1,710 research outputs found

    Algorithmic lateral inhibition formal model for real-time motion detection.

    Get PDF
    Recently, the use of the algorithmic lateral inhibition (ALI) method in motion detection has shown to be very effective. The promising results in terms of the goodness of the silhouettes detected and tracked along video sequences lead us to accept the challenge of searching for a real-time implementation of the algorithms. This paper introduces two steps towards that direction: (a) A simplification of the general ALI method is performed by formally transforming it into a finite state machine. (b) A hardware implementation of such a designed ALI module, as well as an 8x8 ALI module, has been tested on several video sequences, providing promising performance results

    The underlying formal model of algorithmic lateral inhibition

    Get PDF
    Many researchers have explored the relationship between recurrent neural networks and finite state machines. Finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. Recently, the neurally-inspired algorithmic lateral inhibition (ALI) method and its application to the motion detection task have been introduced. The article shows how to implement the tasks directly related to ALI in motion detection by means of a formal model described as finite state machines. Automata modeling is the first step towards real-time implementation by FPGAs and programming of ?intelligent? camera processors

    Evidence accumulation in a Laplace domain decision space

    Full text link
    Evidence accumulation models of simple decision-making have long assumed that the brain estimates a scalar decision variable corresponding to the log-likelihood ratio of the two alternatives. Typical neural implementations of this algorithmic cognitive model assume that large numbers of neurons are each noisy exemplars of the scalar decision variable. Here we propose a neural implementation of the diffusion model in which many neurons construct and maintain the Laplace transform of the distance to each of the decision bounds. As in classic findings from brain regions including LIP, the firing rate of neurons coding for the Laplace transform of net accumulated evidence grows to a bound during random dot motion tasks. However, rather than noisy exemplars of a single mean value, this approach makes the novel prediction that firing rates grow to the bound exponentially, across neurons there should be a distribution of different rates. A second set of neurons records an approximate inversion of the Laplace transform, these neurons directly estimate net accumulated evidence. In analogy to time cells and place cells observed in the hippocampus and other brain regions, the neurons in this second set have receptive fields along a "decision axis." This finding is consistent with recent findings from rodent recordings. This theoretical approach places simple evidence accumulation models in the same mathematical language as recent proposals for representing time and space in cognitive models for memory.Comment: Revised for CB

    Revisiting algorithmic lateral inhibition and accumulative computation

    Get PDF
    Certainly, one of the prominent ideas of Professor Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research of Professor Mira and our team at University of Castilla-La Mancha has been that any bottom-up organization may be made operational using two biologically inspired methods called ?algorithmic lateral inhibition?, a generalization of lateral inhibition anatomical circuits, and ?accumulative computation?, a working memory related to the temporal evolution of the membrane potential. This paper is dedicated to the computational formulations of both methods, which have led to quite efficient solutions of problems related to motion-based computer vision

    A historical perspective of algorithmic lateral inhibition and accumulative computation in computer vision

    Get PDF
    Certainly, one of the prominent ideas of Professor José Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research has been that any bottom-up organization may be made operational using two biologically inspired methods called ?algorithmic lateral inhibition?, a generalization of lateral inhibition anatomical circuits, and ?accumulative computation?, a working memory related to the temporal evolution of the membrane potential. This paper is dedicated to the computational formulation of both methods. Finally, all of the works of our group related to this methodological approximation are mentioned and summarized, showing that all of them support the validity of this approximation

    Knowledge modelling for the motion detection task

    Get PDF
    In this article knowledge modelling at the knowledge level for the task of moving objects detection in image sequences is introduced. Three items have been the focus of the approach: (1) the convenience of knowledge modelling of tasks and methods in terms of a library of reusable components and in advance to the phase of operationalization of the primitive inferences; (2) the potential utility of looking for inspiration in biology; (3) the convenience of using these biologically inspired problem-solving methods (PSMs) to solve motion detection tasks. After studying a summary of the methods used to solve the motion detection task, the moving targets in indefinite sequences of images detection task is approached by means of the algorithmic lateral inhibition (ALI) PSM. The task is decomposed in four subtasks: (a) thresholded segmentation; (b) motion detection; (c) silhouettes parts obtaining; and (d) moving objects silhouettes fusion. For each one of these subtasks, first, the inferential scheme is obtained and then each one of the inferences is operationalized. Finally, some experimental results are presented along with comments on the potential value of our approach

    Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Get PDF
    BACKGROUND:Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY:First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS:We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery

    A conceptual frame with two neural mechanisms to model selective visual attention processes

    Get PDF
    An important problem in artificial intelligence (AI) is to find calculation procedures to save the semantic gap between the analytic formulations of the neuronal models and the concepts of the natural language used to describe the cognitive processes. In this work we explore a way of saving this gap for the case of the attentional processes, consisting in (1) proposing in first place a conceptual model of the attention double bottom-up/top-down organization, (2) proposing afterwards a neurophysiological model of the cortical and sub-cortical involved structures, (3) establishing the correspondences between the entities of (1) and (2), (4) operationalizing the model by using biologically inspired calculation mechanisms (algorithmic lateral inhibition and accumulative computation) formulated at symbolic level, and, (5) assessing the validity of the proposal by accommodating the works of the research team on diverse aspects of attention associated to visual surveillance tasks. The results obtained support in a reasonable way the validity of the proposal and enable its application in surveillance tasks different from the ones considered in this work. In particular, this is the case when linking the geometric descriptions of a scene with the corresponding activity level

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    Bayesian modeling of biological motion perception in sport

    Full text link
    La perception d’un mouvement biologique correspond à l’aptitude à recueillir des informations (comme par exemple, le type d’activité) issues d’un objet animé en mouvement à partir d’indices visuels restreints. Cette méthode a été élaborée et instaurée par Johansson en 1973, à l’aide de simples points lumineux placés sur des individus, à des endroits stratégiques de leurs articulations. Il a été démontré que la perception, ou reconnaissance, du mouvement biologique joue un rôle déterminant dans des activités cruciales pour la survie et la vie sociale des humains et des primates. Par conséquent, l’étude de l’analyse visuelle de l’action chez l’Homme a retenu l’attention des scientifiques pendant plusieurs décennies. Ces études sont essentiellement axées sur informations cinématiques en provenance de différents mouvements (comme le type d’activité ou les états émotionnels), le rôle moteur dans la perception des actions ainsi que les mécanismes sous-jacents et les substrats neurobiologiques associés. Ces derniers constituent le principal centre d’intérêt de la présente étude, dans laquelle nous proposons un nouveau modèle descriptif de simulation bayésienne avec minimisation du risque. Ce modèle est capable de distinguer la direction d’un ballon à partir d’un mouvement biologique complexe correspondant à un tir de soccer. Ce modèle de simulation est inspiré de précédents modèles, neurophysiologiquement possibles, de la perception du mouvement biologique ainsi que de récentes études. De ce fait, le modèle présenté ici ne s’intéresse qu’à la voie dorsale qui traite les informations visuelles relatives au mouvement, conformément à la théorie des deux voies visuelles. Les stimuli visuels utilisés, quant à eux, proviennent d’une précédente étude psychophysique menée dans notre laboratoire chez des athlètes. En utilisant les données psychophysiques de cette étude antérieure 3 et en ajustant une série de paramètres, le modèle proposé a été capable de simuler la fonction psychométrique ainsi que le temps de réaction moyen mesurés expérimentalement chez les athlètes. Bien qu’il ait été établi que le système visuel intègre de manière optimale l’ensemble des indices visuels pendant le processus de prise de décision, les résultats obtenus sont en lien avec l’hypothèse selon laquelle les indices de mouvement sont plus importants que la forme dynamique dans le traitement des informations relatives au mouvement. Les simulations étant concluantes, le présent modèle permet non seulement de mieux comprendre le sujet en question, mais s’avère également prometteur pour le secteur de l’industrie. Il permettrait, par exemple, de prédire l’impact des distorsions optiques, induites par la conception de verres progressifs, sur la prise de décision chez l’Homme. Mots-clés : Mouvement biologique, Bayésien, Voie dorsale, Modèle de simulation hiérarchique, Fonction psychométrique, Temps de réactionThe ability to recover information (e.g., identity or type of activity) about a moving living object from a sparse input is known as Biological Motion perception. This sparse input has been created and introduced by Johansson in 1973, using only light points placed on an individual's strategic joints. Biological motion perception/recognition proves to play a significant role in activities that are critical to the survival and social life of humans and primates. In this regard, the study of visual analysis of human action had the attention of scientists for decades. These studies are mainly focused on: kinematics information of the different movements (such as type of activity, emotional states), motor role in the perception of actions and underlying mechanisms, and associated neurobiological substrates. The latter being the main focus of the present study, a new descriptive risk-averse Bayesian simulation model, capable of discerning the ball’s direction from a set of complex biological motion soccer-kick stimuli is proposed. Inspired by the previous, neurophysiologically plausible, biological motion perception models and recent studies, the simulation model only represents the dorsal pathway as a motion information processing section of the visual system according to the two-stream theory, while the stimuli used have been obtained from a previous psychophysical study on athletes. Moreover, using the psychophysical data from the same study and tuning a set of parameters, the model could successfully simulate the psychometric function and average reaction time of the athlete participants of the aforementioned study. 5 Although it is established that the visual system optimally integrates all available visual cues in the decision-making process, the results conform to the speculations favouring motion cue importance over dynamic form by only depending on motion information processing. As a functioning simulator, the present simulation model not only introduces some insight into the subject at hand but also shows promise for industry use. For example, predicting the impact of the lens-induced distortions, caused by various lens designs, on human decision-making. Keywords: Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model, Psychometric function, Reaction tim
    corecore