8 research outputs found

    On the State of Crypto-Agility

    Get PDF
    The demand for crypto-agility, although dating back for more than two decades, recently started to increase in the light of the expected post-quantum cryptography (PQC) migration. Nevertheless, it started to evolve into a science on its own. Therefore, it is important to establish a unified definition of the notion, as well as its related aspects, scope, and practical applications. This paper presents a literature survey on crypto-agility and discusses respective development efforts categorized into different areas, including requirements, characteristics, and possible challenges. We explore the need for crypto-agility beyond PQC algorithms and security protocols and shed some light on current solutions, existing automation mechanisms, and best practices in this field. We evaluate the state of readiness for crypto-agility, and offer a discussion on the identified open issues. The results of our survey indicate a need for a comprehensive understanding. Further, more agile design paradigms are required in developing new IT systems, and in refactoring existing ones, in order to realize crypto-agility on a broad scale

    Gateway Architectures for Interaction between the Current Internet and Future Internet Architectures

    Get PDF
    In this project, we design, analyze, and implement a gateway for the SCION secure Internet architecture. This enables communication between legacy IP hosts and SCION hosts, and enables legacy IP traffic to be encapsulated and transported over the SCION network. We also analyze the security implications/benefits for legacy traffic to be interfaced with SCION and how the SCION Gateway can provide DDoS defense properties for the legacy hosts it serves, without requiring any infrastructure chang

    Secure Certificate Management and Device Enrollment at IoT Scale.

    Get PDF
    The Internet of Things (IoT) is expected to comprise of over 20 billion devices connected to the Internet by the year 2020, and support mission critical applications such as health care, road safety and emergency services to name a few. This massive scale of IoT device deployment, heterogeneity of devices and applications, and the autonomous nature of the decision making process introduces new security requirements and challenges. The devices must be securely bootstrapped in to the network to provide secure inter--device communication and also, the applications must be able to authenticate and authorize these devices to provide the relevant services. In today's Internet, Public Key Infrastructure (PKI) is widely used to provide authenticity, encryption and data integrity during network communication through the use of digital certificates. This thesis investigates the key aspects for deploying a PKI security solution in an IoT ecosystem, ranging from deploying certificates on new devices (bootstrapping) to complete life cycle management of these certificates. We believe that the current PKI can be, with suitable enhancements, used to provide the efficiency, scalability and flexibility needed for IoT security. This thesis provides a survey of key aspects for deploying PKI security solution in IoT ecosystem. We investigate different certificate management protocols and motivate the applicability of enhanced security over transport (EST) protocol for IoT PKI solution. In addition, we propose a PKI deployment model and the bootstrap mechanism to bring up an IoT device and provision it with a digital certificate. Furthermore, we provide a prototype implementation to demonstrate certificate enrollment procedure with an EST server

    Next generation control of transport networks

    Get PDF
    It is widely understood by telecom operators and industry analysts that bandwidth demand is increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. This trend means that the consumers will have both a wide variety of devices attaching to their networks and a range of high bandwidth service requirements. The corresponding impact is the effect on the traffic engineered network (often referred to as the “transport network”) to ensure that the current rate of growth of network traffic is supported and meets predicted future demands. As traffic demands increase and newer services continuously arise, novel network elements are needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport network. The transport network provides transparent traffic engineered communication of user, application, and device traffic between attached clients (software and hardware) and establishing and maintaining point-to-point or point-to-multipoint connections. The research documented in this thesis was based on three initial research questions posed while performing research at British Telecom research labs and investigating control of transport networks of future transport networks: 1. How can we meet Internet bandwidth growth yet minimise network costs? 2. Which enabling network technologies might be leveraged to control network layers and functions cooperatively, instead of separated network layer and technology control? 3. Is it possible to utilise both centralised and distributed control mechanisms for automation and traffic optimisation? This thesis aims to provide the classification, motivation, invention, and evolution of a next generation control framework for transport networks, and special consideration of delivering broadcast video traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how requirements I gathered, and research I conducted, and by which the transport control framework functional components are identified and selected, and by which method the architecture was implemented and applied to key research projects requiring next generation control capabilities, both at British Telecom and the wider research community. Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and development of the transport network framework and key areas for further study

    Defence against Denial of Service (DoS) attacks using Identifier-Locator Network Protocol (ILNP) and Domain Name System (DNS)

    Get PDF
    This research considered a novel approach to network security by combining a new networking architecture based on the Identifier-Locator Network Protocol (ILNP) and the existing Domain Name System (DNS). Specifically, the investigations considered the mitigation of network-level and transport-level based Denial of Service (DoS) attacks. The solutions presented for DoS are applicable to secure servers that are visible externally from an enterprise network. DoS was chosen as an area of concern because in recent years DoS has become the most common and hard to defend against attacks. The novelty of this approach was to consider the way the DNS and ILNP can work together, transparently to the application, within an enterprise scenario. This was achieved by the introduction of a new application-level access control function - the Capability Management System (CMS) - which applies configuration at the application level (DNS data) and network level (ILNP namespaces). CMS provides dynamic, ephemeral identity and location information to clients and servers, in order to effectively partition legitimate traffic from attack traffic. This was achieved without modifying existing network components such as switches and routers and making standard use of existing functions, such as access control lists, and DNS servers, all within a single trust domain that is under the control of the enterprise. The prime objectives of this research were: • to defend against DoS attacks with the use of naming and DNS within an enterprise scenario. • to increase the attacker’s effort in launching a successful DoS attack. • to reduce the visibility of vulnerabilities that can be discovered by an attacker by active probing approaches. • to practically demonstrate the effectiveness of ILNP and DNS working together to provide a solution for DoS mitigation. The solution methodology is based on the use of network and transport level capabilities, dynamic changes to DNS data, and a Moving Target Defence (MTD) paradigm. There are three solutions presented which use ILNP namespaces. These solutions are referred to as identifier-based, locator-based, and combined identifier-locator based solutions, respectively. ILNP-based node identity values were used to provide transport-level per-client server capabilities, thereby providing per-client isolation of traffic. ILNP locator values were used to allow a provision of network-level traffic separation for externally accessible enterprise services. Then, the identifier and locator solutions were combined, showing the possibility of protecting the services, with per-client traffic control and topological traffic path separation. All solutions were site-based solutions and did not require any modification in the core/external network, or the active cooperation of an ISP, therefore limiting the trust domain to the enterprise itself. Experiments were conducted to evaluate all the solutions on a test-bed consisting of off-the-shelf hardware, open-source software, an implementation of the CMS written in C, all running on Linux. The discussion includes considering the efficacy of the solutions, comparisons with existing methods, the performance of each solution, and critical analysis highlighting future improvements that could be made

    Algorithm Agility Procedure for the Resource Public Key Infrastructure (RPKI)

    No full text
    corecore