383 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Implementation And Optimizaton Of Real-time H.264 Baseline Encoder On Tms320dm642 Dsp

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Günümüzde sayısal video kodlama sayısal gözetim sistemleri, video konferans, mobil uygulamalar ve video yayını gibi bir çok uygulamada zorunlu hale gelmiştir. Uluslararası bir video sıkıştırma standardı olan H.264/MPEG-4 bölüm 10, daha önceki standartlara göre kodlama verimini iyileştirmek amacıyla geliştirilmiştir. Fakat, bu kodlama geliştirmesi beraberinde kodlama karmaşıklığının da artmasına yol açmaktadır. Bu tez çalışmasında Texas Instruments TMS320DM642 sayısal sinyal işleyici üzerinde H.264 temel profil kodlayıcı gerçeklenmiştir. DM642 DSP çekirdeği üzerindeki gerçek zamanlı H.264/AVC kodlayıcı uygulaması hata esnekliği araçları ve çeyrek piksel hareket dengeleme dışında standart tüm H.264/AVC temel profil kodlama araçlarını sunmaktadır. Çeyrek piksel hareket dengelem yerine, tüm parlaklılık ve renklik bileşenleri için tam sayı ve yarım piksel pozisyonlarında hareket kestirim ve dengeleme gerçeklenmiştir. Kullanılan DM642 DSP çekirdeği platformu, 2-seviyeli bellek/önbellek aşama düzenine sahip ve VLIW içeren yüksek performanslı sayısal işlemci olarak tasarlanmıştır. Sunulan H.264 temel kodlayıcı sistemin gerçeklenmesi ve eniyilemesi bu tezin konusudur. Üstelik, algoritma bazlı, mimari ve bellek stratejilerini içeren eniyileme çalışma fazları detaylarıyla açıklanmaktadır. H.264/AVC video kodlayıcının hem geliştirme ortamında hem de DM642 EVM donanım ortamında çalışması doğrulanmıştır. Kısaca, kodlayıcı sisteme giriş olan CIF çözünürlükte sıkıştırılmamış YUV video dizisi H.264 Annex-B dosya biçiminde ve de ekrana video çıktı verilerek sıkıştırılmaktadır. Ek olarak, kodlayıcı çıktısı H.264 referans yazılımla doğruluğu kontrol edilmiş ve uyumluluğu kanıtlanmıştır.Recently, digital video coding is mandatory in many applications such as digital surveillance systems, video conferencing, mobile applications as well as video broadcasts. The H.264/MPEG-4 Part 10, an international video compression standard, is developed for improving the coding efficiency compared to previous standards. However, the coding improvement comes with an increase in coding complexity. In this thesis, an H.264 baseline profile encoder is implemented on Texas Instruments TMS320DM642 digital signal processor. The real-time implementation of the H.264/AVC encoder on DM642 DSP core offers most of the standard H.264/AVC baseline profile coding tools except error resiliency tools and quarter-pel motion estimation. Instead of quarter-pel motion compensation, integer and half pixel position motion estimation and compensation for all luminance and chrominance components are implemented. The target platform, DM64 DSP core, is designed as a high-performance digital media processor with two-level memory/cache hierarchy and VLIW architecture. The subject of the thesis is H.264 baseline encoder system realization and optimization on the target platform. Moreover, the study of optimization phases covering algorithmic, architectural and memory strategies are clarified in details. The H.264/AVC encoder system is verified both to execute on the development workstation and DM642 EVM (Evaluation Module) hardware platform. Briefly, the uncompressed input of a YUV video sequence with CIF resolution to the encoder system is compressed to H.264 Annex-B file format and displayed on screen. Additionally, the encoder output is verified with H.264 reference software and the compliancy is proven.Yüksek LisansM.Sc

    On the merits of SVC-based HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) is quickly becoming the dominant type of video streaming in Over-The-Top multimedia services. HAS content is temporally segmented and each segment is offered in different video qualities to the client. It enables a video client to dynamically adapt the consumed video quality to match with the capabilities of the network and/or the client's device. As such, the use of HAS allows a service provider to offer video streaming over heterogeneous networks and to heterogeneous devices. Traditionally, the H. 264/AVC video codec is used for encoding the HAS content: for each offered video quality, a separate AVC video file is encoded. Obviously, this leads to a considerable storage redundancy at the video server as each video is available in a multitude of qualities. The recent Scalable Video Codec (SVC) extension of H. 264/AVC allows encoding a video into different quality layers: by dowloading one or more additional layers, the video quality can be improved. While this leads to an immediate reduction of required storage at the video server, the impact of using SVC-based HAS on the network and perceived quality by the user are less obvious. In this article, we characterize the performance of AVC- and SVC-based HAS in terms of perceived video quality, network load and client characteristics, with the goal of identifying advantages and disadvantages of both options

    HD-VideoBench: A benchmark for evaluating high definition digital video applications

    Get PDF
    HD-VideoBench is a benchmark devoted to high definition (HD) digital video processing. It includes a set of video encoders and decoders (Codecs) for the MPEG-2, MPEG-4 and H.264 video standards. The applications were carefully selected taken into account the quality and portability of the code, the representativeness of the video application domain, the availability of high performance optimizations and the distribution under a free license. Additionally, HD-VideoBench defines a set of input sequences and configuration parameters of the video Codecs which are appropriate for the HD video domain.Peer ReviewedPostprint (published version

    Optimizations for real-time implementation of H264/AVC video encoder on DSP processor

    Get PDF
    International audienceReal-time H.264/AVC high definition video encoding represents a challenging workload to most existing programmable processors. The new technologies of programmable processors such as Graphic Processor Unit (GPU) and multicore Digital signal Processor (DSP) offer a very promising solution to overcome these constraints. In this paper, an optimized implementation of H264/AVC video encoder on a single core among the six cores of TMS320C6472 DSP for Common Intermediate Format (CIF) (352x288) resolution is presented in order to move afterwards to a multicore implementation for standard and high definitions (SD,HD).Algorithmic optimization is applied to the intra prediction module to reduce the computational time. Furthermore, based on the DSP architectural features, various structural and hardware optimizations are adopted to minimize external memory access. The parallelism between CPU processing and data transfers is fully exploited using an Enhanced Direct Memory Access controller (EDMA). Experimental results show that the whole proposed optimizations, on a single core running at 700 MHz for CIF resolution, improve the encoding speed by up to 42.91%. They allow reaching the real-time encoding 25 f/s without inducing any Peak Signal to Noise Ratio (PSNR) degradation or bit-rate increase and make possible to achieve real time implementation for SD and HD resolutions when exploiting multicore features

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    Current video compression algorithms: Comparisons, optimizations, and improvements

    Full text link
    Compression algorithms have evolved significantly in recent years. Audio, still image, and video can be compressed significantly by taking advantage of the natural redundancies that occur within them. Video compression in particular has made significant advances. MPEG-1 and MPEG-2, two of the major video compression standards, allowed video to be compressed at very low bit rates compared to the original video. The compression ratio for video that is perceptually lossless (losses can\u27t be visually perceived) can even be as high as 40 or 50 to 1 for certain videos. Videos with a small degradation in quality can be compressed at 100 to 1 or more; Although the MPEG standards provided low bit rate compression, even higher quality compression is required for efficient transmission over limited bandwidth networks, wireless networks, and broadcast mediums. Significant gains have been made over the current MPEG-2 standard in a newly developed standard called the Advanced Video Coder, also known as H.264 and MPEG-4 part 10. (Abstract shortened by UMI.)

    High-Level Synthesis for Embedded Systems

    Get PDF
    corecore