11 research outputs found

    Algorithms and almost tight results for 3-colorability of small diameter graphs.

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3, we establish the complexity of 3-coloring by proving for every ε∈[0,1) that 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ=Θ(nε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ=Θ(nε). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ=ω(1) and for graphs with δ=O(1) and Δ=o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ=Θ(nε), where ε∈[12,1), as its time complexity is 2O(nδlogδ)=2O(n1−εlogn) and the corresponding lower bound states that there is no 2o(n1−ε)-time algorithm

    List Coloring in the Absence of Two Subgraphs

    Get PDF
    list assignment of a graph G = (V;E) is a function L that assigns a list L(u) of so-called admissible colors to each u 2 V . The List Coloring problem is that of testing whether a given graph G = (V;E) has a coloring c that respects a given list assignment L, i.e., whether G has a mapping c : V ! f1; 2; : : :g such that (i) c(u) 6= c(v) whenever uv 2 E and (ii) c(u) 2 L(u) for all u 2 V . If a graph G has no induced subgraph isomorphic to some graph of a pair fH1;H2g, then G is called (H1;H2)-free. We completely characterize the complexity of List Coloring for (H1;H2)-free graphs

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    Faster 3-Coloring of Small-Diameter Graphs

    Get PDF

    Recognizing graphs close to bipartite graphs.

    Get PDF
    We continue research into a well-studied family of problems that ask if the vertices of a graph can be partitioned into sets A and B, where A is an independent set and B induces a graph from some specified graph class G. We let G be the class of k-degenerate graphs. The problem is known to be polynomial-time solvable if k=0 (bipartite graphs) and NP-complete if k=1 (near-bipartite graphs) even for graphs of diameter 4, as shown by Yang and Yuan, who also proved polynomial-time solvability for graphs of diameter 2. We show that recognizing near-bipartite graphs of diameter 3 is NP-complete resolving their open problem. To answer another open problem, we consider graphs of maximum degree D on n vertices. We show how to find A and B in O(n) time for k=1 and D=3, and in O(n^2) time for k >= 2 and D >= 4. These results also provide an algorithmic version of a result of Catlin [JCTB, 1979] and enable us to complete the complexity classification of another problem: finding a path in the vertex colouring reconfiguration graph between two given k-colourings of a graph of bounded maximum degree

    Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring can not be solved in time 2 o(n) on graphs with n vertices and diameter at most 4. In spite of the extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been a longstanding and challenging open question. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we present a subclass of graphs with diameter 2 that admits a polynomial algorithm for 3-coloring. For graphs with diameter at most 3, we establish the complexity of 3-coloring, even for the case of triangle-free graphs. Namely we prove that for every ε∈[0,1), 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ = Θ(n ε ). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ = Θ(n ε ). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this algorithm is the first subexponential algorithm for graphs with δ = ω(1) and for graphs with δ = O(1) and Δ = o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ = Θ(n ε ), where ε∈[12,1
    corecore