List Coloring in the Absence of Two Subgraphs *

Petr A. Golovach ${ }^{1}$ and Daniël Paulusma ${ }^{2}$
${ }^{1}$ Department of Informatics, University of Bergen, Norway, petr.golovach@ii.uib.no
${ }^{2}$ School of Engineering and Computing Sciences, Durham University,
daniel.paulusma@durham.ac.uk

Abstract

A list assignment of a graph $G=(V, E)$ is a function \mathcal{L} that assigns a list $L(u)$ of so-called admissible colors to each $u \in V$. The List Coloring problem is that of testing whether a given graph $G=(V, E)$ has a coloring c that respects a given list assignment \mathcal{L}, i.e., whether G has a mapping $c: V \rightarrow\{1,2, \ldots\}$ such that (i) $c(u) \neq c(v)$ whenever $u v \in E$ and (ii) $c(u) \in L(u)$ for all $u \in V$. If a graph G has no induced subgraph isomorphic to some graph of a pair $\left\{H_{1}, H_{2}\right\}$, then G is called $\left(H_{1}, H_{2}\right)$-free. We completely characterize the complexity of List Coloring for $\left(H_{1}, H_{2}\right)$-free graphs.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by integers called colors such that no two adjacent vertices receive the same color. The goal is to minimize the number of colors. Graph coloring is one of the most fundamental concepts in both structural and algorithmic graph theory and arises in a vast number of theoretical and practical applications. Many variants are known, and due to its hardness, the graph coloring problem has been well studied for special graph classes such as those defined by one or more forbidden induced subgraphs. We consider a more general version of graph coloring called list coloring and classify the complexity of this problem for graphs characterized by two forbidden induced subgraphs. Kratsch and Schweitzer [22] and Lozin [23] performed a similar study as ours for the problems graph isomorphism and dominating set, respectively. Before we summarize related coloring results and explain our new results, we first state the necessary terminology. For a more general overview of the area we refer to the surveys of Randerath and Schiermeyer [29] and Tuza [32], and to the book by Jensen and Toft [26].

1.1 Terminology

We only consider finite undirected graphs with no multiple edges and self-loops. A coloring of a graph $G=(V, E)$ is a mapping $c: V \rightarrow\{1,2, \ldots\}$ such that $c(u) \neq c(v)$ whenever $u v \in E$. We call $c(u)$ the color of u. A k-coloring of G is

[^0]a coloring c of G with $1 \leq c(u) \leq k$ for all $u \in V$. The Coloring problem is that of testing whether a given graph admits a k-coloring for some given integer k. If k is fixed, i.e., not part of the input, then we denote the problem as k Coloring. A list assignment of a graph $G=(V, E)$ is a function \mathcal{L} that assigns a list $L(u)$ of so-called admissible colors to each $u \in V$. If $L(u) \subseteq\{1, \ldots, k\}$ for each $u \in V$, then \mathcal{L} is also called a k-list assignment. We say that a coloring $c: V \rightarrow\{1,2, \ldots\}$ respects \mathcal{L} if $c(u) \in L(u)$ for all $u \in V$. The List Coloring problem is that of testing whether a given graph has a coloring that respects some given list assignment. For a fixed integer k, the List k-Coloring problem has as input a graph G with a k-list assignment \mathcal{L} and asks whether G has a coloring that respects \mathcal{L}. The size of a list assignment \mathcal{L} is the maximum list size $|L(u)|$ over all vertices $u \in V$. For a fixed integer ℓ, the ℓ-List Coloring problem has as input a graph G with a list assignment \mathcal{L} of size at most ℓ and asks whether G has a coloring that respects \mathcal{L}. Note that k-Coloring can be viewed as a special case of List k-Coloring by choosing $L(u)=\{1, \ldots, k\}$ for all vertices u of the input graph, whereas List k-Coloring is readily seen to be a special case of k-LIST Coloring.

For a subset $S \subseteq V(G)$, we let $G[S]$ denote the induced subgraph of G, i.e., the graph with vertex set S and edge set $\{u v \in E(G) \mid u, v \in S\}$. For a graph F, we write $F \subseteq_{i} G$ to denote that F is an induced subgraph of G. Let G be a graph and $\left\{H_{1}, \ldots, H_{p}\right\}$ be a set of graphs. We say that G is $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no induced subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$; if $p=1$, we may write H_{1}-free instead of $\left(H_{1}\right)$-free.

The complement of a graph $G=(V, E)$ denoted by \bar{G} has vertex set V and an edge between two distinct vertices if and only if these vertices are not adjacent in G. The union of two graphs G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Note that G and H may share some vertices. If $V(G) \cap V(H)=\emptyset$, then we speak of the disjoint union of G and H denoted by $G+H$. We denote the disjoint union of r copies of G by $r G$. The graphs C_{r}, P_{r} and K_{r} denote the cycle, path, and complete graph on r vertices, respectively. The graph $K_{r, s}$ denotes the complete bipartite graph with partition classes of size r and s, respectively. The graph K_{4}^{-}denotes the diamond, which is the complete graph on four vertices minus an edge. The line graph of a graph G with edges e_{1}, \ldots, e_{p} is the graph with vertices u_{1}, \ldots, u_{p} such that there is an edge between any two vertices u_{i} and u_{j} if and only if e_{i} and e_{j} share an end-vertex in G.

1.2 Related Work

Král' et. al. [20] completely determined the computational complexity of CoLorING for graph classes characterized by one forbidden induced subgraph. By combining a number of known results, Golovach, Paulusma and Song [13] obtained similar dichotomy results for the problems List Coloring and k-List ColorING, whereas the complexity classifications of the problems List k-Coloring and k-Coloring are still open (see, e.g., [14] for a survey).

Theorem 1. Let H be a fixed graph. Then the following three statements hold:
(i) Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{4} or of $P_{1}+P_{3}$; otherwise it is NP-complete for H-free graphs.
(ii) List Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{3}; otherwise it is NP-complete for H-free graphs.
(iii) For all $\ell \leq 2$, ℓ-List Coloring is polynomial-time solvable. For all $\ell \geq 3$, ℓ-List Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{3}; otherwise it is NP-complete for H-free graphs.

When we forbid two induced subgraphs the situation becomes less clear for the Coloring problem, and only partial results are known. We summarize these results in the following theorem. Here, C_{3}^{+}denotes the graph with vertices a, b, c, d and edges $a b, a c, a d, b c$, whereas F_{5} denote the 5 -vertex fan also called the gem, which is the graph with vertices a, b, c, d, e and edges $a b, b c, c d, e a, e b, e c, e d$.

Theorem 2. Let H_{1} and H_{2} be two fixed graphs. Then the following holds:
(i) Coloring is NP-complete for $\left(H_{1}, H_{2}\right)$-free graphs if

1. $H_{1} \supseteq_{i} C_{r}$ for some $r \geq 3$ and $H_{2} \supseteq_{i} C_{s}$ for some $s \geq 3$
2. $H_{1} \supseteq_{i} K_{1,3}$ and $H_{2} \supseteq_{i} K_{1,3}$
3. H_{1} and H_{2} contain a spanning subgraph of $2 P_{2}$ as an induced subgraph
4. $H_{1} \supseteq_{i} C_{3}$ and $H_{2} \supseteq_{i} K_{1, r}$ for some $r \geq 5$
5. $H_{1} \supseteq_{i} C_{3}$ and $H_{2} \supseteq_{i} P_{164}$
6. $H_{1} \supseteq_{i} C_{r}$ for $r \geq 4$ and $H_{2} \supseteq_{i} K_{1,3}$
7. $H_{1} \supseteq_{i} C_{r}$ for $r \geq 5$ and H_{2} contains a spanning subgraph of $2 P_{2}$ as an induced subgraph
8. $H_{1} \supseteq_{i} K_{4}$ or $H_{1} \supseteq_{i} K_{4}^{-}$, and $H_{2} \supseteq_{i} K_{1,3}$
9. $H_{1} \supseteq_{i} C_{r}+P_{1}$ for $3 \leq r \leq 4$ or $H_{1} \supseteq_{i} \overline{C_{r}}$ for $r \geq 6$, and H_{2} contains a spanning subgraph of $2 P_{2}$ as an induced subgraph.
(ii) Coloring is polynomial-time solvable for $\left(H_{1}, H_{2}\right)$-free graphs if
10. H_{1} or H_{2} is an induced subgraph of $P_{1}+P_{3}$ or of P_{4}
11. $H_{1} \subseteq_{i} C_{3}+P_{1}$ and $H_{2} \subseteq_{i} K_{1,3}$
12. $H_{1} \subseteq_{i} C_{3}^{+}$and $H_{2} \neq K_{1,5}$ is a forest on at most six vertices
13. $H_{1} \subseteq_{i} C_{3}^{+}$, and $H_{2} \subseteq_{i} s P_{2}$ or $H_{2} \subseteq_{i} s P_{1}+P_{5}$ for $s \geq 1$
14. $H_{1}=K_{r}$ for $r \geq 4$, and $H_{2} \subseteq_{i} s P_{2}$ or $H_{2} \subseteq_{i} s P_{1}+P_{5}$ for $s \geq 1$
15. $H_{1} \subseteq_{i} F_{5}$, and $H_{2} \subseteq_{i} P_{1}+P_{4}$ or $H_{2} \subseteq_{i} P_{5}$
16. $H_{1} \subseteq_{i} \overline{P_{5}}$, and $H_{2} \subseteq_{i} P_{1}+P_{4}$ or $H_{2} \subseteq_{i} 2 P_{2}$.

Proof. Král' et al. [20] proved Cases (i):1-4, 6-8. Golovach et al. [12] proved that 4-Coloring is NP-complete for $\left(C_{3}, P_{164}\right)$-free graphs; this shows Case (i):5. Case (i):9 follows from the following result by Schindl [31]. For $1 \leq i \leq j \leq k$, let $S_{h, i, j}$ be the tree with only one vertex x of degree 3 that has exactly three leaves, which are of distance h, i and j to x, respectively. Let $A_{h, i, j}$ be the line graph of $S_{h, i, j}$. Then, for a finite set of graphs $\left\{H_{1}, \ldots, H_{p}\right\}$, Coloring is

NP-complete for $\left(H_{1}, \ldots, H_{p}\right)$-free graphs if the complement of each H_{i} has a connected component isomorphic neither to any graph $A_{i, j, k}$ nor to any path P_{r}.

Case (ii):1 follows from Theorem 1 (i). Because Coloring can be solved in polynomial time on graphs of bounded clique-width [19], and ($\left.C_{3}+P_{1}, K_{1,3}\right)$-free graphs [2], $\left(F_{5}, P_{1}+P_{4}\right)$-free graphs [4], $\left(F_{5}, P_{5}\right)$-free graphs [3] and $\left(\overline{P_{5}}, P_{1}+P_{4}\right)$ free graphs [3] have bounded clique-width, Cases (ii):2,6-7 hold after observing in addition that $\left(\overline{P_{5}}, 2 P_{2}\right)$-free graphs are b-perfect and Coloring is polynomialtime solvable on b-perfect graphs [16]. Gyárfás [15] showed that for all $r, t \geq$ 1, $\left(K_{r}, P_{t}\right)$-free graphs can be colored with at most $(t-1)^{r-2}$ colors. Hence, Coloring is polynomial-time solvable on $\left(K_{r}, F\right)$-free graphs for some linear forest F if k-Coloring is polynomial-time solvable on F-free graphs for all $k \geq 1$. The latter is true for $F=s P_{1}+P_{5}$ [7] and $F=s P_{2}$ (see e.g. [9]). This shows Case (ii):5, whereas we obtain Case (ii): 4 by using the same arguments together with a result of Král' et al. [20], who showed that for any fixed graph H_{2}, Coloring is polynomial-time solvable on $\left(C_{3}, H_{2}\right)$-free graphs if and only if it is so for $\left(C_{3}^{+}, H_{2}\right)$-free graphs. Case (ii):3 is showed by combining the latter result with corresponding results from Dabrowski et al. [9] for $\left(C_{3}, H_{2}\right)$-free graphs obtained by combining a number of new results with some known results $[5,6$, $24,27,28]$.

1.3 Our Contribution

We completely classify the complexity of List Coloring and ℓ-List Coloring for $\left(H_{1}, H_{2}\right)$-free graphs. For the latter problem we may assume that $\ell \geq 3$ due to Theorem 1 (iii).

Theorem 3. Let H_{1} and H_{2} be two fixed graphs. Then List Coloring is polynomial-time solvable for $\left(H_{1}, H_{2}\right)$-free graphs in the following cases:

1. $H_{1} \subseteq_{i} P_{3}$ or $H_{2} \subseteq_{i} P_{3}$
2. $H_{1} \subseteq_{i} C_{3}$ and $H_{2} \subseteq_{i} K_{1,3}$
3. $H_{1}=K_{r}$ for some $r \geq 3$ and $H_{2}=s P_{1}$ for some $s \geq 3$.

In all other cases, even 3-List Coloring is NP-complete for $\left(H_{1}, H_{2}\right)$-free graphs.

We note that the classification in Theorem 3 differs from the partial classification in Theorem 2. For instance, Coloring is polynomial-time solvable on $\left(C_{3}, K_{1,4}\right)$-free graphs, whereas 3-List Coloring is NP-complete for this graph class. We prove Theorem 3 in Section 2, whereas Section 3 contains some concluding remarks. There, amongst others, we give a complete classification of the computational complexity of List Coloring and List 3-Coloring when a set of (not necessarily induced) subgraphs is forbidden.

2 The Classification

A graph G is a split graph if its vertices can be partitioned into a clique and an independent set; if every vertex in the independent set is adjacent to every vertex
in the clique, then G is a complete split graph. The graph $K_{n}-M$ denotes a complete graph minus a matching which is obtained from a complete graph K_{n} after removing the edges of some matching M. Equivalently, a graph G is a complete graph minus a matching if and only if G is $\left(3 P_{1}, P_{1}+P_{2}\right)$-free [13]. The complement of a bipartite graph is called a cobipartite graph. Let G be a connected bipartite graph with partition classes A and B. Then we call \bar{G} a matching-separated cobipartite graph if the edges of \bar{G} that are between vertices from A and B form a matching in \bar{G}. The girth of a graph G is the length of a shortest induced cycle in G.

For showing the NP-complete cases in Theorem 3 we consider a number of special graph classes in the following three lemmas.

Lemma 1. 3-List Coloring is NP-complete for:
(i) complete bipartite graphs
(ii) complete split graphs
(iii) (non-disjoint) unions of two complete graphs
(iv) complete graphs minus a matching

Proof. The proof of Theorem 4.5 in the paper by Jansen and Scheffler [18] is to show that List Coloring is NP-complete on P_{4}-free graphs but in fact shows that 3-List Coloring is NP-complete for complete bipartite graphs. This shows (i). In the proof of Theorem 2 in the paper by Golovach and Heggernes [10] a different NP-hardness reduction is given for showing that 3-List Coloring is NP-complete for complete bipartite graphs. In this reduction a complete bipartite graph is constructed with a list assignment that has the following property: all the lists of admissible colors of the vertices for one bipartition class are mutually disjoint. Hence, by adding all possible edges between the vertices in this class, one proves that 3-List Coloring is NP-complete for complete split graphs. This shows (ii). Golovach et al. [13] showed (iii). The proof of Theorem 11 in the paper by Jansen [17] is to show that List Coloring is NP-complete for unions of two complete graphs that are not disjoint unions, but in fact shows that 3-List Coloring is NP-complete for these graphs. This shows (iv).

Lemma 2. 3-List Coloring is NP-complete for matching-separated cobipartite graphs.
Proof. NP-membership is clear. To show NP-hardness we reduce from SATISFIABility. It is known (see e.g. [8]) that this problem remains NP-complete even if each clause contains either 2 or 3 literals and each variable is used in at most 3 clauses. Consider an instance of SATISFIABILITY with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m} that satisfies these two additional conditions. Let $\phi=C_{1} \wedge \ldots \wedge C_{m}$. We construct a graph G with a list assignment \mathcal{L} as follows (see Fig. 1).

- For each $i \in\{1, \ldots, n\}$, add six vertices $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$, introduce six new colors $i_{1}, i_{2}, i_{3}, i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}$, assign lists of admissible colors $\left\{i_{1}, i_{1}^{\prime}\right\},\left\{i_{2}, i_{2}^{\prime}\right\}$, $\left\{i_{3}, i_{3}^{\prime}\right\}$ to $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}$, respectively, and $\left\{i_{1}, i_{2}^{\prime}\right\},\left\{i_{2}, i_{3}^{\prime}\right\},\left\{i_{3}, i_{1}^{\prime}\right\}$ to $y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$, respectively.

Fig. 1. An example of a graph G with a clause vertex $C_{j}=\bar{x}_{s} \vee x_{i} \vee \bar{x}_{t}$, where x_{s}, x_{i}, x_{t} occur for the third, first and first time in ϕ, respectively.

- Add edges between all vertices x_{i}^{h}, y_{i}^{h} to obtain a clique with $6 n$ vertices.
- For $j=1, \ldots, m$, add four vertices $u_{j}^{1}, u_{j}^{2}, u_{j}^{3}, w_{j}$, introduce three new colors j_{1}, j_{2}, j_{3}, assign the list of admissible colors $\left\{j_{1}, j_{2}, j_{3}\right\}$ to w_{j}, and if C_{j} contains exactly two literals, then assign the list $\left\{j_{3}\right\}$ to u_{j}^{3}.
- Add edges between all vertices u_{j}^{h}, w_{j} to obtain a clique with $4 m$ vertices.
- For $j=1, \ldots, m$, consider the clause C_{j} and suppose that $C_{j}=z_{1} \vee z_{2}$ or $C_{j}=z_{1} \vee z_{2} \vee z_{3}$. For $h=1,2,3$ do as follows:
- if $z_{h}=x_{i}$ is the p-th occurrence of the variable x_{i} in ϕ, then add the edge $u_{j}^{h} x_{i}^{p}$ and assign the list of colors $\left\{i_{p}^{\prime}, j_{h}\right\}$ to u_{j}^{h};
- if $z_{h}=\bar{x}_{i}$ is the p-th occurrence of the variable x_{i} in ϕ, then add the edge $u_{j}^{h} x_{i}^{p}$ and assign the list of colors $\left\{i_{p}, j_{h}\right\}$ to u_{j}^{h}.
Notice that all the colors $i_{1}, i_{2}, i_{3}, i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}, j_{1}, j_{2}, j_{3}$ are distinct. From its construction, G is readily seen to be a matching-separated cobipartite graph.

We claim that ϕ has a satisfying truth assignment if and only if G has a coloring that respects \mathcal{L}. First suppose that ϕ has a satisfying truth assignment. For $i=1, \ldots, n$, we give the vertices $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}$ colors i_{1}, i_{2}, i_{3}, respectively, and the vertices $y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$ colors $i_{2}^{\prime}, i_{3}^{\prime}, i_{1}^{\prime}$ respectively, if $x_{i}=$ true, and we give $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}$ colors $i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}$, respectively, and $y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$ colors i_{1}, i_{2}, i_{3} respectively, if $x_{i}=f a l s e$. For $j=1, \ldots, m$, consider the clause C_{j} and suppose that $C_{j}=z_{1} \vee z_{2}$ or $C_{j}=z_{1} \vee z_{2} \vee z_{3}$. Note that if C_{j} contains exactly two literals, then u_{j}^{3} is colored by j_{3}. The clause C_{j} contains a literal $z_{h}=$ true. Assume first that $z_{h}=x_{i}$ and that z_{h} is the p-th occurrence of the variable x_{i} in ϕ. Recall that u_{j}^{h} has list of admissible colors $\left\{i_{p}^{\prime}, j_{h}\right\}$ and that u_{j}^{h} is adjacent to x_{i}^{p} colored by i_{p}. Hence, we color u_{j}^{h} by i_{p}^{\prime}, w_{j} by j_{h}, and for $s \in\{1,2,3\} \backslash\{h\}$, we color u_{j}^{s} by j_{s}. Assume now that $z_{h}=\bar{x}_{i}$ and that z_{h} is the p-th occurrence of the variable x_{i} in ϕ. Symmetrically, we color u_{j}^{h} by i_{p}, w_{j} by j_{h}, and for $s \in\{1,2,3\} \backslash\{h\}$, we color u_{j}^{s} by j_{s}. We observe that for any distinct $i, i^{\prime} \in\{1, \ldots, n\}$, the lists of admissible colors of $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$ do not share any color with the lists of $x_{i^{\prime}}^{1}, x_{i^{\prime}}^{2}, x_{i^{\prime}}^{3}, y_{i^{\prime}}^{1}, y_{i^{\prime}}^{2}, y_{i^{\prime}}^{3}$. Also for any distinct $j, j^{\prime} \in\{1, \ldots, m\}$, the lists of colors of $u_{j}^{1}, u_{j}^{2}, u_{j}^{3}, w_{j}$ do not share any color with he lists of $u_{j^{\prime}}^{1}, u_{j^{\prime}}^{2}, u_{j^{\prime}}^{3}, w_{j^{\prime}}$. Hence we obtained a coloring of G that respects \mathcal{L}.

Now suppose that c is a coloring of G that respects \mathcal{L}. We need the following claim that holds for all $1 \leq i \leq n$:
either $c\left(x_{i}^{1}\right)=i_{1}, c\left(x_{i}^{2}\right)=i_{2}, c\left(x_{i}^{3}\right)=i_{3}$ or $c\left(x_{i}^{1}\right)=i_{1}^{\prime}, c\left(x_{i}^{2}\right)=i_{2}^{\prime}, c\left(x_{i}^{3}\right)=i_{3}^{\prime}$.
In order to see this claim, first assume that $c\left(x_{i}^{1}\right)=i_{1}$. Then $c\left(y_{i}^{1}\right)=i_{2}^{\prime}, c\left(x_{i}^{2}\right)=$ $i_{2}, c\left(y_{i}^{2}\right)=i_{3}^{\prime}$, and $c\left(x_{i}^{3}\right)=i_{3}$. Symmetrically, if $c\left(x_{i}^{1}\right)=i_{1}^{\prime}$, then $c\left(y_{i}^{3}\right)=i_{3}$, $c\left(x_{i}^{3}\right)=i_{3}^{\prime}, c\left(y_{i}^{2}\right)=i_{2}$, and $c\left(x_{i}^{2}\right)=i_{2}^{\prime}$. Hence, the claim holds, and we can do as follows. For $i=1, \ldots, n$, we let $x_{i}=$ true if $c\left(x_{i}^{1}\right)=i_{1}, c\left(x_{i}^{2}\right)=i_{2}, c\left(x_{i}^{3}\right)=i_{3}$, and $x_{i}=$ false if $c\left(x_{i}^{1}\right)=i_{1}^{\prime}, c\left(x_{i}^{2}\right)=i_{2}^{\prime}, c\left(x_{i}^{3}\right)=i_{3}^{\prime}$. We claim that this truth assignment satisfies ϕ. For $j \in\{1, \ldots, m\}$, consider the clause C_{j} and suppose that $C_{j}=z_{1} \vee z_{2}$ or $C_{j}=z_{1} \vee z_{2} \vee z_{3}$. Recall that if C_{j} contains exactly two literals, then $c\left(u_{j}^{3}\right)=j_{3}$. We also observe that there is an index $h \in\{1,2,3\}$ such that $c\left(u_{j}^{h}\right) \neq j_{h}$ as otherwise it would be impossible to color w_{j}. Hence, if z_{h} is the p-th occurrence of the variable x_{i} in ϕ, then $c\left(u_{j}^{h}\right)=i_{p}^{\prime}$ if $z_{h}=x_{i}$ and $c\left(u_{j}^{h}\right)=i_{p}$ if $z_{h}=\bar{x}_{i}$. If $c\left(u_{j}^{h}\right)=i_{p}^{\prime}$, then $c\left(u_{j}^{h}\right) \neq c\left(x_{i}^{p}\right)=i_{p}$, and $x_{i}=$ true. Otherwise, if $c\left(u_{j}^{h}\right)=i_{p}$, then $c\left(u_{j}^{h}\right) \neq c\left(x_{i}^{p}\right)=i_{p}^{\prime}$, and $x_{i}=$ false. In both cases C_{j} is satisfied. We therefore find that ϕ is satisfied. This completes the proof of Lemma 2.

Lemma 3. List 3-Coloring is NP-compete for graphs of maximum degree at most 3 with girth at least g, and in which any two vertices of degree 3 are of distance at least g from each other, for any fixed constant $g \geq 3$.

Proof. NP-membership is clear. To show NP-hardness we reduce from a variant of Not-All-Equal Satisfiability with positive literals only. This problem is NP-complete [30] and defined as follows. Given a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of logical variables, and a set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over X in which all literals are positive, does there exist a truth assignment for X such that each clause contains at least one true literal and at least one false literal? The variant we consider takes as input an instance (\mathcal{C}, X) of Not-All-Equal SatisfiabilITY with positively literals only that has two additional properties. First, each C_{i} contains either two or three literals. Second, each literal occurs in at most three different clauses. One can prove that this variant is NP-complete by a reduction from the original problem via a well-known folklore trick (see e.g. [13]).

Fig. 2. The construction of G and \mathcal{L} for $g=3$.

From an instance (\mathcal{C}, X) as defined above, we construct a graph G and a list assignment \mathcal{L} as follows. For each literal x_{i} we introduce a vertex that we denote by x_{i} as well. We define $L\left(x_{i}\right)=\{1,2\}$. For each clause C_{p} with two literals, we
fix an ordering of its literals, say x_{h}, x_{i}. We then introduce two vertices C_{p}, C_{p}^{\prime} and add the edges $C_{p} x_{h}$ and $C_{p}^{\prime} x_{i}$. We let C_{p} and C_{p}^{\prime} be the end-vertices of a path $Q_{p p^{\prime}}$ of odd length at least g, whose inner vertices are new vertices. We assign the list $\{1,2\}$ to each vertex of $Q_{p p^{\prime}}$. See Fig. 2 a). For each clause C_{p} with three literals, we fix an ordering of its literals, say x_{h}, x_{i}, x_{j}. We then introduce three vertices $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ and add edges $C_{p} x_{h}, C_{p}^{\prime} x_{i}, C_{p}^{\prime \prime} x_{j}$. We define $L\left(C_{p}\right)=\{1,2\}$ and $L\left(C_{p}^{\prime}\right)=L\left(C_{p}^{\prime \prime}\right)=\{1,2,3\}$. We define paths $Q_{p p^{\prime}}, Q_{p p^{\prime \prime}}$ and $Q_{p^{\prime} p^{\prime \prime}}$, each with new inner vertices and of odd length at least g, that go from C_{p} to C_{p}^{\prime}, from C_{p} to $C_{p}^{\prime \prime}$, and from C_{p}^{\prime} to $C_{p}^{\prime \prime}$, respectively. We assign the list $\{1,2\}$ to each inner vertex of $Q_{p p^{\prime}}$ and to each inner vertex of $Q_{p p^{\prime \prime}}$, whereas we assign the list $\{1,3\}$ to each inner vertex of $Q_{p^{\prime} p^{\prime \prime}}$. See Fig. 2 b). This completes our construction of G and \mathcal{L}. Because each clause contains at most three literals and each literal occurs in at most three clauses, G has maximum degree at most 3 . By construction, G has girth at least g and any two vertices of degree 3 have distance at least g from each other. We claim that X has a truth assignment such that each clause contains at least one true literal and at least one false literal if and only if G has a coloring that respects \mathcal{L}.

First suppose that X has a truth assignment such that each clause contains at least one true literal and at least one false literal. We assign color 1 to every true literal and color 2 to every false literal. Suppose that C_{p} is a clause containing exactly two literals ordered as x_{h}, x_{i} Then, by our assumption, one of them is true and the other one is false. Suppose that x_{h} is true and x_{i} is false. Then we give C_{p} color 2 and C_{p}^{\prime} color 1. Because the path $Q_{p p^{\prime}}$ has odd length, we can alternate between the colors 1 and 2 for the inner vertices of $Q_{p p^{\prime}}$. If x_{h} is false and x_{i} is true, we act in a similar way. Suppose that C_{p} is a clause containing three literals ordered as x_{h}, x_{i}, x_{j}. By assumption, at least one of the vertices x_{h}, x_{i}, x_{j} received color 1 , and at least one of them received color 2 . This leaves us with six possible cases. If x_{h}, x_{i}, x_{j} have colors $1,1,2$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $2,3,1$, respectively. If x_{h}, x_{i}, x_{j} have colors $1,2,1$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $2,1,3$, respectively. If x_{h}, x_{i}, x_{j} have colors $2,1,1$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $1,3,2$, respectively. If x_{h}, x_{i}, x_{j} have colors $2,2,1$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $1,3,2$, respectively. If x_{h}, x_{i}, x_{j} have colors $2,1,2$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $1,2,3$, respectively. If x_{h}, x_{i}, x_{j} have colors $1,2,2$, then we give $C_{p}, C_{p}^{\prime}, C_{p}^{\prime \prime}$ colors $2,3,1$, respectively. What is left to do is to color the inner vertices of the paths $Q_{p p^{\prime}}, Q_{p p^{\prime \prime}}, Q_{p^{\prime} p^{\prime \prime}}$. For the inner vertices of the first two paths we alternate between colors 1 and 2, whereas we alternate between colors 1 and 3 for the inner vertices of the last path. Because we ensured that in all six cases the vertices C_{p}, C_{p}^{\prime} and $C_{p}^{\prime \prime}$ received distinct colors and the length of the paths is odd, we can do this. Hence, we obtained a coloring of G that respects \mathcal{L}.

Now suppose that G has a coloring that respects \mathcal{L}. Then every literal vertex has either color 1 or color 2 . In the first case we make the corresponding literal true, and in the second case we make it false. We claim that in this way we obtained a truth assignment of X such that each clause contains at least one true literal and at least one false literal. In order to obtain a contradiction suppose that C_{p} is a clause, all literals of which are either true or false. First
suppose that all its literals are true, i.e., they all received color 1. If C_{p} contains exactly two literals, then both C_{p} and C_{p}^{\prime} received color 2, which is not possible. If C_{p} contains three literals, then C_{p} received color 2. Consequently, the colors of the inner vertices of the path $Q_{p p^{\prime}}$ are forced. Because $Q_{p p^{\prime}}$ has odd length, this means that the neighbor of C_{p}^{\prime} that is on $Q_{p p^{\prime}}$ received color 2. Then, because C_{p}^{\prime} is adjacent to a literal vertex with color 1 , we find that C_{p}^{\prime} must have received color 3. However, following the same arguments, we now find that the three neighbors of $C_{p^{\prime \prime}}$ have colors $1,2,3$, respectively. This is not possible. If all literals of C_{p} are false, we use the same arguments to obtain the same contradiction. Hence, such a clause C_{p} does not exist. This completes the proof of Lemma 3.

Note that Lemmas 1 and 2 claim NP-completeness for 3-List Coloring on some special graph classes, whereas Lemma 3 claims this for List 3-Coloring, which is the more restricted version of List Coloring where only three distinct colors may be used in total as admissible colors in the lists of a list assignment.

We are now ready to prove Theorem 3.
Proof (of Theorem 3). We first show the polynomial-time solvable cases. Case 1 follows from Theorem 1 (ii). Any $\left(C_{3}, K_{1,3}\right)$-free graph has maximum degree at most 2. Kratochvíl and Tuza [21] showed that List Coloring is polynomialtime solvable on graphs of maximum degree 2. This proves Case 2. By Ramsey's Theorem, every $\left(K_{r}, s P_{1}\right)$-free graph contains at most $\gamma(r, s)$ vertices for some constant $\gamma(r, s)$. Hence, we can decide in constant time whether such a graph has a coloring that respects some given list assignment. This proves Case 3.

Suppose that Cases 1-3 are not applicable. If both H_{1} and H_{2} contain a cycle, then NP-completeness of 3-List Coloring follows from Theorem 2 (i):1. Suppose that one of the graphs, say H_{1}, contains a cycle, whereas H_{2} contains no cycle, i.e., is a forest.

First suppose that H_{1} contains an induced C_{r} for some $r \geq 4$. Because H_{2} is not an induced subgraph of P_{3}, we find that H_{2} contains an induced $P_{1}+P_{2}$ or an induced $3 P_{1}$. If H_{2} contains an induced $P_{1}+P_{2}$, then every complete split graph is $\left(H_{1}, H_{2}\right)$-free. Hence NP-completeness of 3 -List Coloring follows from Lemma 1 (ii). If H_{2} contains an induced $3 P_{1}$, then every union of two complete graphs is $\left(H_{1}, H_{2}\right)$-free. Hence NP-completeness of 3-List Coloring follows from Lemma 1 (iii).

Now suppose that H_{1} contains no induced C_{r} for some $r \geq 4$, but suppose that it does contain C_{3}. If H_{2} contains an induced $P_{1}+P_{2}$, then every complete bipartite graph is $\left(H_{1}, H_{2}\right)$-free. Hence NP-completeness of 3-List Coloring follows from Lemma 1 (i). If H_{2} contains an induced $K_{1, r}$ for some $r \geq 4$, then every graph of maximum degree at most 3 and of girth at least 4 is $\left(H_{1}, H_{2}\right)$ free. Hence, NP-completeness of 3 -List Coloring follows from Lemma 3 after choosing $g=4$. Suppose that H_{2} contains neither an induced $P_{1}+P_{2}$ nor an induced $K_{1, r}$ for some $r \geq 4$. Recall that H_{2} is a forest that is not an induced subgraph of P_{3}. Then $H_{2}=s P_{1}$ for some $s \geq 3$ or $H_{2}=K_{1,3}$.

First suppose that $H_{2}=s P_{1}$ for some $s \geq 3$. If H_{1} is not a complete graph minus a matching, then every complete graph minus a matching is $\left(H_{1}, H_{2}\right)$ -
free. Hence NP-completeness of 3-List Coloring follows from Lemma 1 (iv). If H_{1} is not a non-disjoint union of two complete graphs, then every non-disjoint union of two complete graphs is $\left(H_{1}, H_{2}\right)$-free. Hence NP-completeness of 3-List Coloring follows from Lemma 1 (iii). Now assume that H_{1} is a complete graph minus a matching and also the non-disjoint union of two complete graphs. Then either H_{1} is a complete graph or a complete graph minus an edge. However, H_{1} is not a complete graph by assumption (as otherwise we would end up in Case 3 again). Hence H_{1} is a complete graph minus an edge. Because H_{1} contains C_{3}, this means that H_{1} contains an induced K_{4}^{-}. However, then every matchingseparated cobipartite graph is $\left(H_{1}, H_{2}\right)$-free. Hence NP-completeness of 3-List Coloring follows from Lemma 2.

Now suppose that $H_{2}=K_{1,3}$. By repeating the arguments of the previous case, in which $H_{2}=s P_{1}$ for some $s \geq 3$, we obtain NP-completeness of 3-List Coloring or find that H_{1} is a complete graph or a complete graph minus an edge. If H_{1} is a complete graph, then $H_{1} \neq C_{3}$ by assumption (as otherwise we would end up in Case 2 again). This means that H_{1} contains an induced K_{4}. If H_{1} is a complete graph minus an edge, then H_{1} contains an induced K_{4}^{-}as H_{1} already contains the graph C_{3}. Hence, in both cases, every $\left(K_{4}, K_{4}^{-}, K_{1,3}\right)$ free graph is $\left(H_{1}, H_{2}\right)$-free. Observation 3 in the paper of Král' et al. [20] tells us that Coloring is NP-complete for $\left(K_{4}, K_{4}^{-}, K_{1,3}\right)$-free graphs. However, its proof shows in fact that 3-Coloring is NP-compete for this graph class. Hence, NP-completeness of 3-List Coloring follows.

Finally we consider the case when H_{1} and H_{2} contain no cycles, i.e., are both forests. Because neither of them is an induced subgraph of P_{3}, each of them contains an induced $3 P_{1}$ or an induced $P_{1}+P_{2}$. Recall that a graph is a complete graph minus a matching if and only if it is $\left(3 P_{1}, P_{2}\right)$-free. Hence, any complete graph minus a matching is $\left(H_{1}, H_{2}\right)$-free. Then NP-completeness of 3 -List Coloring follows from Lemma 1 (iv). This completes the proof of Theorem 3.

3 Conclusion

We completely classified the complexity of List Coloring and ℓ-List Coloring for $\left(H_{1}, H_{2}\right)$-free graphs. The next step would be to classify these two problems for \mathcal{H}-free graphs, where \mathcal{H} is an arbitrary finite set of graphs. However, even the case with three forbidden induced subgraphs is not clear. This is in stark contrast to the situation when we forbid subgraphs that may not necessarily be induced. For a set of graphs $\left\{H_{1}, \ldots, H_{p}\right\}$, we say that a graph G is strongly $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$. For such graphs we can show the following result.

Theorem 4. Let $\left\{H_{1}, \ldots, H_{p}\right\}$ be a finite set of graphs. Then List Coloring is polynomial-time solvable for strongly $\left(H_{1}, \ldots, H_{p}\right)$-free graphs if there exists a graph H_{i} that is a forest of maximum degree at most 3, every connected component of which has at most one vertex of degree 3. In all other cases, even List 3-Coloring is NP-complete for $\left(H_{1}, \ldots, H_{p}\right)$-free graphs.

Proof. First suppose there exists a graph H_{i} that is a forest of maximum degree at most 3 , in which every connected component contains at most one vertex of degree 3 . Because H_{i} has maximum degree at most 3 , every connected component of H_{i} is either a path or a subdivided claw. As such, H_{i} is not a subgraph of a graph G if and only if H is not a minor of G. In that case G has pathwidth at most $|V(H)|-2[1]$. Then the path-width, and hence, the treewidth of G is bounded, as H is fixed. Because List Coloring is polynomial-time solvable for graphs of bounded treewidth [18], we find that List Coloring is polynomial-time solvable for strongly H_{i}-free graphs, and consequently, for strongly $\left(H_{1}, \ldots, H_{p}\right)$-free graphs. Now suppose that we do not have such a graph H_{i}. Then every H_{i} contains either an induced cycle or is a forest with a vertex of degree at least 4 or is forest that contains a connected component with two vertices of degree 3. Then NP-completeness of List 3-Coloring follows from Lemma 3 after choosing the constant g sufficiently large.

We note that a classification for Coloring and k-Coloring similar to the one in Theorem 4 for List Coloring and List 3-Coloring is not known even if only one (not necessarily induced) subgraph is forbidden; see Golovach et al. [11] for partial results in this direction.

Another interesting problem, which is still open, is the following. It is not difficult to see that k-Coloring is NP-complete for graphs of diameter d for all pairs (k, d) with $k \geq 3$ and $d \geq 2$ except when $(k, d) \in\{(3,2),(3,3)\}$. Recently, Mertzios and Spirakis [25] solved one of the two remaining cases by showing that 3-Coloring is NP-complete even for triangle-free graphs $G=(V, E)$ of diameter 3 , radius 2 and minimum degree $\delta=\theta\left(|V|^{\epsilon}\right)$ for every $0 \leq \epsilon \leq 1$. This immediately implies that List 3-Coloring is NP-complete for graphs of diameter 3. What is the computational complexity of List 3-Coloring for graphs of diameter 2?

References

1. D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a forest, J. Comb. Theory, Ser. B 52 (1991) 274-283.
2. A. Brandstädt, J. Engelfriet, H.-O. Le, and V.V. Lozin: Clique-Width for 4-Vertex Forbidden Subgraphs, Theory Comput. Syst. 39 (2006) 561-590.
3. A. Brandstädt and D. Kratsch, On the structure of (P_{5}, gem)-free graphs, Discrete Applied Mathematics 145 (2005) 155-166.
4. A. Brandstädt, H.-O. Le, R. Mosca, Gem- and co-gem-free graphs have bounded clique-width, Internat. J. Found. Comput Sci. 15 (2004), 163-185.
5. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Determining the chromatic number of triangle-free $2 P_{3}$-free graphs in polynomial time, Theoretical Computer Science 423 (2012) 1-10.
6. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complexity status of coloring graphs without a fixed induced linear forest, Theoretical Computer Science 414 (2012) 9-19.
7. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, List coloring in the absence of a linear forest, Proc. WG 2011, LNCS 6986 (2011) 119-130.
8. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (1994) 864894.
9. K. Dabrowski, V. Lozin, R. Raman and B. Ries, Colouring vertices of triangle-free graphs without forests, Discrete Mathematics 312 (2012) 1372-1385.
10. P.A. Golovach and P. Heggernes, Choosability of P_{5}-free graphs, Proc. MFCS 2009, LNCS 5734 (2009) 82-391.
11. P.A. Golovach, D. Paulusma and B. Ries, Coloring Graphs Characterized by a Forbidden Subgraph, Proc. MFCS 2012, LNCS 7464 (2012) 443-454.
12. P.A. Golovach, D. Paulusma and J. Song, Coloring graphs without short cycles and long induced paths, Proc. FCT 2011, LNCS 6914 (2011) 193-204.
13. P.A. Golovach, D. Paulusma and J. Song, Closing complexity gaps for coloring problems on H-free graphs, Proc. ISAAC 2012, LNCS, to appear.
14. P.A. Golovach, D. Paulusma and J. Song, 4-Coloring H-free graphs when H is small, Discrete Applied Mathematics 161 (2013) 140-150.
15. A. Gyárfás, Problems from the world surrounding perfect graphs, Zastosowania Matematyki Applicationes Mathematicae XIX, 3-4 (1987) 413-441.
16. C.T. Hoàng, F. Maffray and M. Mechebbek, A characterization of b-perfect graphs, Journal of Graph Theory 71 (2012) 95-122.
17. K. Jansen, Complexity Results for the Optimum Cost Chromatic Partition Problem, Universität Trier, Mathematik/Informatik, Forschungsbericht 96-41, 1996.
18. K Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Appl. Math. 75 (1997) 135-155.
19. D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed clique-width, Discrete Applied Mathematics 126 (2003) 197-221.
20. D. Král', J. Kratochvíl, Zs. Tuza, and G.J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, Proc. WG 2001, LNCS 2204 (2001) 254-262.
21. J. Kratochvíl and Z. Tsuza, Algorithmic complexity of list colorings, Discrete Applied Mathematics 50 (1994) 297-302.
22. S. Kratsch and P. Schweitzer, Graph isomorphism for graph classes characterized by two forbidden induced subgraphs, Proc. WG 2012, LNCS 7551 (2012) 34-45.
23. V. V. Lozin, A decidability result for the dominating set problem, Theoretical Computer Science 411 (2010) 4023-4027.
24. F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Mathematics 162 (1996) 313-317.
25. G.B. Mertzios and P.G. Spirakis, Algorithms and almost tight results for 3colorability of small diameter graphs, Proc. SOFSEM 2013, LNCS, to appear.
26. T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience, 1995.
27. B. Randerath, 3-colorability and forbidden subgraphs. I., Characterizing pairs, Discrete Mathematics 276 (2004) 313-325.
28. B. Randerath and I. Schiermeyer, A note on Brooks' theorem for triangle-free graphs, Australas. J. Combin. 26 (2002) 3-9.
29. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, Graphs Combin. 20 (2004) 1-40.
30. T. J. Schaefer, The complexity of satisfiability problems, Proc. STOC 1978, 216226.
31. D. Schindl, Some new hereditary classes where graph coloring remains NP-hard, Discrete Math. 295 (2005)197-202.
32. Zs. Tuza, Graph colorings with local restrictions - a survey, Discuss. Math. Graph Theory 17 (1997) 161-228.

[^0]: * This paper was supported by EPSRC (EP/G043434/1) and ERC (267959).

