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Abstract 
In recent years, the technique of simpl$cation during gen- 

eration has turned out to be very promising for the eficient 
computation of approximate symbolic network functions for 
large transistor circuits. In this paper it is shown how sym- 
bolic network functions can be simpl$ed during their genera- 
tion with any well-known symbolic network analysis method. 
The underlying algorithm for the different techniques is al- 
ways a matroid intersection algorithm. It is shown that the 
most eflcient technique is the two-graph method. An imple- 
mentation of the simpltjication during generation technique 
with the two-graph method illustrates its benefits for the sym- 
bolic analysis of large analog circuits. 

1 Introduction 
During the last few years, many research efforts have been 

performed in order to symbolically analyze large analog cir- 
cuits. The goal of such a symbolic network analysis is the 
generation of symbolic expressions that can be used either for 
interpretation or for repeated evaluations in design automa- 
tion applications such as automated circuit synthesis, statisti- 
cal analysis, . . . . The first modern symbolic analyzers such 
as ISAAC [l], ASAP [2] that have been developed for these 
purposes were dedicated to the analysis of linearized analog 
circuits. In this way, a circuit characteristic corresponds to a 
network function which is a rational function of the frequency 
variable s. In a symbolic network function in expanded for- 
mat, every coefficient of any power of s is a sum of products 
of symbolic circuit parameters that correspond to the circuit 
elements of the linearized, small-signal circuit. Symbolic an- 
alyzers such as ISAAC and ASAP are able to generate ap- 
proximate network functions. In this way it is possible to gen- 
erate interpretable expressions rather than the lengthy exact 
expressions. The approximation is based upon the numeri- 
cal values of the symbolic circuit parameters. The approxi- 
mation in ISAAC and ASAP proceeds by first generating the 
exact network function in expanded format after which the 
non-dominant terms are discarded. The main problem of this 
approach is that the exact network function must be generated 
first. The number of terms of this network function increases 
exponentially with the size of the circuit. For example, the de- 
terminant of the admittance matrix of the commercial pA741 
operational amplifier contains more than 1017 terms. Such a 
huge amount of terms cannot be generated completely. The 
final approximate result, on the other hand, usually contains 
very few terms. 

The above approximation technique that is used in pro- 
grams such as ISAAC and ASAP is denoted as a simplifi- 
cation after generation technique: the exact network function 
is generated first, after which it is approximated. In [3] an al- 
ternative approximation technique has been proposed that is 
denoted as a simpl$cation during generation technique. With 
this technique, a symbolic network function is approximated 
while it is being generated. This is performed by generating 
only the dominant terms of the network function in decreas- 
ing order of magnitude, without skipping any term and until 
the sum of generated terms is sufficiently close to the exact 
numerical value. 

The technique of simplification during generation has been 
implemented for example in [5, 6, 7, 81. In all of these cases 
the simplification during generation technique has been re- 
alized with the two-graph method. However, several other 
symbolic network analysis methods can be used to realize 
the technique of simplification during generation technique. 
In this paper it is shown how this technique can be realized 
with the two-graph method [4], the directed-tree enumeration 
method [4], the Coates flow graph method [4], the Laplace 
expansion of a determinant [ 13 and the parameter extraction 
method of Sannuti and Puri [4]. For all these network analy- 
sis methods the problem of enumerating the dominant terms 
in decreasing order can be considered as a problem of enu- 
merating in order of weight bases that are common to three 
matroids. Every such base corresponds to a term of the net- 
work function. This is explained in Section 2. In Section 3 it 
is shown that the two-graph method is more efficient than the 
other symbolic network analysis methods. 

The problem of enumerating bases that are common to 
three matroids is NP-complete. Since an enumeration of bases 
that are common to two matroids can be performed in a time 
that is polynomially bounded, the enumeration procedure of 
bases common to three matroids is performed as follows: two 
of the three involved matroids are chosen, and their common 
bases are enumerated in order of weight. For every base found 
in this way it is checked whether it is a base in the third ma- 
troid as well. The efficiency of the overall procedure is highly 
influenced by the choice of the two matroids for which the 
common bases are enumerated. 

An implementation of the matroid intersection problem is 
discussed in Section 4. Since it is found that the two-graph 
method is more efficient than the other symbolic network 
analysis methods, the matroid intersection problem is solved 
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for the matroids that are involved for the application of the 
two-graph method. Finally, some experimental results are pre- 
sented as well. 

2 Simplification during generation in terms of matroids 

A matroid M = ( S ,  3) is a structure in which S is a finite 
set of elements and 3 is a family of subsets of S, such that the 
following axioms, called independence axioms, are satisfied: 

1 . 0 € 3  
2.  All proper subsets of a set Z in 3 are in 3. 
3. If I ,  and f , + 1  are sets in 3 containing p and p + 1 

elements respectively, then there exists an element 
e E f , + 1  - Zp such that I p  + e E 3.  

An independent set of maximum cardinality is called a base. 
The notion of independence is made concrete for a specific 
matroid. A graphic matroid is defined on the set of edges of 
a graph. Here, an independent set is defined as a set of edges 
that don't contain a cycle. It is clear that a base in this ma- 
troid corresponds to a spanning tree. A partition matroid is 
defined as follows. Let n be a partition which separates the 
finite set S into m disjoint blocks B I ,  B2, . . . , Bm and let di, 
i = 1,2 ,  . . . m be m given nonnegative integers. Then for any 
S ,  n and di (i  = 1,2,  ... , m )  M = ( S , 3 )  is a matroid, 
in which3 = { Z l Z ~ S , l Z n B ~ l ~ ~ i , i = l , 2 ,  ..., m } .  
Any matroid with such a structure is called apartition ma- 
troid. Usually, it is assumed that each of the numbers di, 
i = 1,2, . . . , m, is equal to one. If any di deviates from one, 
then this will be mentioned explicitly. 

It is possible to define more than one matroid on a set S. 
Also, it is possible that a subset of S is independent for more 
than one matroid. Such subset is denoted as a matroid inter- 
section. When the cardinality of a base is the same for more 
than one matroid defined on a set S then a matroid intersec- 
tion of maximum cardinality is a base that is common to more 
than one mutroid. 

For different symbolic network analysis methods the prob- 
lem of simplification during generation can be formulated as 
the enumeration of bases that are common to three matroids. 
This is explained now for the two-graph method, the directed- 
tree enumeration method, the Coates flow graph method and 
the parameter extraction method of Sannuti and Puri. It can 
be proven that with the Coates flow graph method exactly the 
same terms are generated as with the Laplace expansion of a 
determinant in which all cancelling terms are elaborated only 
after a complete expansion. Hence, the considerations for the 
Coates flow graph method also apply to the Laplace expansion 
method. 
Two-graph method Given two weighted graphs, the volt- 
age and the current graph of the circuit, that contain the same 
n vertices and m edges, but their topology is different. Each 
edge has a weight and a color, red or green. The red edges 
correspond to conductances or transconductances, the green 
edges to capacitors. The problem of simplification during gen- 
eration with the two-graph method is as follows: Enumerate 
in decreasing order of weight spanning trees that are common 

to both the voltage and the current graph and that contain k 
green edges and n - 1 - k red edges. In this way, terms of the 
kth power of s in the numerator or denominator of the network 
function are enumerated. This problem is clearly an intersec- 
tion problem in which three matroids are involved: the graphic 
matroid on the voltage graph, the graphic matroid on the cur- 
rent graph and the partition matroid on the edges induced by 
the coloring. A polynomial-time algorithm that exploits the 
special structure of the involved matroids has not been found. 

Directed-tree enumeration The directed-tree enumeration 
method finds terms of a network function by enumerating di- 
rected trees in a directed graph [4]. Let G = ( V ,  E )  be a 
weighted directed graph. Suppose that a spanning tree di- 
rected from a pre-described root vertex with in-degree zero 
is to be found. Any subset of edges I forming such a span- 
ning tree must satisfy two conditions. First, it must contain no 
cycle. Hence Z must be an independent set of the graphic ma- 
troid of G in which the directions of the edges are ignored. 
Secondly, it must contain no more than one edge into any 
given vertex. Hence, Z must be an independent set of the 
partition matroid which is defined by a partition of the edges 
which places all the edges directed into a given vertex in the 
same block. A directed spanning tree exists if and only if there 
is an (n - 1)-element intersection of these two matroids (n is 
the number of vertices in G). Assume that the directed-tree 
enumeration method is used for the realization of the tech- 
nique of simplification during generation. Then it is necessary 
to generate the dominant terms of every coefficient of every 
power of s in the network function. This corresponds to the 
enumeration of directed spanning trees with exactly k green 
edges corresponding to capacitors, with k being the power of 
s the dominant terms of which are being generated. From 
the above considerations it is clear that the directed-tree enu- 
meration method that takes into account the color constraint 
corresponds to an intersection problem of three matroids. A 
polynomial-time algorithm that exploits the special structure 
of the involved matroids has not been found. 

Coates flow graph method Consider a (weighted) Coates 
flow graph in which the directed edges have a color, red or 
green. The problem of simplification during generation for 
the Coates flow graph method is as follows: Determine the 
largest 0-connection that contains Rvactly k green edges. 

A subset I of edges of the Coates flow graph forms a 0- 
connection if the in-degree as well as the out-degree of every 
vertex is exactly one. Hence I must be an independent set of 
two partition matroids: the first is defined by a partition of the 
edges which places all the edges directed into a given vertex 
in the same block, the other one by a partition of the edges 
which places all the edges directed from a given vertex in the 
same block. In order to satisfy the color constraint, the 0- 
connection must also be an independent set in a third matroid 
which is induced by the coloring of the elements of the Coates 
flow graph either red or green. A polynomial-time algorithm 
that exploits the special structure of the involved matroids has 
not been found. 
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Parameter-extraction method of Sannuti and Puri Given 
p sets B1, B2, . . . , B ,  that each contain mi elements ( i  = 
1, ... , p ) .  Each element has a weight and a color, red or 
green. Determine the combination of elements with the largest 
weight' that contains ki elements from set Bi (ki 5 mi and 
i = 1,2, . . . , p ) ,  such that the combination contains a total 
of n elements (n  = ki) .  From these n elements exactly 
k elements are green. This problem is a subproblem that arises 
when the parameter-extraction method of Sannuti and Puri is 
used to find the largest term of the kth power of s in a network 
function. This problem can be considered as the determina- 
tion of the largest intersection of two partition matroids. 

However, in the above formulation, the extra conditions 
that can be imposed to weed out more symbol combinations 
than with a mere dimensional check, have been omitted. The 
incorporation of these constraints in the problem formulated 
above yields a complex problem that can be considered as a 
problem that consists of p matroid intersection problems, with 
p growing exponentially with the number of symbols. 

lower bound # common spanning trees 
# spanning trees in voltage graph 

3 Comparison of symbolic network analysis methods 

All the above formulations of the simplification during 
generation problem correspond to problems that cannot be 
solved in a polynomially bounded time. The problem of enu- 
merating bases that are common to three matroids is solved by 
enumerating bases common to two matroids, after which each 
such base is tested for independence in the third matroid. The 
enumeration of bases that are common to two matroids in de- 
creasing order of weight can be performed with the algorithm 
of Camerini and Hamacher described in [lo]. The running 
time limit of this algorithm is O(KmRc(m))  in which K is 
the number of enumerated bases, m is the number of elements 
in the matroid, R is the cardinality of the bases, also denoted 
as the rank of the matroid and c(m) is the maximum of the 
running time limits of the independence tests in each of the 
two matroids. The total running time limit of this approach 
can be improved by exploiting the special structure of the in- 
volved matroids. 

The efficiency of the simplification during generation ap- 
proach not only depends on the efficiency of the enumeration 
algorithm, but it also depends on the number of terms that 
has to be generated. A symbolic network analysis method can 
generate cancelling or invalid terms. The less cancelling or in- 
valid terms are generated, the more advantageous a symbolic 
network analysis method is. In [9] it is found that the two- 
graph method produces the least number of cancelling terms. 
With the two-graph method, cancelling terms are only present 
when matching elements are considered, i.e. different circuit 
elements that are represented by the same symbol. The num- 
ber of terms that would be generated with every symbolic net- 
work analysis method can be predicted with formulas evolv- 
ing from graph theory or combinatorics [9]. These formulas 
are applied to the determinant of the admittance matrix of the 
fully-differential BiCMOS amplifier with twenty transistors, 
which is depicted in Figure 1. 
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Figure 1.  A fully differential BiCMOS OTA. 

I # terms with Coates flow graph I 23.4 I 
I # terms with Sannuti & Puri I 1 . 1 5 ~  lo* I 

Table 1.  Number of terms that would be generated with the 
different symbolic network analysis methods for the computa- 
tion of the determinant of the admittance matrix of the BiC- 
MOS ampl$er from Figure 1. The numbers below the first 
row have been normalized to the number of thejirst row. 

The numbers of terms for the different methods are referred 
to the lower bound on the number of spanning trees that are 
common to the voltage graph and the current graph that are 
set up for the computation of the determinant of the admit- 
tance matrix. This is also a lower bound on the number of 
terms in the expanded determinant after all cancelling terms 
have been elaborated. It is seen that the two-graph method is 
superior to the other symbolic network analysis methods. For 
each choice of the two matroids for which common bases are 
generated, there will always be redundant terms, either invalid 
terms or valid terms that are generated more than once. As- 
sume that common spanning trees are generated by first gen- 
erating spanning trees in one graph after which it is examined 
whether this set of edges also corresponds to a spanning tree in 
the other graph. Then it is seen in the table that still less span- 
ning trees of the voltage or current graph would be considered 
than the number of terms that would be generated by any al- 
gorithm that would be able to directly generate the terms that 
evolve from the application of any other symbolic network 
analysis method. 

Further it is seen that the number of spanning trees in the 
voltage graph is lower than the number of spanning trees in 
the current graph. 

The conclusions that have been drawn from the numbers 
for the example of Figure 1 also apply to other circuits of 
practical size [9 ] .  Hence it can be concluded that the two- 
graph method is the most efficient method from the point of 

'The weight of a combination is equal to the sum of the weights of the elements in the combination. 
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view of generating the least number of cancelling or invalid 
terms. 

4 Specialization to specific matroids 

The technique of simplification during generation has been 
implemented for the two-graph method. The choice of this 
method is justified by the considerations of Section 3. For the 
two-graph method the involved matroids are the graphic ma- 
troid on the voltage graph, the graphic matroid on the current 
graph and the partition matroid on the edges of the voltage 
or current graph that is induced by the coloring of the edges. 
For the enumeration of valid terms in order, bases that are 
common to two matroids are first enumerated after which for 
each base it is checked whether it also constitutes a base in 
the third matroid. In our implementation the common bases 
of the graphic matroid on the voltage graph and the partition 
matroid are enumerated. The generation of bases that are com- 
mon to the graphic matroid on the current graph and the parti- 
tion matroid is less efficient since in general the current graph 
contains more spanning trees than the voltage graph. This is 
also illustrated in Table 1. The approach of generating com- 
mon spanning trees without taking into account the color con- 
straint is used in [8]. With this approach common spanning 
trees are generated at different frequencies. In this way, the 
absolute value of the weight of the capacitive edges equals 
mi C ,  in which oi is the frequency under consideration and C 
is the capacitance value. This value can be compared to the 
weight of an edge that corresponds to a resistor or a voltage- 
controlled current source. The disadvantage of this approach 
is that errors in the approximate transfer function may occur 
when the chosen frequency grid is too coarse. On the other 
hand, many terms are generated much more than once when 
the frequency grid is very fine. The latter case might be nec- 
essary for example beyond the gain-bandwidth of an amplifier 
where many poles can occur close to each other. 

For the option that is chosen in our implementation, namely 
the enumeration of spanning trees in the voltage graph that 
satisfy the color constraint, the running time limit of the al- 
gorithm of Camerini and Hamacher, O(KmRc(m)) [lo] re- 
duces to O(Kmn2),  in which K is the number of enumerated 
spanning trees, m is the number of edges in the voltage graph 
and n is the number of vertices in the voltage graph. How- 
ever, by exploiting specific features of the two involved ma- 
troids the running time limit of this procedure can be lowered 
to O ( K m )  [9]. This limit is lower than the running time limit 
of the algorithmdescribed in [7] that solves the same problem. 

The matroid intersection algorithm mentioned above is the 
kernel of the symbolic analyzer ADAGIO that has been imple- 
mented in C. A symbolic analysis of the BiCMOS amplifier 
from Figure 1 with a relative error of 20% takes 1149 seconds 
on a SUN Sparc station 2. The CPU time can of course be 
lowered by simplifying the voltage and the current graph be- 
fore the enumeration procedure starts, as explained in [7] but 
care must be taken not to introduce inaccuracies. 

5 Conclusions 

The technique of simplification during generation for the 
generation of approximate network functions is generally ac- 
cepted as a major breakthrough for the symbolic analysis of 
large linearized analog circuits. In this paper it has been 
shown how this technique can be implemented with the differ- 
ent existing symbolic network analysis methods using matroid 
intersection algorithms. It has been shown that the two-graph 
method is the most suitable method for the implementation of 
the technique of simplification during generation. Experimen- 
tal results illustrate that a symbolic analysis of large analog 
circuits with twenty transistors or more is feasible in a reason- 
able CPU time. 
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