given mode v ≥ 0 is an elementary mode by Gaussian
elimination on the submatrix of S consisting of the reaction in the support of v.

Theorem 4. Given a stoichiometric matrix S, an elementary mode can be found in polynomial time.

Proof. We “slice” the cone Sv = 0 by the inequality
∑

j vj ≤ 1 and solve the LP:

max z

s.t. vh ≥ z

Sv = 0 (1)∑
j vj ≤ 1
v ≥ 0.

In case of a consistent matrix, the optimal solution v∗ is a non-all-0 vertex of the polytope {v ≥ 0 | Sv =
0,

∑
j vj ≤ 1} satisfying the inequality

∑
j vj ≤ 1 with equality. Thus, {λv∗ | λ ≥ 0} is an extreme ray of

the cone {v ≥ 0 | Sv = 0}.

The optimal solution of the LP in the proof of the lemma gives an elementary mode that contains reaction
h. In general, it is easy to detect if there exists a mode whose support contains a given set of reactions TIN ,
and does not contain any of the reactions of another set TOUT : simply add the restrictions:

vj = 0 ∀j ∈ TOUT (2)

to LP (1), replace the first restriction of LP (1) by

vj ≥ z ∀j ∈ TIN ,

and check if the optimal solution is positive or 0.
If we could answer the same question for the existence of an elementary mode with the same properties for

any set TIN in polynomial time, then we would be able to enumerate elementary modes in time polynomial
in their number. However, unfortunately this decision problem is NP-hard in general, which may (partly)
explain the difficulties we encounter in enumerating elementary modes.
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Theorem 5. Given a stoichiometric matrix S, sets of reactions TIN and TOUT , deciding if an elementary
mode v exists that has positive value in all its coordinates corresponding to TIN , and has value 0 in all its
coordinates corresponding to the set TOUT is
(i) polynomial solvable if |TIN | = 1,
(ii) NP-complete in the general case.

Proof. If |TIN | = 1 the proof follows from adding (2) to LP (1).
The proof of the NP hardness in the general case is by a reduction from Hamiltonian Circuit. Given

a directed graph G, for each vertex u in G, create two compounds u1, u2 and create a reaction from u1 to
u2. For each edge (u, w) of G, create a reaction from u2 to w1. Choose TIN to be the set of all reactions
corresponding to (derived from) vertices in G and TOUT = ∅. The only elementary mode that contains all
the reactions in TIN corresponds to a Hamiltonian circuit and vice versa.

As we have seen, the problem of the lemma is easy if |TIN | = 1. This leaves open the complexity of
the problem if |TIN | = k for any fixed k. Also the proof leaves open the complexity of the problem if the
hypergraph underlying the stoichiometry is acyclic, or if it is known that each elementary mode describes a
path in the hypergraph.

Theorem 6. Given a matrix S and a number k, deciding the existence of an elementary mode with at most
k reactions in its support is NP-complete.

Proof. The proof is a reduction from the NP-complete 3-Dimensional Matching problem (3DM) (see
[8]): Given a set of elements X = {x1, . . . , x3n} and given a collection of subsets S = {S1, . . . , Sm}, each
containing exactly 3 elements of X, does there exist a subcollection of S of n subsets that cover all elements
of X?
For each element and each 3-element set of the 3DM instance, a compound vertex is created. The first
reaction is an input reaction that has as output all elements of the 3DM instance; i.e., the first column of
the stoichiometric matrix has 1-entries at all element compounds and 0 at all element set compounds. The
elements of each 3-element set of the 3DM instance are input to a reaction with output the element set
compound; i.e., a column in the stoichiometric matrix with −1-entries at the three element compounds, 1
at the element set compound and 0’s elsewhere. For each element set there is also an output reaction that
has the element set compound as its only input. Finally we choose k = 2n + 1.

The vector of reactions which has a 1 at the positions of the first reaction and the two reactions corre-
sponding to each element set of any 3-dimensional matching and 0’s elsewhere, clearly forms an elementary
mode with 2n + 1 reactions in its support. On the other hand, any mode must contain the first reaction.
Hence, any elementary mode must have a positive value in the first position, and therefore has as output
exactly one copy of each element, all of which must have the same value. For every 3-element-set-reaction
that we choose, we have to add the corresponding output reaction. Thus to cover all 3n element from the
first reaction, we have to choose exactly n reactions that correspond to 3-element sets. Such a set of reactions
correspond to a 3-dimensional matching.

This theorem shows that finding the shortest elementary mode (the one with a minumum number of
reactions) is NP-hard. Note that in the theorem, k is considered to be part of the input. For fixed values of
k, the problem is trivially solvable in polynomial time by complete enumeration.

As a final example to illustrate the intricacies in detecting elementary modes, we define the notion of a
simple elementary mode as an elementary mode v such that ∀j vj ∈ {0, 1}. The reduction in the proof of
Theorem 6 shows that it is hard to find simple elementary modes. Though it is unlikely that any biological
relevance will ever be found for the notion of simple elementary mode, the result shows again the subtlety
of elementary mode computations, even more so, since the hardness can be extended to any fixed interval of
integers.

Corollary 7. Given a matrix S, deciding the existence of a simple elementary mode is NP-complete.

3.2 Counting elementary modes

System biologists are interested in enumerating all elementary modes of a metabolic network. Before turning
to that problem, we show that merely counting elementary modes is hard. In [13] the authors show that
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the number of elementary modes can be bounded by
(

m
n + 1

)
, but they did not give the complexity of

computing the exact number.
Counting elementary modes is essentially a problem of counting the rays of a polyhedral cone, which in

its turn is equivalent to a problem of counting vertices of a polytope, which is known to be ]P-complete [5]1.
Therefore not surprisingly, counting elementary modes turns out to be ]P-complete. ]P-complete is a class
of computationally hard counting problems (for precise definitions we refer to [16]).

Theorem 8. Given a matrix S counting the number of elementary modes is ]P-complete.

Proof. The proof follows by a reduction from Counting perfect matchings in a bipartite graph,
which was shown to be ]-P hard in [24]. Given a bipartite graph G = (U, V,E) with two color classes U
and V , each of size n, we construct hypergraph H. First, we create an input compound vertex s, which
we connect to each vertex in U by an ordinary edge, which we direct from s to the U vertex. We direct
all edges of E from U to V . Finally, we create an output compound vertex t which we connect with one
hyperedge to all vertices of V , and direct this hyperedge from V into t. This relates in the obvious way to
a {−1, 0,+1}-stoichiometric matrix. It is easy to see that an elementary mode corresponds one-to-one to a
perfect matching in G.

3.3 Enumerating elementary modes

In case all reactions are reversible, an elementary mode corresponds to a minimally dependent set of columns
of the stoichiometric matrix. Hence the elementary modes are exactly the circuits of a linear matroid (for
definitions of matroids and circuits we refer to [15] or [18]). In [3] it has been shown how to enumerate
circuits of matroids with polynomial delay, i.e., the time needed between the consecutive generation of any
two circuits is polynomial in the number of elements in the ground set of the matroid, in our case the number
of reactions, columns of the stoichiometric matrix. As a result, circuits of a matroid, hence elementary modes
of a completely reversible network, can be enumerated in time polynomial in their number. In fact, the modes
of the cone form a linear subspace.

Theorem 9. In case all reactions in a metabolic network are reversible, the elementary modes can be
enumerated with polynomial delay.

The enumeration task becomes dramatically more difficult if the reactions are irreversible. In this case,
the modes of the network form a cone, and the elementary modes are the rays of the cone. Indeed, the
question if elementary modes can be enumerated with polynomial delay touches a basic open problem in
computational geometry (see e.g. [6]): given a polyhedral description of a cone, can the rays be enumerated
with polynomial delay, or the even the weaker question if the description in terms of its rays can be found
in time polynomial in the number of rays.

4 Reaction cuts

In this section, we focus on Reaction Cut Sets. The notion of minimal cut sets in a reaction graph was first
introduced by Klamt and Gilles [12]. The motivation is to study so-called “failure modes” that render the
functioning of a given target reaction x impossible. A minimal cut set is a set of reactions that cut reaction
x. Operationally, this has been defined as a set of reactions whose deletion from the network stops each
elementary mode that contains x.

In what follows, we study more particularly two problems: finding a reaction cut of minimum cardinality,
which we call Min Reaction Cut, and enumerating all minimal reaction cuts. We prove that Min Reac-
tion Cut is APX-hard. For definition of this complexity class we refer to [1]: we observe that APX-hardness
implies that there exists a constant c such that finding a solution that is at most a factor c away from the
optimum is a NP-hard problem.

Building on results obtained in the previous section, we propose an approximation algorithm. The
algorithm runs in polynomial time as it does not require enumeration of all elementary modes containing
the target reaction to be cut.

1In fact, [5] only claims NP-hardness, but the proof establishes #P-completeness.
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We then propose significant improvements over existing algorithms for enumerating all minimal reaction
sets.

4.1 Finding minimal reaction cuts

The first basic problem about reaction cuts is recognizing them.

Theorem 10. Given a stoichiometric matrix S, some target reaction r, and a subset F of reactions, deciding
if F is a reaction cut of r can be done using LP.

Proof. Consider the following LP:

max
∑

j∈J vj

s.t. Sv = 0
vr = 1

vj = 0 ∀j ∈ F∑
j vj ≤ 1

vj ≥ 0 ∀j /∈ F ∪ r,

where J denotes the set of input reactions of the metabolic network. The optimal solution value is positive
if and only if F is not a reaction cut of r.

Finding the optimal cut is a lot more difficult.

Theorem 11. Min Reaction Cut is APX-hard.

Proof. We first show a reduction from the NP-hard problem Hitting set (see [8]): Given a set of elements
X = {x1, . . . , xn} and given a collection of subsets S = {S1, . . . , Sm}, find a minimum cardinality subset of
elements Y ⊂ X such that Si

⋂
Y 6= ∅ ∀i = 1, . . . ,m.

For each element xj and for each set Si, we create a compound vertex, which we also denote by xj and Si,
respectively. We create an input compound vertex s, a compound vertex t and an output compound vertex
t′. For each xj , we create a single reaction one s to one xj . Similarly, for each Si, we create a single reaction
one Si to one t. We also create the single reaction from one t to one t′. For each set Si = {xi1 , . . . , xik

}, we
create a composed reaction with input compounds one of each of xi1 , . . . , xik

and output compound one Si.
Thus, the stoichiometric matrix contains only entries with value −1,0, or +1.

To each set Si = {xi1 , . . . , xik
} corresponds an elementary mode consisting of the reactions (s →

xi1), . . . , (s → xik
), (xi1 , . . . , xik

→ Si), (Si → t), (t → t′). Indeed, it is easy to check that the vector
that assigns a 1 to each of these reactions and a 0 otherwise is indeed a mode. Removing any reaction from
this set gives a submatrix which does not have any mode.

Moreover, suppose that some elementary mode would have v(Si → t) = ai > 0 and v(Sj → t) = aj > 0,
respectively. Then this mode should also have v(xi1 , . . . , xik

→ Si) = ai and v(xj1 , . . . , xjh
→ Sj) = aj , and

also v(t → t′) = ai+aj and v(s → x`) = ai ∀x` ∈ (Si\Sj), v(s → x`) = aj ∀x` ∈ (Sj\Si), v(s → x`) = ai+aj

∀x` ∈ (Si ∩Sj), and v(s → x`) = 0 otherwise. Hence this is the linear combination of two elementary modes
of the above type, and therefore by itself not an elementary mode.

Thus, the set-related elementary modes are exactly all the elementary modes, and from each of them
some reaction must be selected in the reaction cut. Selecting (s → x`) cuts all the elementary modes whose
corresponding set contains x`. Thus, the reactions from s to the x’s of a hitting set cut all elementary modes.
On the other hand, any composed reaction (xi1 , . . . , xik

→ Si) or (Si, t) reaction in the reaction cut can be
replaced by one (s, xj) reaction (with xj ∈ Si), giving another reaction cut. Thus, there exists a minimum
reaction cut consisting only of reactions of type (s, xj), hence corresponding to a hitting set. This completes
the proof of NP-hardness.

To prove APX-hardness, we observe that the reduction is approximation preserving: minimal reaction
cuts and hitting sets have a one-to-one correspondence and that the reduction is indeed an AP-reduction (see
for the definition e.g. [1]). Since Hitting set is APX-hard optimization problem this observation implies
that Min Reaction Cut is APX-hard.
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One may argue that the reduction yields reactions in the metabolic network that contain too many
different compounds. Typically, the number of different compounds involved in metabolic reactions is no
more than 5 or 6. However, this restriction will unfortunately not be of great help: in a technical report
version of this paper, we prove that the problem remains NP-hard for networks with only one target reaction,
and where all compounds (vertices) have in-degree at most 2, all vertices have out-degree at most 2, and
each reaction has 2 input compounds and 1 output compound.

4.2 Approximation algorithm for finding a minimum reaction cut

On the positive side, we design an approximation algorithm for finding minimum reaction cuts, even for a
weighted version of the problem. We assume that a weight function w associates to each reaction r a positive
weight w(r). Given a stoichiometric matrix S and a weight function w, we are interested in finding a reaction
cut F ∗ of minimum total weight.

The algorithm consists of two phases: in the first phase, a set F of reactions is constructed by starting
from the empty set and adding reactions until a reaction cut of the target reaction x is obtained. The set F
is not necessarily a minimal reaction cut. In the second phase, minimality is obtained by removing reactions
from F .

Given a stoichiometric matrix S and a set of reactions F , we denote by SF the stoichiometric matrix
obtained from S by removing the columns corresponding to all reactions in F ; with a slight abuse of notation,
we denote the sum of the weights of reactions in a set G by w(G).

Algorithm RC (Reaction Cut)
input:

a stoichiometric matrix S, a weight function w, a reaction x to be cut;
phase 1

F = ∅;
while F is not a reaction cut of x
do begin

let C be the set of reactions defining an elementary mode in SF that includes x
let w̄ = minr∈C w(r)
for each reaction r in C
do begin

w(r) = w(r)− w̄
if w(r) = 0 then F = F

⋃
{r}

end
end

phase 2
let r1, r2, . . . , rk be the reaction in F
for j = 1 to k do

if F − rj is a reaction cut of x then F = F − rj

output: F

For the performance analysis of the solution found by the algorithm we exploit the local ratio technique, a
general technique for proving performance ratios of approximation algorithms [2]. It is based on decomposing
the weight function associated to each reaction.

Lemma 12. Let S be a stoichiometric matrix, and let F ∗, F ∗
1 and F ∗

2 be the minimum reaction cuts of x
with respect to three different weight functions w, w1 and w2, respectively, such that w(r) = w1(r) + w2(r)
for each reaction r. Then

w(F ∗) ≥ w1(F ∗
1 ) + w2(F ∗

2 )

Proof.
w(F ∗) = w1(F ∗) + w2(F ∗) ≥ w1(F ∗

1 ) + w2(F ∗
2 )
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This technique has been applied to a number of combinatorial optimization problems arising in several
areas (scheduling, graph, packing, etc.). Inspired by [4], we prove the following theorem.

Theorem 13. Given a stoichiometric matrix S and a reaction x, Algorithm Reaction Cut runs in poly-
nomial time and returns a reaction cut F of x such that w(F ) ≤ λw(F ∗), where F ∗ is the minimum reaction
cut of x and λ is the maximum number of reactions in an elementary mode in S including x.

Proof. Assume that S contains n reactions. In Phase 1, the algorithm performs the test of checking whether
a set of reactions is a reaction cut of x at most n times. It also computes an elementary mode including
reaction x for n times at most. Analogously, Phase 2 of the algorithm performs at most n times the test of
deciding whether a set is a reaction cut of x. By Theorems 5(i) and 10, it follows that the running time of
the algorithm is polynomial.

The proof proceeds by induction on the number of reactions, with the basis of a stoichiometric matrix of
only 1 reaction clearly being true. Suppose it is true for n reactions and consider a stoichiometric matrix S
with n + 1 reactions. Let F be the reaction cut set returned by RC.

Let C be the elementary mode detected in the first call on Phase 1 and δ = minr∈C w(r).
We define two new weight functions w1 and w2:

w1(r) = δ if r belongs to C and w1(r) = 0 otherwise
w2(r) = w(r)− w1(r).

Let F ∗
1 and F ∗

2 be minimum reaction cut sets under weight functions w1 and w2, respectively. Since w(r) ≥
w1(r) ≥ 0, we have 0 ≤ w2(r) ≤ w(r) and, therefore, the conditions of Lemma 12 apply. Let F ∗

1 and F ∗
2 be

minimum reaction cut sets under weight functions w1 and w2, respectively.

Claim 1. w1(F ) ≤ λw1(F ∗
1 )

Observe that w1(F ∗
1 ) = δ, because for cutting elementary mode C, one reaction of C is sufficient and

necessary, while for any other elementary mode, a reaction with weight 0 can be selected in the reaction
cut. Moreover, the weight of w1(F ) ≤ mδ, where m denotes the number of reactions in C, because all the
reactions not belonging to C have cost 0. This together with m ≤ λ proves the claim.

Claim 2. w2(F ) ≤ λw2(F ∗
2 )

Let F1 be the set of reactions selected after passing Phase 2 for the first time, i.e. the set of reactions
that cut C. Notice that in fact F1 contains one reaction with weight δ only. Let F2 = F \ F1, which is,
by definition of the algorithm, the RC solution for the problem with stoichiometric matrix SF1 obtained by
deleting the columns of reaction set F1 from S and weight function w2. Let F∗

2 be the optimal solution to
the latter problem.

Since w2(F1) = 0, any reaction cut for SF1 w.r.t. w2 can be supplemented to a reaction cut for S w.r.t.
w2, by adding F1 at no extra cost, if necessary. In particular, w2(F ) = w2(F1) + w2(F2) = w2(F2), and
w2(F ∗

2 ) = w2(F∗
2 ). Application of the induction hypothesis to the performance of RC to SF1 with weight

function w2 proves that w2(F2) ≤ λw2(F∗
2 ) and therefore w2(F ) ≤ λw2(F ∗

2 ).

Both claims together with Lemma 12 yields

w(F ) = w1(F ) + w2(F ) ≤ λw1(F ∗
1 ) + λw2(F ∗

2 ) ≤ λw(F ∗).

We finally observe that the above result can be easily extended to the case when more than one reaction
should be cut. Given S, assume we are interested in finding a cut of reactions x1, x2, . . .; two problems arise:
we might be interested in either the problem of cutting all reactions x1, x2, . . . or in cutting at least one.

The result of Theorem 13 can be easily extended to both problems above, by adding compounds and
reactions to the stoichiometric matrix. Namely, if we are interested in cutting all reactions in x1, x2, . . . we
may add one compound y to the output of each reaction xi, i = 1, 2, . . . and add a new reaction r̄ that
transforms y in an output z. Clearly, cutting r̄ requires to cut each reaction in x1, x2, . . .. Note that the
above transformation might not be feasible because it is not mass balanced; however a slight modification
ensures the mass balance and feasibility properties. Details will be given in the full paper.

A similar transformation applies to the problem in which we are interested in cutting at least one reaction
in x1, x2, . . ..
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4.3 Enumerating reaction cuts

Beyond the question of finding a reaction cut, or a minimum reaction cut, the question of enumerating all
reaction cuts may also be interesting. As for modes, one can concentrate on minimal sets [12].

Minimality refers to reaction cuts from which no reaction can be removed without destroying the cutting
property. Klamt and Gilles [12] propose an algorithm based on enumerating all possible subsets of reactions
starting from singleton sets, then all pair sets, then all triples, and so on. For each candidate set F , they
propose to test whether all elementary modes are cut by F . Clearly this test is theoretically, and many times
also practically, very inefficient. We propose as an alternative to use Theorem 10.

It remains an intriguing open problem if we can do essentially better in case of irreversible reactions.
In case all reactions are reversible, a minimal reaction cut is a co-basis of the linear matroid constituted
by the columns of the stoichiometric matrix. Bases of matroids and therefore co-bases of matroids can be
enumerated with polynomial delay [9].

4.4 Other cuts

One may argue that a reaction cut that kills too many elementary modes is not desirable. As an alternative
one may therefore be interested in finding a reaction cut which cuts the target reaction but leaves as many
elementary modes intact as possible.

Max Surviving Reaction Cut: Given a stoichiometric matrix and a reaction, find the reaction cut
isolating that reaction and leaving a maximum number of elementary modes intact.

Given hardness of Min Reaction Cut it is not surprising that also this problem is NP-hard. Taking the
reduction from Hitting Set in the proof of Theorem 11, and introducing for each xj-vertex an extra output
vertex tj and a reaction (xj → tj) the NP-hardness can be verified easily.

Theorem 14. Max Surviving Reaction Cut is NP-hard.

Other types of cuts in reaction graphs can be formulated.

5 Conclusion

Elementary modes and minimal reaction cuts are common tools in metabolic network analysis. Their com-
putation is not trivial and poses a computational challenge. Several algorithms have been proposed to bring
solutions to this problem but no systematic complexity analysis had been carried out.

We show here that some problems, like checking the consistency of a network, finding one elementary
mode or checking that a set of reactions constitutes a cut, are easy problems and we emphasise that “easy”
also means that they can readily be solved using existing software.

We also prove the hardness of central problems like finding an elementary mode containing a specified
set of reactions, counting elementary modes or finding a minimum reaction cut.

Furthermore, we propose an approximation algorithm for computing the minimum reaction cut as well
as a significant optimisation of the original algorithm used for computing minimal cut sets. Both results are
based on the idea of avoiding to compute the elementary modes for obtaining the reaction cuts.
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