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Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing
planar Laman graphs. A simple algorithm with running time O(n3/2) and a more complicated algo-
rithm with running time O(n log3 n) based on involved planar network flow algorithms. Both improve
upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica,
7(5-6):465–497, 1992] with running time O(n

√
n log n).

To solve this problem we introduce two algorithms (with the running times stated above) that
check whether for a directed planar graph G, disjoint sets S, T ⊆ V (G), and a fixed k the following
connectivity condition holds: for each vertex s ∈ S there are k directed paths from s to T pairwise
having only vertex s in common. This variant of connectivity seems interesting on its own.
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1 Introduction

Let G = (V,E) be a graph with n vertices. The graph G is called a Laman graph if it has
2n− 3 edges and every subset V ′ ⊆ V , with |V ′| ≥ 2, induces a subgraph with no more than
2|V ′| − 3 edges. A bar-joint framework is a physical structure made from fixed-length bars
that are linked by universal joints (allowing 360◦ rotations) at their endpoints. A bar-joint
framework is flexible if it has a continuous motion other than a global rotation or translation.
A nonflexible framework is called rigid. Moreover it is called minimally rigid, if it is rigid, but
it becomes flexible after removing any bar. For detailed definitions we refer to Jordán [21].
Interestingly, in 2d a bar-joint framework (in a generic configuration) is minimally rigid, if
and only if its underlying graph is a Laman graph. In other words, almost every embedding
of a Laman graph will be rigid. For nongeneric configurations Laman graphs can yield a
flexible framework though (see Figure 1).

Various characterizations of Laman graphs are known [17, 25, 26]. The class of plane
Laman graphs provides even more structure [9, 16, 23]. Of particular interest for our result is
the following geometric characterization: A geometric graph is a pointed pseudotriangulation
(PPT) if each inner face contains exactly three angles less than π, called small, and every vertex
is incident to an angle larger than π, called big [31]. Streinu [33] proved that the underlying
graph of a pointed pseudotriangulation is a Laman graph. Moreover, Haas et al. [16] showed
that every planar Laman graph has an embedding as a pointed pseudotriangulation. Pointed
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79:2 Recognizing Planar Laman Graphs

(a) (b)

Figure 1 A flexible drawing of a Laman graph (a), and a rigid drawing of the same graph (b).

pseudotriangulations have many applications as a geometric data structure. Maybe most
prominently, they are used as a tool to show that every polygonal linkage can unfold in 2d
without intersections [6, 33]. More applications come from problems in ray shooting, motion
planning and polygon guarding. We refer the interested reader to the survey of Rote, Santos,
and Streinu [31].

Haas et al. [16] also give an algorithm that computes a PPT realization for a Laman graph
in time O(n3/2). We could turn their algorithm into a recognition algorithm by checking
whether the derived realization is a PPT. If the original graph is not a Laman graph, then
the construction either fails at some intermediate step or some parts of the drawing collapse.
To check whether it collapsed requires computations with exponentially large numbers. So
it depends on the model of computation if the overall algorithm runs in O(n3/2) time. We
present combinatorial algorithms for recognizing planar Laman avoiding these subtleties.

Checking the Laman condition for general graphs can be done in polynomial time. The
fastest (but very complicated) algorithm is due to Gabow and Westermann [13] and needs
O(n
√
n logn) time. Their algorithm is based on a characterization by means of matroid

sums (see also [7] for a time analysis specifically for Laman graphs). There is also a very easy
so-called pebble-game algorithm that runs in O(n2) time [3, 20] (a brief survey of further
algorithmic aspects is given in the introduction of [26]).

1.1 Our contribution
Our recognition algorithms for planar Laman graphs rely on the theory of combinatorial
pseudotriangulations developed by Haas et al. [16] which will be described in detail in
Section 4. The crucial step in the algorithm is to check the following connectivity condition
for a certain auxiliary directed planar graph. Consider a positive integer k, a directed graph
G, and disjoint sets S, T ⊆ V (G). We call S k-connected to T if for each vertex s ∈ S there
are k directed paths from s to T pairwise having only vertex s in common.

A naive approach to check this condition can be implemented in O(|S|m) time and is
described in Section 1.2 . We present two algorithms checking this condition for planar
directed graphs that are faster for large sets S. In Section 2 we present a simple algorithm
that checks this connectivity condition for planar directed graphs provided that each vertex
is either in S or T . This gives the following theorem.

I Theorem 1. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and a partition V (G) = S ∪ T whether S is k-connected to T in O(n3/2) time.

We show how to combine this algorithm with simple algorithms of Haas et al. [16] to
check the Laman property for a plane graph in time O(n3/2) in Section 4.
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If all vertices in T are incident to a common face then we obtain a much faster algorithm
for the connectivity check. We then even could drop the condition that each vertex is either
in S or T . It is based on latest planar network flow algorithms and presented in Section 3.

I Theorem 2. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and disjoint sets S, T ⊆ V (G) whether S is k-connected to T in O(n log3 n) time,
provided that all vertices in T are incident to a common face in G.

It turns out that this condition is satisfied when checking for the Laman property. This
leads to a fast algorithm for recognizing planar Laman graphs which we describe in Section 4.

I Theorem 3. There is an algorithm deciding for each planar graph whether it is a Laman
graph in O(n log3 n) time.

1.2 Related work on connectivity in directed graphs
Here we discuss how the algorithms from Theorems 1 and 2 relate to known algorithms. We
briefly recall the basic definitions and results on connectivity of directed graphs first. Note
that we consider only unweighted graphs. For two vertices s and t in a directed graph let
κ(s, t) and λ(s, t) denote the largest number of internally vertex disjoint respectively edge
disjoint directed paths from s to t. It is well known that λ(s, t) is equal to the value of a
maximum s-t flow and hence to the size of a minimum s-t cut. A directed graph is strongly
connected if for each vertex there is a directed path to each other vertex. A directed graph
with at least k vertices is called k-vertex connected (k-edge connected) if the removal of any
k − 1 vertices (edges) yields a strongly connected directed graph. Let κ(G) (λ(G)) denote
the largest k such that G is k-vertex connected (k-edge connected). By means of Menger’s
theorem we have that κ(G) = min

s6=t
κ(s, t) and λ(G) = min

s6=t
λ(s, t) [2].

For general directed graphs κ(s, t) and λ(s, t) can be computed with time in O(nm) [30].
Checking whether κ(s, t) ≥ k or whether λ(s, t) ≥ k for some fixed k can be done by k steps
of the Ford–Fulkerson algorithm and hence in O(m) time (see [2, p. 205]). In both cases
the computation of vertex connectivity can be easily reduced to the edge connectivity [10].
Further the values of κ(G) and λ(G) can be computed with algorithms due to Gabow
with time in O(m(n+ min(κ(G)5/2, κ(G)n3/4))) [12] and time in O(λ(G)m log(n2/m)) [11]
respectively. Checking whether κ(G) ≥ 2 and whether λ(G) ≥ 2 can be done with time
in O(n + m) [14, 19]. For larger fixed k the fastest algorithms checking κ(G) ≥ k and
λ(G) ≥ k are based on Gabows algorithms above with times in O(m(n+ min(k5/2, kn3/4)))
and O(km log(n2/m)) respectively.

For planar directed graphs κ(s, t) and λ(s, t) can be computed in linear time [8, 22]
(and O(n logn) in the weighted case). Further λ(G) can be calculated with time in
O(n log logn) [28]. We are not aware of algorithms computing κ(G) specifically for pla-
nar directed graphs.

A naive approach to check whether a set S is k-connected to T (the notion considered
in this paper) works as follows. First introduce a new vertex t and all arcs xt, x ∈ T , and
then check whether κ(s, t) ≥ k for each s ∈ S. This leads to an O(|S|m) time algorithm
for general directed graphs and constant k. For planar directed graphs our algorithm from
Theorem 1 is faster than this approach in case |S| ∈ ω(

√
n) and V (G) = S ∪ T . For planar

directed graphs where the vertices in T can be embedded incident to a common face our
algorithm from Theorem 2 is faster already for |S| ∈ ω(log3 n).

Further questions related to connectivity of (planar) directed graphs include the all-pairs
reachability [15, 18], all pairs minimum cuts [4].

ESA 2019
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(a) (b)

S
T ′

T
A

T

s

Figure 2 If S is k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T

(a). This statement applied where T ′ = A is a separator (b).

2 Checking directed k-connectivity

In this section we prove the statement of Theorem 1. We first give some structural results.
The following statement is similar to Menger’s theorem. We provide a proof for completeness.

I Lemma 4. Let k ≥ 0, G be a directed (not necessarily planar) graph, and S, T ⊆ V (G)
be disjoint with |T | ≥ k. Then S is k-connected to T if and only if for each s ∈ S and
A ⊆ V (G)\{s} with |A| = k−1 there is a directed path from s to T not using the vertices in A.

Proof. Clearly, if S is k-connected to T then for each s ∈ S and A ⊆ V (G) \ {s} with
|A| = k − 1 there is a directed path from s to T not using the vertices in A. We deduce
the reverse statement from Menger’s theorem. Obtain a directed graph G′ by adding a new
vertex z and edges tz for each t ∈ T . Then S is k-connected to T in G if and only if for each
s ∈ S there are k internally vertex disjoint directed paths joining s and z in G′. Suppose
that for each s ∈ S and A ⊆ V (G) \ {s} with |A| = k − 1 there is a directed path from s to
T in G not using the vertices in A. Then, under the same assumptions, there is a directed
path from s to z in G′ not using the vertices in A. So by Menger’s theorem there are k
internally vertex disjoint directed paths joining s and z in G′. In particular S is k-connected
to T in G. J

The following observation is crucial for using separators recursively. An illustration is
given in Figure 2.

I Lemma 5. Let G be a directed graph and let S, T , T ′ ⊆ V (G) be disjoint. If S is
k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T .

Proof. Let s ∈ S and fix a set A ⊆ V (G) \ {s} of size k − 1. We shall find a directed path
from s to T not using vertices from A. There is a directed path from s to some vertex
u ∈ T ∪ T ′ not using vertices from A since S is k-connected to T ∪ T ′. If u ∈ T we are done.
If u ∈ T ′, then there is a directed path from u to T not using vertices from A since T ′ is
k-connected to T . In each case there is a directed path from s to T not using vertices from
A. So S is k-connected to T by Lemma 4. J

For a single vertex we can decide in linear time whether it is k-connected to T by means of
Ford–Fulkerson’s algorithm (similar to the naive approach from Section 1.2). An st-connector
in a directed graph G is a set of edge disjoint directed paths from vertex s to vertex t. Given
an st-connector P the residual graph GP is obtained by reversing all arcs of paths in P. It
is well known that P is a largest st-connector in G if and only if there is no directed path
from s to t in GP [2].
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I Lemma 6. For each k ∈ N there is an algorithm deciding for any directed (not necessarily
planar) graph G, s ∈ V (G), and T ⊆ V (G) whether s is k-connected to T in O(k(|V (G)|+
|E(G)|)) time.

Proof. We apply the following standard modification due to Ford and Fulkerson [10]. Split
each v ∈ V (G) into two vertices vi and vo and replace each arc uv by an arc uovi. Further
add all arcs vivo, v ∈ V (G). Finally add a new vertex z and the arcs toz, t ∈ T . Let G′
denote the resulting directed graph. Then s is k-connected to T in G if and only if there is
an soz-connector of size k in G′.

The algorithm iteratively builds an soz-connector P in G′ in at most k steps. In each step
a directed path P from so to z is searched in the residual graph G′P . If no such path exists,
then the set P is a largest soz-connector in G′. Otherwise, in G′ the symmetric difference of
the set of arcs from paths in P and the set of arcs from P (which might not be a path in G′)
forms an soz-connector of size |P|+ 1 in G′.

Clearly the algorithm decides whether there is an soz-connector of size k in G′ and hence
whether s is k-connected to T in G. The construction of G′ in the beginning and in each step
the construction of the residual graph as well as the search can be implemented in O(n+m)
time. Since there are at most k steps the overall time is O(k(n+m)). J

We call A ⊆ V (G) a separator if removing A splits G into two (not necessarily connected)
subgraphs G1 and G2, such that |V (G1)|, |V (G2)| ≤ 2

3 |V (G)|. For every planar graph G a
separator with size in O(

√
n) can be found in linear time [27].

Proof of Theorem 1. The algorithm works recursively as follows. Let A denote a separator
of G of size O(

√
n). Use Lemma 6 to check for each a ∈ A ∩ S whether a is k-connected to

T in G. Let G1 and G2 denote the two subgraphs of G separated by A (each including A).
For i = 1, 2 let Si = (S ∩ V (Gi)) \ A and let Ti = (T ∩ V (Gi)) ∪ A. Apply the algorithm
recursively to check whether Si is k-connected to Ti in Gi, for i = 1, 2.

Recall that V (G) = S ∪ T . The algorithm indeed checks whether S is k-connected to T
in G since either it finds some vertex in A ∩ S that is not k-connected to T in G, or it is
sufficient to check whether S \A is k-connected to A ∪ T by Lemma 5. Then it is sufficient
to check G1 and G2 separately. See Figure 2(b) for an illustration

The separator can be found in linear time. Then the algorithm from Lemma 6 is called
O(
√
n) times for each vertex in the separator, each call with linear time (since k is constant

and |E(G)| is linear in n). So the total time for each step of the recursion and hence for the
whole algorithm is O(n3/2). J

3 A faster algorithm for checking directed k-connectivity

In this section we prove Theorem 2. First we use a construction similar to one of Kaplan
and Nussbaum [22] transforming the problem into a question about network flow. Consider
a directed graph H and distinct s, t ∈ V (H). Kaplan and Nussbaum construct a directed
planar graph Hs,t obtained from H by replacing each v ∈ V (H) \ {s, t} by a cycle Cv with
vertices v1, . . . , vd, where d is the degree of v in H, such that arcs incident to v are replaced
by arcs of (flow) capacity 1 not sharing endpoints while keeping their orientation and the
cyclic order around v. The edges of the cycle Cv are oriented in both directions and receive
(flow) capacity 1/2. See Figure 3.

I Lemma 7 ([22]). There are k internally vertex disjoint s-t-paths in H if and only if in
Hs,t the maximum s-t-flow has value at least k.

ESA 2019
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Figure 3 A directed planar graph H (a), the modification Hs,t of Kaplan and Nussbaum (b),
and the modification ~G used in the algorithm for Theorem 2 (c). The modification of Kaplan and
Nussbaum does not include the original vertices inside of the new cycles. We need this since all the
original vertices except a fixed source are targets in our algorithm.

Since we need to calculate s-t-flows for several distinct targets t at the same time we need a
modification independent of t.

I Lemma 8. Consider k ≥ 1, a directed planar graph G and disjoint sets S, T ⊆ V (G)
where all vertices of T are incident to a common face. Then a directed planar graph ~G

with |V (~G)| ≤ 7|V (G)| can be computed in linear time together with some s ∈ V (~G) and
T ′ ⊆ V (~G) such that S is k-connected to T in G if and only if in ~G for each t ∈ T ′ the value
of a maximum s-t-flow is at least k.

Proof. We consider an embedding of G where all vertices of T are incident to the outer face.
Let H denote the directed planar graph obtained by reversing the direction of each arc in
G and by adding a new vertex s in the outer face of G connected by arcs sv to all vertices
v ∈ T . Further let T ′ = S. Then S is k-connected to T in G if and only if in H there are k
internally vertex disjoint s-t-paths for each t ∈ T ′ (note that we reversed the direction of all
the edges).

We obtain a directed planar graph ~G by splitting each vertex in V (H) \ {s} into a cycle
as follows. Replace each arc e in H, directed from u 6= s to v, by arcs ueve and vev, where
ue, ve are new vertices (and distinct for all e). Replace each arc e in H, directed from s to v,
by arcs sve, and vev, where ve is a new vertex. Further for each vertex v in H connect the
new vertices ve by a cycle Cv in the cyclic order of the arcs e around v, where the edges are
directed in both directions. Finally a (flow) capacity function is defined where all arcs on
cycles Cv receive capacity 1/2 and all other arcs capacity 1. See Figure 3.

This construction corresponds to the graph Hs,t constructed by Kaplan and Nussbaum,
except that there is not a specific target t and, additionally the original vertices from H are
kept inside of the cycles together with their incoming arcs. In particular ~G is planar and
V (G) ⊆ V (H) ⊆ V (~G). Consider some t ∈ T ′ = S. Note that each s-t-flow in ~G does not
use vertices from V (H) \ {s, t}, since these vertices do not have outgoing arcs in ~G. Hence
for each t ∈ T ′ any s-t-flow in ~G corresponds to an s-t-flow in Hs,t (by contracting t and Ct

to a single vertex). By Lemma 7 there are k internally vertex disjoint s-t-paths in H if and
only if in ~G the value of a maximum s-t-flow is at least k.

Clearly ~G can be constructed in linear time and |V (~G)| ≤ |V (G)|+2|E(G)|+1 ≤ 7|V (G)|.
This shows that ~G together with s and the set T ′ = S satisfies the desired conditions. J
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(a) (b)

Figure 4 A CPPT with big angles are marked by solid circles that is not stretchable (a) and
the derived directed graph ~G where the highlighted vertices do not have 3 disjoint paths to the
outer face (b).

Proof of Theorem 2. First construct a planar directed graph ~G with some s ∈ V (~G) and
T ′ ⊆ V (~G) with the algorithm from Lemma 8. Then apply an algorithm due to Ła̧cki et al. [24]
to ~G, which computes for the source s the maximum flow value to each other vertex in ~G in
O(n log3 n) time. By Lemma 8 S is k-connected to T in G if and only if in ~G for each t ∈ T ′
the value of a maximum s-t-flow is at least k. J

4 Recognizing Planar Laman Graphs

Since any Laman graph is 2-connected and 2-connectivity can be checked in linear time, see,
e.g., [32], we consider only 2-connected graphs in this section. Further we assume that the
graph is given with some plane embedding. As mentioned in the introduction our recognition
algorithms are based on the theory due to Haas et al. [16] which they developed in order to
show that exactly the planar Laman graphs can be realized as pointed pseudotriangulations.
They transfer the concept of PPTs to graphs given with a plane (combinatorial) embedding.
A combinatorial pointed pseudotriangulation (CPPT) is a plane graph with 2n− 3 edges and
with an assignment of the labels “small”/“big” to the angles satisfying the properties of a
PPT. That is, only big angles are incident to the outer face, each inner face contains exactly
three small angles and each vertex is incident to exactly one big angle. A CPPT is called
stretchable if there is a PPT realization (that is, a drawing) of its underlying graph respecting
the given labels of the angles and the embedding. Not every CPPT can be stretched to a
PPT, see Figure 4(a) for an example. But Haas et al. show that every plane Laman graph
admits a CPPT assignment and each CPPT whose underlying graph is Laman is stretchable.
This shows that every Laman graph has a realization as a pointed pseudotriangulation.
Note that the nonstretchable CPPT in Figure 4(a) contains K4 as a subgraph which has
6 > 2 · 4− 3 edges and hence is not a Laman graph.

This already outlines how our algorithms check whether a given plane graph G is Laman:
Step 1: Check whether G admits a CPPT assignment and compute one if it exists.
Step 2: Check whether the CPPT from Step 1 is stretchable.

The first step can be reduced to searching for a (generalized) matching in the following
planar bipartite graph. The vertex-face incidence graph of a plane graph G = (V,E) with
face set F is a planar bipartite graph H = (V ∪ F,E′) where (v, f) ∈ E′ if and only if v ∈ V

ESA 2019
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is incident to f ∈ F in G. Note that for each face each vertex appears at most once along
its boundary since we assume that G is 2-connected. A plane graph G admits a CPPT
assignment if and only if its vertex-face incidence graph has a subgraph A where each interior
face of G has degree 3 in A, the outer face of G has degree 0 in A, and each vertex of G has
degree in A equal to its degree in G minus 1. This means that the edges of A correspond to
small angles in the CPPT assignment. See Figure 5 for an illustration. Haas et al. provide
a simple algorithm with running time O(n3/2) checking whether such a subgraph A exists,
that is, the algorithm computes a CPPT assignment for a given plane graph if any exists.
Note that this algorithm does not compute a drawing and hence does not face the numerical
issued mentioned in the introduction.

(a) (b) (c)

1

1
1

1

1

1

4

0

Figure 5 A plane graph G with a CPPT assignment with big angles marked with a solid circle
(a), the vertex-face incident graph of G where vertices corresponding to faces in G are marked with
a solid square and the subgraph A corresponding to the CPPT is highlighted in gray (b), the flow
network H ′ constructed from G in the proof of Lemma 9 (some capacities are omitted for better
readability) (c).

In order to implement the first step with running time in O(n log3 n) we use an algorithm
by Borradaile et al. [5] computing a maximum flow between multiple sources and sinks.

I Lemma 9. There is an algorithm computing a CPPT assignment for any planar graph G
if any exists in O(n log3 n) time.

Proof. Consider the planar directed graph H ′ whose vertex set consists of two vertices u1
and u2 for each u ∈ V (G) and two vertices f1, f2 for each face of G. For each u ∈ V (G)
add an arc u1u2 with capacity 1, for each interior face f of G add an arc from f1f2 with
capacity equal to the number of vertices incident to f minus 3, and for the outer face f of G
add an arc f1f2 with capacity equal to the number of vertices incident to f . Finally for each
vertex u and face f add an arc f2u1 with capacity 1 if u is incident to f . Then there is a
1-1-correspondence between CPPT assignments of G and integer flows in H ′ with sources in
{f1 | f face in G}, sinks in {u2 | u ∈ V (G)}, and value |V (G)|. Note that the size of H ′ is
linear in the size of G and can be constructed in linear time. In particular the algorithm of
Borradaile et al. [5] (which computes an integer flow) can be used to compute a maximum
flow in O(n log3 n) time. If this flow has value |V (G)| we computed a CPPT assignment if
any exists, otherwise there is no CPPT assignment. J

For the second step, that is, checking whether a given CPPT is stretchable, we use the
following characterization of stretchability by Haas et al. Recall that a set S ⊆ V (G) is
3-connected to a set T ⊆ V (G) \ S if for each vertex s ∈ S there are three vertex disjoint
directed paths from u to distinct vertices in T . Figures 4 and 6 give illustrations of the
following result.
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I Lemma 10 ([16]). For a CPPT G a directed plane graph ~G, with V (~G) = V (G), can be
computed in linear time such that G is stretchable if and only if the set of interior vertices of
~G is 3-connected to the set of boundary vertices of ~G.

(a) (b)

Figure 6 (a) The derived directed graph ~G from the CPPT in Figure 5(c). (b) The stretched
pointed pseudotriangulation.

In fact any directed graph ~G satisfying the following conditions is suitable in the previous
lemma (see [16, Lemma 16] and note that G is a CPPT): (i) ~G contains the underlying graph
of G and has a planar embedding that respects the embedding of G, (ii) the vertices on the
outer face have no outgoing edges, and (iii) every interior vertex v has three outgoing edges
where two of them are the extreme edges in G (these are the edges incident to the big angle)
and one is an edge to a vertex in the boundary of the face of G containing the big angle at v.

We give a computation of such a graph ~G similar to the one of Hass et al. [16] for
completeness. First for each vertex v the two extreme edges incident to its big angle are
oriented from v to the respective neighbors (it might happen that some edges are oriented in
both directions). Next, we triangulate the underlying graph of G as follows. Consider an
inner face of G. If the face contains no big angles, we are done. Otherwise let a, b, and c
be the vertices corresponding to the three small angles and let Xab, Xbc, and Xac denote
the vertices between a and b, between b and c, and between a and c, respectively. Assume
that Xa,b 6= ∅. Let x and y denote the vertices in Xa,b adjacent to a respectively b (it might
happen that x = y). Then we add directed diagonals from each vertex in Xa,b to c, from
each vertex in Xa,c to x, and from each vertex in Xb,c to y. See Figure 7 for an illustration.
We do this for all faces and the obtained triangulation satisfies the conditions (i) – (iii) stated
above. Finally we remove all undirected edges. This construction can be implemented in
linear time by traversing the boundary of each face once.

(a)

a b

c

x y
a b

c

x y

(b)

Figure 7 (a) An inner face in a CPPT with big angles marked with a solid circle. (b) The directed
diagonals added to that face to obtain a directed graph satisfying the assumption of Lemma 10.

ESA 2019
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Now we are ready to describe how to check whether a given plane graph G is Laman.
Note that a graph that admits a CPPT assignment has exactly 2n−e edges [16]. The simpler
algorithm uses the algorithms of Haas et al. [16] to find a CPPT assignment and the directed
plane graph ~G from Lemma 10, and then the algorithm from Theorem 1 to decide whether
the set of interior vertices of ~G is 3-connected to the set of boundary vertices. Note that
each vertex in ~G is either an inner vertex or on the boundary. This decides whether G is a
plane Laman graph by Theorem 1 and Lemma 10 and has running time O(n3/2). The faster
algorithm works as follows.

Proof of Theorem 3. First, search for a CPPT assignment of G using the algorithm from
Lemma 9. If there is no such assignment then G is not Laman. Otherwise G is Laman if
and only if the CPPT computed in the first step is stretchable. To check this we compute
the auxiliary directed plane graph ~G from Lemma 10 such that the CPPT is stretchable if
and only if the set of interior vertices of ~G is 3-connected to the set of boundary vertices of
~G. Note that the boundary vertices of ~G are clearly incident to a common face. Hence we
can check the connectivity property using the algorithm from Theorem 2. This algorithm
decides whether G is a plane Laman graph by Theorem 2 and Lemma 10 and has running
time O(n log3 n). J

5 Conclusions and further directions

An obvious direction for future research is to search for faster or simpler algorithms recognizing
(planar) Laman graphs.

Our algorithms do not provide any certificate for their correctness. This could be a
Henneberg sequence [17] or a decomposition into two acyclic subgraphs [7]. We do not know
how to compute either of these faster than using the algorithm of Gabow and Westermann [13].

Further our strategy heavily depends on planarity. Thus it seems unlikely that we can
extend our approach to nonplanar Laman graphs. Instead it seems interesting to extend our
strategies to more general pseudotriangulations. Orden et al. [29] show a characterization of
general pseudotriangulations that extends the one for PPTs described in Section 4. Again
there is a notion of combinatorial pseudotriangulations (CPT) which are stretchable if and
only if certain combinatorial conditions hold. Besides a connectivity condition similar to the
one for CPPTs there is an additional condition on sizes of subgraphs. In particular, a CPT
might not be stretchable although the underlying graph is realizable as a pseudotriangulation.
We do not know how to identify the stretchable CPTs.

Instead of asking if a graph has a representation as a (pointed) pseudotriangulation one
can also ask for other representations such as straight-line triangle representations [1]. For
this problem no polynomial time algorithm is known, although the problem shares many
similarities with the Laman graph recognition problem.

Finally it is of independent interest to see if the connectivity results for directed graphs
can be extended. In the last part of the introduction we describe a naive approach checking
for a general directed graph whether a set S is k-connected to a set T with time in O(|S|m).

When each vertex is either in S or in T we can adapt the ideas presented in Section 2 for
classes of graphs with small separator. Then the running time becomes linear for graphs with
separators of constant size and stays in O(n3/2) as long as there are separators of size O(

√
n).

We do not know how to improve upon the naive approach for general directed graphs when
some vertices are not in S ∪ T .
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