3,918 research outputs found

    Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP

    Get PDF
    2-Opt is probably the most basic local search heuristic for the TSP. This heuristic achieves amazingly good results on “real world” Euclidean instances both with respect to running time and approximation ratio. There are numerous experimental studies on the performance of 2-Opt. However, the theoretical knowledge about this heuristic is still very limited. Not even its worst case running time on 2-dimensional Euclidean instances was known so far. We clarify this issue by presenting, for every p∈N , a family of L p instances on which 2-Opt can take an exponential number of steps. Previous probabilistic analyses were restricted to instances in which n points are placed uniformly at random in the unit square [0,1]2, where it was shown that the expected number of steps is bounded by O~(n10) for Euclidean instances. We consider a more advanced model of probabilistic instances in which the points can be placed independently according to general distributions on [0,1] d , for an arbitrary d≄2. In particular, we allow different distributions for different points. We study the expected number of local improvements in terms of the number n of points and the maximal density ϕ of the probability distributions. We show an upper bound on the expected length of any 2-Opt improvement path of O~(n4+1/3⋅ϕ8/3) . When starting with an initial tour computed by an insertion heuristic, the upper bound on the expected number of steps improves even to O~(n4+1/3−1/d⋅ϕ8/3) . If the distances are measured according to the Manhattan metric, then the expected number of steps is bounded by O~(n4−1/d⋅ϕ) . In addition, we prove an upper bound of O(ϕ√d) on the expected approximation factor with respect to all L p metrics. Let us remark that our probabilistic analysis covers as special cases the uniform input model with ϕ=1 and a smoothed analysis with Gaussian perturbations of standard deviation σ with ϕ∌1/σ d

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlog⁡Δ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlog⁡Δ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201

    Fast Algorithm for Partial Covers in Words

    Get PDF
    A factor uu of a word ww is a cover of ww if every position in ww lies within some occurrence of uu in ww. A word ww covered by uu thus generalizes the idea of a repetition, that is, a word composed of exact concatenations of uu. In this article we introduce a new notion of α\alpha-partial cover, which can be viewed as a relaxed variant of cover, that is, a factor covering at least α\alpha positions in ww. We develop a data structure of O(n)O(n) size (where n=∣w∣n=|w|) that can be constructed in O(nlog⁥n)O(n\log n) time which we apply to compute all shortest α\alpha-partial covers for a given α\alpha. We also employ it for an O(nlog⁥n)O(n\log n)-time algorithm computing a shortest α\alpha-partial cover for each α=1,2,
,n\alpha=1,2,\ldots,n

    Recognizing Planar Laman Graphs

    Get PDF
    Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing planar Laman graphs. A simple algorithm with running time O(n^(3/2)) and a more complicated algorithm with running time O(n log^3 n) based on involved planar network flow algorithms. Both improve upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-6):465 - 497, 1992] with running time O(n sqrt{n log n}). To solve this problem we introduce two algorithms (with the running times stated above) that check whether for a directed planar graph G, disjoint sets S, T subseteq V(G), and a fixed k the following connectivity condition holds: for each vertex s in S there are k directed paths from s to T pairwise having only vertex s in common. This variant of connectivity seems interesting on its own

    On the Parikh-de-Bruijn grid

    Full text link
    We introduce the Parikh-de-Bruijn grid, a graph whose vertices are fixed-order Parikh vectors, and whose edges are given by a simple shift operation. This graph gives structural insight into the nature of sets of Parikh vectors as well as that of the Parikh set of a given string. We show its utility by proving some results on Parikh-de-Bruijn strings, the abelian analog of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl
    • 

    corecore