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Abstract 

This quasi-experimental before-and-after study examined the impacts of using 

IPv6 extension headers to carry cryptographic Border Gateway Protocol (BGP) route 

attestation information.  Literature was assessed surrounding: the design of BGP, 

vulnerabilities in BGP, a survey of proposed route attestation solutions, IPv6 extension 

header design, overhead in cryptography, and factors influencing the adoption of 

proposed solutions.  The literature surveyed showed a need to evaluate IPv6 and its role 

in helping secure the Internet’s routing protocol, BGP.  The study resulted in statically 

significant figures representing the cost associated in an instantiation of using IPv6 

extension headers to carry BGP route attestation information.  Furthermore, future 

opportunities for research to improve upon overall BGP security and the inclusion of 

IPv6 in such models were discussed.  The research performed revealed potential 

pathways for enhancing Internet routing as a whole. 
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CHAPTER 1: INTRODUCTION 

The matter of this quasi-experimental before-and-after study was the impact of 

using IPv6 to perform Border Gateway Protocol (BGP) routing update attestation and 

measuring the resulting impacts.  The study was designed to measure a method of 

protecting BGP, which all Internet traffic is dependent on, thus affecting all users.  

According to Cardona, Vissicchio, Lucente, and Francois (2016) BGP is the standard 

routing protocol used across the Internet.  Despite the critical role BGP plays in directing 

Internet traffic, the standardized version of the protocol lacks the ability to validate and 

authorize other BGP speakers to take ownership of a network.  The result is a system 

based solely on trust, leaving systems vulnerable to malicious actors stealing or 

modifying network traffic.  Stolen or modified network traffic may result in denial of 

service (DoS) or the loss of sensitive information.  The transition to a secure 

implementation of the routing protocol has been hindered by adoptability and limitations 

in proposed solutions (P. Gill, Schapira, & Goldberg, 2011).  Many of the proposed 

solutions address Internet Protocol version 4 (IPv4), but not IP version 6 (IPv6) which the 

Internet is moving towards since the available pool of IPv4 addresses is exhausted.  As a 

result, the Internet is forced to adopt IPv6, therefore demonstrating a need to assess 

security of BGP in the context of IPv6. 

The focus of this study was to create and evaluate a model of performing 

validation and authorization of routing updates in an IPv6 space while quantitatively 

measuring the performance impact of the solution.  As the Internet has adopted BGP-4 as 

the standard inter-domain routing protocol after its release in 1995 (Traina, 1995), it is 

important to secure it in an efficient, scalable, and highly-adoptable way.  Many existing 

solutions have suffered poor adoption due to a high cost or poor effectiveness in a 
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partially deployed environment (Lychev, Goldberg, & Schapira, 2013).  P. Gill et al. 

(2011) indicated the importance of finding such a solution to the existing issues within 

BGP, citing economic and security implications entering the spotlight of major entities on 

the Internet. 

A common result of increasing the security of a system or process is a negative 

impact on performance.  Chapter 1 details the proposed study of how a model leveraging 

the efficiencies of IPv6 can provide an adoptable security model for enhancing BGP 

while minding the performance implications of doing such.  The chapter will introduce 

the background of the study, significance of the study, design of the study, as well as the 

potential outcomes and resulting impact.  Additional dialogue will ascertain key issues 

that are suggested for research alongside of important questions pertaining to said 

research.  The purpose of this study was to determine whether the efficiencies introduced 

in the IPv6 protocol may aid a BGP security model in circumventing routing attacks and 

to measure the performance penalty of participating routers. 

Background of the Study 

The Internet is composed of countless entities that own networks or IP addresses, 

and those entities are interconnected through different topologies and configurations.  For 

example, some of these entities may have direct connections between each other, while 

others may connect through one or more Internet service providers.  The methods of 

establishing an online presence and connecting with other organizations is innumerable.  

This flexibility of topology design is made possible by interdomain routing protocols. 

Interdomain routing is a fundamental component of how the Internet works.  As 

new networks are created and others taken offline, the Internet is in a constantly changing 

state (Gao, 2001).  To cope with the volatile nature of the Internet, interdomain routing 
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protocols are leveraged by entities participating in Internet communication.  These 

protocols are designed to not only inform other parties of the networks that exist, but 

offer a roadmap of how to reach those networks (Kuhn, Liu, & Rossman, 2009).  The 

underlying goal of an interdomain routing protocol is to provide an accurate and up-to-

date picture of reachable networks alongside of a reliable path by which to reach them (P. 

Gill, Schapira, & Goldberg, 2013).  

The previously described interconnected entities, or autonomous systems, exist 

within the Internet and interdomain routing ecosystem.  Although the definition of an 

autonomous system (AS) is somewhat ambiguous (Hawkinson & Bates, 1996), Gao 

(2001) describes an autonomous system as portion of a network operated by an 

administrative domain.  Furthermore, autonomous systems are referred to by a globally 

unique number assigned by a governing body like the Internet Assigned Numbers 

Authority (Vohra & Chen, 2012).  An autonomous system number may look like 

AS23122.  Examples of these types of administrative domains that own autonomous 

systems may be Internet service providers (ISPs), universities, and companies.  In 

addition, one administrative domain may operate numerous autonomous systems as a 

smaller portion of their expanse.  Interdomain routing facilitates the communication 

between these autonomous systems. 

Prior to the widespread adoption of BGP, several other external routing protocols 

were used on the public Internet.  Many of those also existed inside of private networks 

such as the Exterior Gateway Protocol (EGP), Routing Information Protocol (RIP), and 

Open Shortest Path First (OSPF).  Due to the nature of how the Internet has grown and 

the complex interconnections between networks, significant topological issues arose with 

the protocols preceding BGP (Traina, 1995). The limitations with protocols such as EGP 
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became impractical from both technical and operational standpoints.  According to Traina 

(1995), BGP addressed these limitations and matched the IP hop-by-hop archetype 

necessitated by the Internet’s design. 

The first version of the BGP came from Lougheed and Rekhter (1989) as a new 

protocol to enable the exchange of information and routes between autonomous systems.  

It was deemed as an “inter-autonomous system” routing protocol.  Alongside the 

evolution of the Internet, the BGP protocol developed as well, resulting in several 

versions that addressed shortcomings in protocols such as EGP.  Yakov Rekhter and Li 

(1995) introduced BGP version four (BGP-4), the currently used standard, in a request 

for comment (RFC).  This version reflected changes and the need for efficiency in 

performance of such routing protocols. 

Since the introduction of BGP-4 in 1995, BGP has become the most widely used 

inter domain routing protocol.  In fact, Jakub et al. (2014) assert that BGP is the only 

deployed interdomain routing protocol in use on the Internet.  BGP is responsible for 

directing traffic between various autonomous systems across the Internet and on a large 

scale, serves as the backbone of the Internet (Medhi & Ramasamy, 2007).  Since its 

introduction, BGP is still being used as the de-facto standard for inter domain routing 

after a decade of use and progression.  Effectively, any traffic leaving an autonomous 

system such as an Internet service provider (ISP) to a second autonomous system will be 

routed by BGP at some point.  The scale of Internet traffic relying on this protocol is 

colossal. 

During BGPs introduction, it was built upon an inherent model of trust.  When a 

BGP speaker announces a new route stemming from a number of events such as a 

network being added, networks being segmented or deleted, a new shorter path between 
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endpoints, etc., each neighboring BGP peer does not validate or attest the route 

information.  Rather, the neighbors propagate the route update to their peers (Qi et al., 

2012).  The result of this model is a lightweight approach to passing information vital to 

the flow of Internet traffic.  BGP does not introduce a significant amount of overhead on 

the routers participating compared to trust models such as public key infrastructure (PKI) 

(Peyravian, Roginsky, & Zunic, 2004).  Despite the advantages of an inherent trust 

model, there are significant risks and outcomes if a malicious entity enters the ecosystem. 

If the routers responsible for directing traffic between autonomous systems cannot 

attest the routes that they are receiving due to a lack of support in the BGP-4 protocol 

specification, a variation of negative impacts may occur to Internet users on a large scale.  

There have been multiple notable instances of undesirable affects from BGP 

misconfiguration and possible route hijacking attacks.  Regardless of the intent or 

motivation behind the route redirection via BGP, the impacts are clearly visible and 

problematic. 

One of the most notable BGP hijacking instances is the YouTube hijacking by 

Pakistani ISP, AS17557 (Bornhauser & Martini, 2011).  The YouTube hijacking was the 

direct result of a sub-prefix hijack attack as according to Bornhauser and Martini (2011) 

AS17557 advertised a network prefix of 208.65.153.0/24 which belongs to the larger 

subnet 208.64.152.0/22.  Since a larger prefix was advertised to the Internet, BGP peers 

of AS17557 trusted the route update by the nature of how BGP designed, the larger the 

prefix, the more trusted.  This property aligns with the largest-prefix match rule of BGP.  

The hijacking by the Pakistani ISP clearly demonstrated a politically motivated denial of 

service that had greater reach than originally intended by those who introduced it.  
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A second example of BGP redirection and prefix hijacking occurred in 2013.  An 

ISP in Belarus, GlobalOneBel, intercepted traffic from several countries beginning on 

July 31, 2013 and continuing through August 19, 2013 (Yun & Song, 2015).  As noted by 

Yun, traffic from various countries’ financial institutions, governments, and network 

service providers were affected including those residing in the United States.  In this 

particular scenario, traffic was intercepted and forwarded on as seen in common Man-In-

The-Middle (MITM) attacks rather than creating denial of service (DoS) conditions. 

A third, more recent example of BGP route hijacking began on February 2014 via 

a Canadian ISP.  Over the course of this hijacking that lasted nearly four months, 

attackers compromised 51 networks and 19 different ISPs (Sun et al., 2015).  The 

motivation of this type of attack appeared to be financially driven.  Attackers were able to 

steal approximately $83,000 in Bitcoins, a cryptocurrency according to Sun et al. (2015).  

It is quite evident from this publicly disclosed incident that BGP route hijacking attacks 

can affect a relatively significant number of entities while evading detection.  Parceling 

away such a sum of money over the course of several months is no small feat, but the 

attackers were greatly assisted by the inherent flaws in the protocol. 

In light of the outlined incidents in addition to others not documented above, the 

FCC has identified IP route hijacking as one of the top three areas of concern of cyber 

security in 2012 (FCC, 2012).  Furthermore, the Department of Homeland security 

included route hijacking via BGP as a primary vulnerability within their Internet routing, 

access, and connection services function in version 1.0 of the Information Technology 

Sector Baseline Risk Assessment (Bullock, Haddow, & Coppola, 2015).  Similarly 

Karlin, Forrest, and Rexford (2009) show through their study how nation-sates have been 

able to impact the flow of Internet traffic through BGP resulting in enforced censorship 
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and wiretapping.  The lack of route attestation is one of the contributing factors to the 

threats outlined by these agencies and people, which demonstrates a clear need to 

improve the security of BGP and the devices participating in the protocol. 

 Statement of the Problem 

A critical problem arose from the fact that BGP is the most widely used routing 

protocol on the publicly facing Internet, yet it lacks fundamental security mechanisms.  

For example, when following its longest prefix matching property, BGP has no security 

mechanisms that protect the validity and integrity of routing updates by performing route 

attestation (Qiu, Gao, Ranjan, & Nucci, 2007).  Research clearly showed that due to the 

lack of security mechanisms built into BGP and the inherent trust model that the protocol 

is built upon, BGP is susceptible to cyber-attacks including prefix hijacking, IP spoofing, 

session stealing and others (Murphy, 2006).  Misconfigurations in BGP or malicious 

actors may lead to undesired outcomes (Mahajan, Wetherall, & Anderson, 2002) that can 

negatively impact network communication on a large scale through denial-of-service, 

traffic redirection, increase in spam, and information disclosure via stolen traffic 

(Mcarthur & Guirguis, 2009).  The Department of Homeland Security (Bullock et al., 

2015) and the Federal Communications Commission (FCC, 2012) have both clearly 

defined this issue to be of great importance . 

There have been several proposed solutions to protecting the authenticity and 

validity of BGP routing updates (Bruhadeshwar, Kulkarni, & Liu, 2011; Hu, Perrig, & 

Sirbu, 2004; J. Israr, Guennoun, Mouftah, & Rahman, 2010; Kent, Lynn, & Seo, 2000; 

Malhotra & Goldberg, 2014; White, 2003; Ying, Zheng, Mao, & Hu, 2009).  However, 

these proposed solutions introduced significant system overhead or had poor adoption 

rates (Butler, Farley, McDaniel, & Rexford, 2010).  Furthermore, according to Butler 
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(2010), little has been done to assess the security implications of routing BGP over IPv6 

and using IPv6 extensions to mitigate risks associated with the trust model of BGP.  

Therefore, the specific problem is that the interdomain routing protocol used in the 

Internet lacks a method for performing route attestation without introducing unacceptable 

amounts of overhead, nor do proposed solutions address IPv6’s impact in terms of added 

efficiencies and built-in security solutions such as IPSec. 

The study focused on observing an ecosystem of virtualized routers in an 

environment that was controlled by the researcher and measured to study performance 

impacts of participating routers.  Virtual routers followed the same rule-sets and purpose 

of a traditional physical router, but existed entirely in software.  This allowed the study to 

be expanded without requiring additional equipment and the costs associated with it.  The 

process of routing via BGP is not dependent on physical equipment; rather the process 

and instructions are defined in software.  Routers were be measured in normal or typical 

operation to gain a baseline of performance impacts in an uninfluenced environment.  

The researcher then introduced the prosed model to mitigate sub-prefix hijacking attacks 

using IPv6 and evaluated the resulting impact and effectiveness. 

Purpose of the Study 

 The purpose of this quasi-experimental before-and-after study was to measure the 

feasibility of using IPv6 extension headers in an effort to validate the authenticity of a 

BGP routing update and describe the performance implications or overhead of doing so.  

In order to accomplish this goal, a security model was built to leverage IPv6 extension 

headers in a controlled environment to first determine the feasibility of detecting specific 

BGP sub-prefix hijacking attacks and secondly mark the appropriate route updates as 

invalid.  Selecting only BGP sub-prefix hijacking attacks significantly narrowed down 



 

 

9 

the scope of the research while also providing a framework by which BGP events were 

selected or created for observation.  The study was also by nature iterative as it may be 

repeated with other types of attacks against the BGP protocol. 

Significance of the Study 

BGP is the de-facto-standard Internet routing protocol and impacts nearly all 

traffic flowing across the Internet (Hawkinson & Bates, 1996).  As Phillipa, Michael, and 

Sharon (2013) indicate, BGP is the Internet’s routing protocol, it is absolutely critical to 

the operation of the Internet (Mahajan et al., 2002).  This includes impacts to users, 

businesses, governments, and others.  Considering the role BGP plays as the Internet’s 

routing protocol, the nature of interdomain routing, and multudinous vulnerabilities, Ola 

and Constantinos (2004), suggested that successful attacks on BGP can affect signficant 

numbers of people on a global scale. 

IPv6 is replacing IPv4 infrastructure as address space has become quite scarce 

with many exhaustion milestones being already reached (Jakub et al., 2014).  Jakub et al. 

(2014) noted that nearly every measure of IPv6 adoption has increased by an order of 

magnitude.  With IPv4 address acquisition costs rising and the total available IPv4 

addresses shrinking to below 4% remaining, researchers predict that a continued growh 

of IPv6 and an exhaustion of IPv4 addresses by 2018 (Sebastian, Lachlan, & Grenville, 

2014).  As a result of the forthcoming exhaustion of IPv4, Internet users and providers 

alike will have no choice but to begin adoping and actively implementing IPv6 support 

across their infrastructure.  

As sub-prefix hijacking is a significant threat to BGP infrastructure, numerous 

solutions have been proposed (Bruhadeshwar et al., 2011; Hu et al., 2004; J. Israr et al., 

2010; Kent et al., 2000; Malhotra & Goldberg, 2014; White, 2003; Ying et al., 2009). 
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This study expanded upon the existing research that has been done to improve the 

security posture of autonomous systems participating in BGP against sub-prefix hijacking 

attacks.  As suggested by Ballani et. al. (2007), there are significant issues associated 

with solutions to sub-prefix hijacking that need to be rethought and solved.   

Due to the already widespread usage of BGP, rising adoptation rates of IPv6, and 

clear need to revise existing sub-prefix hijacking mitigation methods, this research 

resides in a highly desirable area.  The maturity of IPv6 is developing, as IPv4 address 

space is limited, and with that protocol stability and efficiences are rising as well (Jakub 

et al., 2015).  Standardization by organizations comprised of network designers, 

operators, vendors, and researchers on an international scale such as the Internet 

Engineering Task Force (IETF) shape the way Internet protocols work (Alvestrand, 

2004). Proposals to replace the BGP protocol, such as the Inter Domain Routing Protocol 

(IDRP), have gained little traction and have never been standardized by the IETF making 

them obsolete (Savola, 2005).  From these assertations, the state of inter-domain routing 

showed a clear need for further research in mitigating specific threats to BGP routing 

such as sub-prefix hijacking over maturing IP standards as the potential for detrimental 

impacts is grand. 

Nature of the Study 

Guided by the proposed research question, the data to be gathered in this study 

was numerical and analyzed from a pre and post application assessment.  According to 

Creswell (2009) research surrounding experimental design resulting in numeric data to 

study are best suited under quantitative research.  Creswell developed this appropriation 

of quantitative research methods to the study by specifically outlining their quality of use 

in performance analysis of systems.  This was appropriate as it directly matches the 
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desired outcomes of the study: to measure the resulting performance impact of using IPv6 

extension headers in a model that performs BGP route attestation. 

For this study, a quantitative experimental approach was used over other designs 

such as non-experimental studies or semi-experimental studies.  While there are 

numerous ways to analyze this issue and measure the results of the proposed model 

numerically, the experimental approach to the study met the needs in accordance with the 

nature of the study.  According to Creswell (2009), the research design is a platform to 

shape the plans and procedures for a researcher to follow.  Therefore, these plans and 

procedures served as the guiding direction for the data collection of the study along with 

the analysis of that information.  In this study, the models common to other research in 

the field was adapted to meet the specific requirements outlined in this proposal. 

Furthermore, an experimental study will provide a framework for obtaining the 

desired measurements when evaluating the problem statement of this research.  As 

Keppel and Wickens (2004) describe, an experimental research design encompasses two 

treatment conditions.  The subjects in each condition are treated the same except for one 

single change is introduced, and the effects are measured after the researcher’s 

intervention.  By the nature of what an experiment is, if there was only one change 

introduced while everything else was kept identical, the measurable observation must 

have been caused the single introduced change. 

In choosing the design of the experimental study, Kumar (2005) suggested 

analyzing the problem from three different perspectives.  These perspectives prompted 

the researcher to evaluate how many contacts he or she was to have with the subjects, the 

reference period of the study, and lastly the nature of the study.  The result being a deeper 

review of methodologies as the focus is narrowed.  As this study was highly technical in 
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nature and the analysis was performed in pre-measurement, application of research 

model, and post measurement, the design of the study was reviewed from the perspective 

of the nature of the investigation.   

Within the categorization of the nature of the investigation, there are three relating 

study designs: experimental, non-experimental, and semi-experimental (Kumar, 2005).  

Experimental studies are those where a researcher introduces an intervention in a 

controlled environment expecting to observe a change, and measuring the change when it 

happens.  Non-experimental studies a researcher attempts to retroactively determine the 

cause for already observed changes.  This study was proactive in the sense that the 

perceived outcomes had not already been observed, but were to be induced by the 

researcher’s influence; therefore, non-experimental design was not appropriate in this 

case.  Lastly, semi-experimental designs contain properties of both experimental and non-

experimental studies.  Again, as this study was not focused on the retroactive causation of 

an observable event, a semi-experimental design was not the best suited.   

When further defining the experimental strategy to be used in this study, it was 

important to consider the desired data to be collected and analyzed.  The study was 

largely focused on measuring the performance impact in a scalable security solution to 

defending BGP against sub-prefix hijack attacks.  As discussed, performance metrics in 

this type of environment can be easily measured qualitatively.  Experimental research 

that is qualitative can be further separated out into true experiments where subjects are 

randomly chosen and quasi-experimental where subjects are nonrandomized (Creswell, 

2009).  As the experimental study was performed in a controlled environment and 

variables were measured before and after the administration of a researcher-imposed 
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technical change, the randomization of subjects was not necessary.  As a result, the quasi-

experimental classification was used. 

With respect to the quasi-experimental research design of this study, it was 

important to define a design that will guide the collection of data and analysis to 

determine the resulting outcome.  While many quasi-experimental research designs exist, 

a before-and-after design was used.  This design dictated that a state of the variables were 

to be measured before the intervention and then again after the intervention (Kumar, 

2005).  These measurements formed the ground for analysis of the data.  The data 

represented the quantitative change in performance of a router participating in the BGP 

sub-prefix hijacking mitigation model using IPv6 headers for transport of route 

attestation information.  A before-and-after design does have certain limitations that are 

discussed in a future section.  

Research Questions 

 This study focused on one primary research question.  The primary research 

objective was to determine if IPv6 extension headers are used in a model to validate BGP 

route updates received from a peer router, what the resulting impact in terms of overhead 

on the participating router were.  Therefore, the use of this research is to determine if 

IPv6 extension headers are a viable tool to mitigate BGP sub-prefix hijacking attacks by 

performing route attestation, while introducing minimal overhead. 

The purpose statement of this study was specified that the research conducted will 

measure the effectiveness of a proposed model using IPv6 extension headers to mitigate 

BGP sub-prefix hijacking attacks.  To effectively measure this and focus the research, the 

following question focused the research: 
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In a model where IPv6 extension headers are used to successfully perform 

route attestation of BGP updates, what is the resulting degree of difference 

exists in terms of router CPU utilization percentage, RAM utilization 

percentage, route convergence time, and BGP update packet size in 

comparison to a router not participating in the model? 

The above question was used to derive results indicating whether IPv6 extension 

headers are capable of carrying the necessary information to perform basic BGP route 

attestation.  With a limited amount of space in each IPv6 datagram header, the necessary 

information to perform route attestation such as authorization of origin had a restricted 

data size.  The model proposed was designed to perform lightweight route validation.  

The consequential hypothesis of this question was that given a model designed to 

perform lightweight route attestation, necessary information to perform the task may be 

carried inside of IPv6 extension headers within constraints defined by the protocol 

specification without imparting performance overhead. 

Furthermore, the research question guided the measurement of the performance 

impact on the routers participating in the model.  Performance impact was measured in 

terms of CPU usage, RAM consumption, route convergence time, and route update 

packet size.   

Guided by the above question, quantitative measurements were gathered on the 

model’s impact in performance overhead of participating routers.  These results, when 

compared to results gathered of a non-participating router clearly identified the impact of 

the proposed model.  This methodology followed the literature covering experimental 

design and the measurement of researcher introduced changes in such models (Keppel & 

Wickens, 2004; Kumar, 2005). The follow-on hypothesis derived from this research 
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question stated that route attestation will result in performance overhead, but be 

minimized by the use of IPv6 extension headers due to the protocol improvements 

compared to IPv4 implementations and eliminating the need to carry attestation 

information in separate packets. 

 A hypothesis is defined by Salkind (2010) as a tentative statement describing the 

relationship between variables in a study. The uncertainty or tentativeness of such 

statement leads into the purpose of research, to empirically analyze and observe such 

relationship and report on those findings.  Given such definition of hypothesis, one can 

infer that it is not the duty of the researcher to prove the hypothesis true.  Rather, it is the 

researcher’s onus to evaluate the hypothesis given the constraints and paradigms that it 

defines.  

Theoretical Framework 

Theoretical frameworks as defined by Kumar (2005) are a place of grounding or 

basis upon which research is conducted.  These frameworks and ideas come from a 

paradoxical explanation that surveying the literature related to a topic will reveal general 

theories, which can be intertwined into a theoretical framework; yet choosing the right 

literature to survey is dictated by the chosen theoretical basis.  The basis of the theoretical 

framework that the research will follow stems from a loosely defined framework 

compiled from ideas presented in relevant literature.  As Bryant (2004) noted, the 

framework will further develop from loose theories into a better-defined guide.  From this 

guide or theoretical framework, the research here was better scoped and more likely to 

contribute to the intended areas. 

The goal of this study was to determine if IPv6 extension headers could be used in 

a model to perform BGP route attestation while introducing minimal overhead due to 



 

 

16 

efficiencies in IPv6.  According to Lammle (2013) IPv6 brings many enhancements to 

the IPv4 protocol suite in terms of header structure, address space, field alignment, and 

includes by default many of the features of IPv4 that were amendments during its 

lifespan.  These enhancements in IPv6, in general, state that packets traversing a pure 

IPv6 network are more likely to be processed and transmitted in a shorter amount of time 

when compared to their IPv4 counter parts. 

IPv6 extension headers may be able to carry BGP route attestation information 

sufficiently.  In contrast to IPv4 headers where static fields were required and length 

limitations were imposed, IPv6 allows for optional headers of variable length (Lammle, 

2013).  The format and design of IPv6 extension headers allows for a faster processing 

time and more dynamic control of information assigned in each header.  In addition, only 

the destination routers or devices need to process the IPv6 headers, intermediary devices 

do not (Carpenter & Jiang, 2013).  

One way of measuring IPv6 packet efficiency and comparing it to IPv4 in 

addition to router CPU and memory consumption is measuring the round-trip time 

(RTT).  In studies, IPv6 packets have a smaller round-trip time than IPv4 packets (Yi, 

Shaozhi, & Xing, 2005) indicating a performance increase than when compared to IPv4.  

The study performed by Yi et al. demonstrated that in implemented testing scenarios of 

real unicast data used to mimic web browsing that IPv6 showed a consistently lower RTT 

compared to IPv4.  Unicast packets are the same type of packets that BGP utilizes to 

exchange route updates, so it was reasonable to suggest the same performance 

generalization would be seen in BGP route updates while using IPv6. 
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Definitions 

 Autonomous System: “An AS is a connected group of one or more IP prefixes run 

by one or more network operators which has a SINGLE and CLEARLY DEFINED 

routing policy.” (Hawkinson & Bates, 1996) 

Control Plane: Path determination part of the routing process where a route from 

a source is determined to a given destination.  (Schuchard et al., 2010) 

Data Plane: The part of the routing process where packets are actually forwarded 

to their destination.(Schuchard et al., 2010) 

Interdomain Routing: Moving packets from a device in one autonomous system 

to a device in another autonomous system. 

Overhead: The measurement of additional CPU consumption, memory 

consumption, route convergence time. 

Prefix: “The term "prefix" as it is used here is equivalent to "CIDR block", and in 

simple terms may be thought of as a group of one or more networks.  We use the term 

"network" to mean classful network, or "A, B, C network".” (Hawkinson & Bates, 1996) 

Round-trip Time: The time it takes a packet to be sent to a destination combined 

with time it takes for the destination to acknowledge the receipt of the packet.  (Grigorik, 

2013) 

Routing: Moving a packet from one device on a network and moving it to a 

device on a different network (Lammle, 2013) 

Route Attestation: A system or process used to guarantee the authenticity and 

correctness of a routing update.  (Qi et al., 2012) 
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Assumptions 

There is no research study that is completely perfect in its design, approach, or 

certainty; for that reason, a researcher must make assumptions about the study (Bryant, 

2004).  It is assumed that the measurements taken from the perspective of the 

participating routers and the overall environment as it converges new route updates was 

an accurate reflection of the imposed changes to the routing process by the researcher.  

For example, when the routing engine was modified to leverage the IPv6 headers in 

carrying route attestation information, the overhead measurements were a direct result of 

the changed process not coming from an external variable.  To control this as best as 

possible, a virtual environment with dedicated resources was used in a sandbox-type 

setup.  The study was based on open source implementations of the BGP routing 

architecture for ease of manipulation when compared to proprietary or closed-source 

solutions.  With the open sourced implementations, the study assumed that they were 

following the proper BGP-4 specifications and using a standardized approach to route 

processing.   

Scope, Limitations, and Delimitations 

Scope 

The scope of this study was to explore the feasibility of using an IPv6 oriented 

model to perform route attestation while introducing minimal performance overhead to 

participating devices.  The study used a subset of virtual appliances running open source 

BGP routing engines to process and enable route updates.  The virtual appliances 

combined with open source software in a controlled environment gave the researcher 

control of variables being studied as external influences could be minimized in this type 

of scheme.  These virtual routing appliances were configured to use the same hardware 
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resources, software versions, and configurations to ensure consistency across the devices.  

The study was not scoped to evaluate the solutions on other hardware platforms, vendor 

equipment, against routing protocols other than BGP-4, or closed-source software.  The 

rational for excluding the other solutions was that if all participating devices in BGP 

properly follow the specification of the protocol, it is reasonable to believe that the rules, 

processes, and procedures for processing BGP route information would be standardized.  

The routing updates and traffic generated in the environment were controlled by the 

researcher in an effort to identify if the proposed solution solved the sub-prefix hijacking 

problem, and what the impact of that solution was.  If the study were to use real BGP 

traffic collected from nodes in the Internet, additional variables, complexities, external 

influences, and difficulty in accurately identifying sub-prefix hijacking attacks would 

introduced.  These complexities would degrade the purity of the observations taken 

during the study. 

Limitations 

Since a control group was not used, a limitation of this quasi-experimental before-

and-after study is that the results may not be completely conclusive in whole or in part.  

This means that the changes discovered through the study possibly only revealed a true 

change in part or in entirety.  In this scenario, control groups were extremely difficult to 

introduce into the study as variables may have changed between iterations of the 

researcher’s intervention.  Furthermore, if the subjects being studied are as close to 

identical in nature as possible, the random selection of certain subjects is not necessary.  

As Keppel and Wickens (2004) indicated, perfection is impossible as no two subjects can 

be exactly the same.  The goal in light of Keppel’s statement was to minimize any 

nuisance variables and eliminate confusion that may cause comparisons to be skewed.  
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Examples of nuisance variables in the study include: the load on the infrastructure 

supporting the virtual environment may change, the systems could be processing different 

tasks, etc.  In addition, as Keppel and Wickens (2004) suggest with quasi-experimental 

studies, the statistical methods do not pose much of a challenge in evaluating results. On 

the other hand, the results need to be interpreted carefully as some incidental 

characteristics in the group may affect the measurements. 

The study was limited to capturing data from routers participating in a controlled 

and segregated environment.  This type of scenario does not allow for external 

influences, multiple malicious actors, scalability, or as high of volumes of BGP traffic 

that may be seen on the public Internet.  Furthermore, as the BGP traffic was generated 

and controlled by the researcher, it is expected that the BGP updates followed 

specification and were not malformed.  Malformed traffic may still introduce a change 

into the BGP environment, but due to its unpredictability, it could not be accounted for 

reasonably. 

Delimitations  

 The data collected in this study originated from a pure IPv6 environment between 

participating routers.  Realistically on the Internet, there is a mix of IPv4 traffic and IPv6 

traffic.  A single network environment that has implementations of both the IPv4 and 

IPv6 protocols within may be referred to as a “dual stack” network because it uses the 

IPv4 stack alongside of the IPv6 stack.  The two instantiations of the protocol are able to 

communicate with different configurations such as 4to6 tunnels or ISATAP tunnels 

alongside of many other tunneling technologies (Punithavathani & Radley, 2014).  These 

types of tunnels are designed to allow traffic existing in an IPv4 network to communicate 

with hosts on an IPv6 network and vice versa through a single router (Horley, 2014).  
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Effectively, one type of IP traffic may be encapsulated into the other, which could affect 

the appearance of the BGP messages. 

As the study focused on only virtual routers in an environment that is guarded 

from external influences, the results may change when the same factors are applied to a 

physical environment.  Some factors that exist in a physical environment are not present 

in the virtual space.  While the study focused on the software aspects of BGP routing, it is 

important to consider the physical aspects when the scope shifts to universal evaluations. 

Closed-source software and proprietary vendor implementations of the BGP-4 

protocol might not all be following the specification or standardization.  This means that 

they may process BGP messages differently than what was observed in this particular 

environment, potentially introducing changes in the experiential results. 

Additionally, the study was only focused on assessing the model in a VMware 

ESXi virtualization platform.  Other Hypervisors may treat the virtual routers differently, 

impose limitations on CPU throughput, and process the data differently.  If the exact 

virtual appliances are imported into a different virtual environment, the outcomes could 

change due to the aforementioned characteristics of hypervisors. 

Summary 

Chapter 1 provided the objectives necessary to navigate through a quasi-

experimental before-and-after study.  Evaluation of the deficiencies and potential impacts 

of implementing a secure BGP implementation were investigated in this chapter (Butler 

et al., 2010; Lychev et al., 2013; Ming, 2006).  This chapter identified an opportunity for 

further research to be performed in the IPv6 space as it may be used to better the security 

posture of BGP (Butler et al., 2010).  It identified the wide-spread usage of BGP (Jakub 

et al., 2014) and those users as the stakeholders in the study.  Furthermore, the chapter 
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recognized the scientific and social impacts of the study, demonstrating significance of 

the contributions to the field. 

The theoretical framework of the study formed the basis for which the study was 

to be conducted and was discussed in this chapter.  It has been proven that IPv6 offers 

efficiencies over its IPv4 counterpart (Lammle, 2013) and the movement towards IPv6 

shows a positive trend in adoption rates (Jakub et al., 2014).  Those efficiencies coupled 

with highly adopted BGP security models (Gersch & Massey, 2013; Kent et al., 2000; 

Wählisch, Maennel, & Schmidt, 2012) contributed to the theoretical framework.  

Through the realized performance impacts of IPv6 and suggested models, the research 

questions can be formulated and solutions evaluated. 

The quasi-experimental before-and-after research design was adopted for this 

study and was determined to be an effective instrument for evaluating the research 

question (Kumar, 2005).  The study was scoped and limitations or delimitations that may 

affect the reproducibility or universality of the study were identified.  

Chapter 2 encompasses a literature review that is an all-embracing summary of 

the state of BGP security, proposed solutions, evaluation taxonomies, and resources 

pertaining to performance penalties and their measurement.  The literature review will 

provide the background and base information required for the study.  In addition, Chapter 

2 will provide a historical overview of existing BGP security solutions, their 

shortcomings, and any existing gaps in the literature addressed.  Lastly, a surveying of 

articles, journals, books, and additional research materials gathered for the study is 

presented. 
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CHAPTER 2: LITERATURE REVIEW 

 Chapter 1 produced the topic of this dissertation: using IPv6 to perform BGP 

route attestation and measuring the resulting overhead.  The chapter also demonstrated 

the significance of the study as it relates to the widespread usage of the BGP-4 protocol 

and potential outcomes of compromised BGP traffic.  Also included in Chapter 1 is the 

study’s background, problem statement, significance, research questions, and research 

design.  Chapter 2 surveys the literature surrounding the study and provides insight into 

the operation of BGP, supporting information on IPv6, network prefix context, existing 

route attestation models, observation and inspection planes, and similar cryptographic 

solutions.  The chapter studies vulnerabilities in BGP as they relate to sub-prefix 

hijacking as well as motivations and challenges with attribution to attackers.  In 

continuation, Chapter 2 will provide insight into the causes behind low adoption rates of 

existing security solutions for BGP and the viewpoints of administrative domain 

operators on the prioritization of adopting a security solution.  Lastly, the literature 

review will provide a means of measuring overhead in routing convergence and 

cryptographic solutions to give way to measurements of the impact of the solution. 

The purpose of the quasi-experimental study was to measure the impact of using 

IPv6 in a model that performs BGP route attestation to defend against sub-prefix 

hijacking attacks.  Chapter 2 stages formerly proposed and currently implemented 

solutions of BGP security models at the time of this study such as S-BGP (Kent et al., 

2000) and RPKI (Wählisch et al., 2012).  Also, the chapter builds an area of observation 

on what will make a security solution adoptable by evaluating studies of those who are to 

implement them (Lychev et al., 2013). 
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Design and Operation of BGP 

Since its introduction in 1989 (Lougheed & Rekhter, 1989), BGP has evolved 

through many changes into its current version, BGP-4.  BGP offers Internet peers a way 

to route information between each other without a central core; that is, they can make 

decisions based on information gained from their neighbors.  Subsequent releases of BGP 

include BGP-2 (Kirk Lougheed & Yakov Rekhter, 1991) and BGP-3 (K Lougheed & Y 

Rekhter, 1991) which contained refinements to the preceding protocol specifications.  

BGP-4, the currently used version of BGP at the time of this research, was first seen on 

the Internet in 1993, and refined through other Request for Comments (RFCs) including 

RFC1771 in 1995 and RFC4271 in 2006 (G. Huston, Rossi, & Armitage, 2011).  BGP 

routing tables have grown in population alongside of the protocol as have the number of 

participating devices since its introduction. 

In the introduction of the Secure Border Gateway Protocol (S-BGP), Kent et al. 

(2000) defined the security for BGP as the intended and truthful operation of BGP.  

Kent’s description of secure operation also alluded to a need for route attestation.  For 

that reason, it was important to understand how BGP operates in an ideal environment.  

The understanding of BGP’s normal operation and processing of functional messages 

also revealed weaknesses in the design of the protocol that allow for attacks such as sub-

prefix hijacking to be carried out. 

At a high level, BGP has two main jobs: mapping an IP address prefix to an 

autonomous system, and building paths between a specified source and a reachable 

destination (Bruhadeshwar et al., 2011).  A BGP speaking autonomous system is able to 

advertise its ownership of a prefix by sending an update message to its neighboring peers.  

When a peer receives an update message, it will recursively concatenate its own 
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autonomous system number to the update and pass the newly formed update out to its 

peers.  The result of this concatenation and redistribution of update messages is that each 

peer that receives the update will attain an association of a network prefix and a list of 

autonomous systems that traffic will need to traverse to get to the prefix.  The path 

aggregation can be represented by the following formula (𝑃, [𝐴𝑆𝑘 𝐴𝑆𝑘−1 𝐴𝑆0) where P is 

the network prefix, 𝐴𝑆0 is the origin of the route, and the other AS represent the nodes 

along the path.  It is critically important to the operation of BGP that these messages 

retain their integrity while traversing the Internet (J. Israr et al., 2010). Additionally, since 

an update is only able to specify a single path, only routers that also share that path may 

be aggregated into the update message (Kent et al., 2000). When a router receives 

multiple update messages for the same prefix, it will make a selection based on its 

configuration and routing policies. 

Kent et al. (2000) further defined the correct operation of BGP and associate 

integrity, timeliness, and authenticity of BGP updates as functional requisites.  To 

recapitulate the idealized or correct operation of BGP as outlined (Kent et al., 2000), the 

following statements are made: 

• Every BGP update received by a participating router is assumed to have 

originated from the indicated peer; that is, it was not tampered with in 

transit.  This update is also expected to be more current than other 

previously received routing information for prefixes from that peer.  An 

outdated update will have little use and may negatively affect operation of 

BGP. 

• Each update is received by the intended recipient.  The updates are not 

redirected or lost in transit to the intended recipient. 
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• A BGP update will originate only from a peer that is authorized to act on 

behalf of an autonomous system to advertise the routing information 

contained within. 

• The owner of a network prefix was authorized by its parent organization to 

state that it owns the prefix. 

• The first AS in the route is authorized to advertise the prefixes by the 

owners of the address space. 

• Route withdrawal advertisements should originate from a peer that was 

authorized to advertise the route before the withdrawal was issued. 

• The BGP peer that the update message is sent from should correctly apply 

the information abiding by the BGP rules and policies in its configuration.  

These rules and policies dictate how the route should be stored, updated, 

or redistributed as well as if it should be selected or any information can 

be derived from it. 

• Lastly, a recipient of a BGP update message should correctly apply the 

rules and policies in its configuration as to whether or not the route should 

be accepted. 

The above statements concisely capture the intended operation of BGP.  A deviation from 

these rules indicate a failure in the proper operation and form the base from which the 

vulnerabilities in the protocol stem. 

One area that remained untouched from Kent’s rules on the correct BGP operation 

is how a router processes or selects a route learned from an update.  The selection of a 

route is designed to determine the “best” announcement that can be subsequently 
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advertised to peers.  This process of determining what route is “best” happens through an 

ordered system of evaluations summarized with the following selection routines (Junaid 

Israr, 2012; Y Rekhter, Li, & Hares, 2006): 

1. A route with a more specific (longer) address prefix is chosen over that of 

a covering (smaller) address prefix for the same network blocks. 

2. The route with the highest value for local-preference is selected.  Local-

preference is an attribute locally calculated by a recipient of a BGP update 

message factoring in the locally configured policy. 

3. Next, the route with the shortest AS_PATH attribute, a mandatory 

attribute of BGP update messages.  The AS_PATH represents a list or 

sequence of autonomous systems that the update messages has traversed.  

Effectively, a smaller number of autonomous systems to pass through is 

preferred. 

4. A route with the lowest multi-exit discriminator (MULTI_EXIT_DISC) 

attribute will be chosen next.  MULTI_EXIST_DISC is an optional 

attribute in BGP update messages that gives a hint as to what the best path 

is to an autonomous system with multiple entry points.  A lower value for 

this attribute indicates a more preferable path to choose. 

5. If a route to a particular destination network also has an associated Interior 

Gateway Protocol (IGP) with a lower cost to the next hop, it will be 

chosen. 

6. External Border Gateway Protocol (eBGP) routes are chosen over Internal 

Border Gateway Protocol (iBGP) routes. 
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7. Lastly, if iBGP must be used, the route with the lowest BGP identifier 

value is chosen.  A BGP identifier is a numeric representation of a BGP 

speaker that matches an IP address assigned on that host.  This value is 

calculated on startup. 

An understanding of the BGP’s intended operation and route selection process revealed 

areas where the protocol exhibits weaknesses that can be exploited.  For example, if a 

router violates these properties by advertising a prefix that it is unauthorized to do so and 

the illegitimate prefix is longer than existing routes for the covering prefix, a sub-prefix 

hijacking attack can occur.  By violating these properties, attackers are able to exploit the 

protocol, as sufficient checks do not exist within the design of the protocol for such 

deviation. 

Distance Vector and Link-State Protocols 

The determination of how a routing protocol selects the best path to a destination 

can be used to classify the protocol into one of two categories: distance vector routing 

protocols and link state routing protocols (Lammle, 2013).  BGP is most closely related 

to distance vector protocols in the way that it computes various paths to an intended 

destination.  BGP is sometimes referred to as a path-vector protocol.  At a high level, 

distance vector protocols such as BGP calculate a cost to each destination it knows about 

and sends that cost as a vector to its neighbors.  Essentially, distance vector protocols tell 

neighboring routers what the world looks like from the standpoint of the originating 

router (Zhao, 2002).  On the other hand, link-state routing protocols operate slightly 

differently and task participating routers to calculate their own best route to a destination 

using metrics like link speed or availability.  According to Zhao (2002), link-state routing 

protocols flood information about what neighbors they see as raw information; they tell 
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the world who the neighbors are.  Since BGP operates in a space where route updates are 

composed of aggregate information from an arbitrary number of routers, some of which 

may not be trusted, it is much more difficult to detect invalid updates than if it used raw 

routing information. 

Vulnerabilities of BGP 

Coupled with its age, BGP has several documented and known vulnerabilities that 

exist within its design and operation that make it vulnerable protocol (Geoff Huston & 

Michaelson, 2012).  BGP has been attacked and compromised as seen in the previously 

documented examples (Bornhauser & Martini, 2011; Sun et al., 2015; Yun & Song, 

2015).  Many of the vulnerabilities in BGP stem from three central areas.  These areas 

include the lack of transitive BGP authenticity, freshness, and validity mechanisms from 

the source of the update through the end node receiving the message.  Additionally, BGP 

offers no solution to validate the authenticity of an advertised network prefix.  Lastly, 

BGP does not have any controls to validate that an update message has not been 

tampered with throughout its travel or to verify the messages’ integrity.  Other 

researchers such as G. Huston et al. (2011) suggested additional vulnerabilities exist in 

the design of BGP as it has no mechanism to verify its routing information base (RIB) is 

accurate and up-to-date. 

These vulnerabilities may be taken advantage of by malicious actors even 

unintentionally introduced via misconfigurations.  Outside of the neighbor establishment 

and selection process of BGP, little is done to prevent an autonomous system from faking 

their prefix ownership, intercepting and tampering with BGP update messages, or posing 

as another autonomous system number.  Either intentionally or accidentally, these 

principles and flaws within BGP have the ability to significantly disrupt network 
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resources if introduced.  The following subsections will cover BGP vulnerabilities as they 

pertain to outsider and insider threats, attacker incentives to target BGP, and the sub-

prefix hijacking attack method. 

Outsider and Insider Threats 

By design, BGP operates in a heterogeneous environment, one that contains other 

peers speaking BGP, but also different protocols such as OSPF and EIGRP.  In this 

environment, BGP will be impacted by decisions made inside and outside of an 

autonomous system (Zhao, 2002).  These two different vantage points raise different 

concerns when assessing the level of access an administrator may have or what trust 

relationships exist.  Outsider threats to BGP may include a remote autonomous system 

advertising invalid routing updates that can affect the reachability or integrity of traffic.  

These types of threats may be actualized by using BGP or any of the other protocols 

existing in the heterogeneous environment.  Therefore, it can be stated that a routing 

protocol such as BGP is only as secure as the weakest link.  Insider threats can introduce 

the same types of security concerns as outsiders, although they may be harder to detect 

according to Zhao (2002).  An insider may have a greater level of trust, access to private 

cryptographic keys, and the ability to answer security inquiries correctly.   

Incentives to Attack BGP 

Since BGP’s introduction, the shift in mentality has moved from trusting internal 

devices and assuming threats reside outside of the network to the realization that threats 

exist both internally and externally.  This paradigm has resulted in autonomous systems 

operating in the BGP space to slip from the typical operation of BGP knowingly or 

otherwise.  While it is difficult or even impossible to determine the exact cause, 

motivation, and intent for a malicious entity to leverage weaknesses in BGP for their own 
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gain, previously documented attacks on BPG can shed some light onto the subject.  

Junaid Israr (2012) asserted reasons relating to financial, technical limitations of address 

space, misconfigurations, as well as political. 

Economic and financial incentives may be enough incentive for an entity to 

perform an attack against BGP.  It is known that autonomous systems are typically 

registered by an organization, some of which may be for-profit and competing 

organizations (Junaid Israr, 2012).  Since these organizations need to maintain an online 

presence participation in BGP is often times necessary.  An autonomous system 

participating in BGP may falsely represent certain networks or destinations in favor of 

those that are more economically favorable for them.  In addition, if an entity is able to 

intercept network traffic intended for another, they may be able to learn traffic patterns, 

affect quality of service, or obtain proprietary/sensitive information. 

Depletion of IPv4 addresses is a documented and well-known challenge facing 

organizations with an online presence.  Organizations have been allocated blocks of IP 

addresses in the limited IPv4 space, and may have more available addresses than they are 

using or intend to use (Geoff Huston & Bush, 2011).  The scrutiny of these organizations 

increases as the depletion of IPv4 addresses becomes more prominent.  While IPv6 

solutions do exist to the IPv4 limited address space, online partakers may use BGP to 

illegally take over the unused IPv4 addresses.   

Misconfigurations happen in many different ways, and BGP is not immune to the 

effects of human error.  A prime example of a misconfiguration in BGP affecting users 

unintentionally was seen in the Pakistani YouTube incident (Bornhauser & Martini, 

2011).  While the state-owned ISP in Pakistan introduced a BGP update affecting the 

YouTube prefix, it was accidentally advertised outwards towards the ISP’s neighbors.  
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The invalid advertisement affected traffic intended for YouTube in certain regions 

making it unreachable.  The invalid route update was detected after only 5 minutes; 

however, it took over two hours and the teamwork of multiple sites to fully restore access 

to YouTube. 

Man-in-the-Middle and denial of service (DoS) attacks can be initialized by 

autonomous systems acting maliciously.  An autonomous system owner may want to 

intercept or black-hole network traffic for a variety of reasons.  Some of the motivations 

for performing such an attack could be security, surveillance, and other harmful intents.  

In this type of an attack, an autonomous system would falsely identify the ownership or 

best path to reach an intended destination such that network traffic would be misdirected 

through their environment.  Once the traffic enters the malicious entities environment, the 

outcomes and degrees of impact are limitless. 

Network Prefixes and Sub-Prefix Hijacking 

Among the many vulnerabilities within BGP, this study focused primarily on sub-

prefix hijacking attacks.  These attacks take advantage of the BGP attribute referred to as 

the “longest prefix match” property.  An understanding of network prefixes or subnets is 

required to understand the vulnerability, and how attackers are able to take advantage of 

it.  This section will outline network prefixes as they exist on the Internet and tie back to 

the BGP longest-prefix match property. 

In both IPv4 and IPv6, network IP addresses are representations of 32-bit and 

128-bit binary numbers respectively.  Human interaction with IP addresses is not 

typically in the form of binary numbers; rather, the numbers are represented by decimal 

in IPv4 and hexadecimal in IPv6 for ease of readability, memorization, and other ease-of-

use factors (Lammle, 2013).  In an IPv4 address, the 32-bit binary number is divided out 
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into four separate groups called octets.  An octet represents eight binary bits converted 

into a single integer.  These four resulting octets (decimal numbers) are concatenated by 

periods or dots, and the grouping of the octets is referred to as dotted-decimal notation 

(Butler et al., 2010).  Dotted-decimal notation is the common representation of an IPv4 

address.  For example, a network host address may be assigned the IP address of 

192.168.1.1, which is the dotted decimal notation of the following binary sequence: 

11000000101010000000000100000001.  IPv6 addresses work much in the same way; 

however, instead of 32 bits IPv6 uses 128 bits and represents the address as eight groups 

of four hexadecimal digits per group with the groups separated by colons.  An example 

IPv6 address may look like the following: 2600:1014:b109:55f0:505a:d94f:203c:55f.  It 

is clear to see that the dotted-decimal notation or IPv6 notation is easier to work with than 

a binary string from a human standpoint.  Regardless of the representation or address 

type, the underlying bits are very important to BGP when considering its longest prefix 

match property. 

IP addresses typically belong to a larger logical grouping of address space called a 

subnet or a network prefix.  For the remainder of the section, the following terms are 

interchangeably used to represent network prefix: subnet, address group, network block 

and address block.  There are many ways to represent a network prefix in IPv4, but one 

common method is Classless Interdomain Routing (CIDR) notation.  CIDR is a method 

for representing a network prefix by taking the first IP address in the network block, 

appending a forward slash (/), and specifying how many bits of the address represent the 

network (Fuller, Li, Yu, & Varadhan, 1993).  For example, a prefix represented as 

192.168.1.0/24 in CIDR notation, means that the first address in the network block is 

192.168.1.0 and the first 24 bits (three octets or 192, 168, and 1) represent the network.  
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The remaining 8 bits or the fourth octet in this example can be used for hosts within the 

network as their IP address.   

On the public internet, organizations used to receive IP address blocks directly 

from the Internet Assigned Numbers Authority (IANA) who has offloaded such duties to 

the Internet Corporation for Assigned Names and Numbers (ICANN).  The duties of 

assigning IP address blocks has been further separated out in to regional registries that 

also have the ability to delegate address block assignment in a hierarchical manner 

(Butler et al., 2010).  An example of a regional registry is the American Registry for 

Internet Numbers (ARIN) who manages prefix assignment in North America.  Due to the 

hierarchical structure of IP address space assignment, it is possible that a network prefix 

assigned to an organization will belong to a larger network prefix at a higher level.  For 

example, if an organization is assigned an address block such as 138.247.80.0/24, it may 

have been delegated by the organization that maintains ownership of 138.247.0.0/16.  In 

this scenario, the shorter prefix 138.247.0.0/16 contains the longer prefix 

138.247.80.0/24, and is called a cover network.  By design of the BGP protocol, if both 

networks were to exist in a routing table, BGP will look for the route with the longest or 

more specific prefix in making its routing decision according to Butler et al. (2010).  This 

property and design are what allows for sub-prefix hijacking, where a malicious entity 

may advertise longer network prefixes knowing that they are more likely to be used by 

BGP. 

Survey of Cryptographic Solutions in BGP 

A survey of existing BGP security mechanisms brought to light different 

cryptographic solutions that have been implemented to address vulnerabilities within the 

protocol.  These solutions aim to enhance the security of BGP by providing for 
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authentication and protection against the interception and tampering of BGP updates in 

transit.  This section will give an overview of popular solutions while evaluating their 

characteristics in ease of use and added overheard including the following: pairwise 

keying, hash functions, message authentication codes (MAC), Diffie-Hellman key 

negotiation, public key infrastructure (PKI), public key cryptography, route attestations 

with certificates, and IPsec. 

Pairwise Keying 

Pairwise keying is a cryptographic solution intended to provide for authentication 

between neighboring nodes.  Two nodes or in this case, BGP routers, will establish a 

shared secret key prior to exchanging route updates (López & Zhou, 2008).  While 

pairwise keying does allow for authentication between nodes, the key management 

process introduces a significant amount of overhead.  Butler Butler et al. (2010) asserted 

that the runtime or complexity of pairwise key management can be described as Ο(𝑛2).  

This affects scalability and overall management particularly when implemented in large-

scale BGP on the Internet.  Furthermore, if keys are not frequently changed, they are 

subject to exposure through cryptanalysis and disclosure amongst personnel that know 

the secret keys (Butler et al., 2010). 

Hash Functions 

Digest algorithms or cryptographic hash functions aim to provide a check for 

message integrity in BGP security solutions  The idea of a hash function is that input text 

is used as a seed to perform some mathematical computation resulting in a unique, 

nonreversible signature (Al-Hamami, 2014).  As Al-Hamami (2014) noted, these hash 

functions can be described as a one-way function as the resulting signature cannot be 

used to obtain the original input text.  Common hashing functions seen in BGP security 
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include the Message-Digest 5 (MD5) algorithm (Rivest, 1992) as well as those in the 

Secure Hashing Algorithm (SHA) classification (Gutierrez, Gallagher, & Director, 2008), 

especially SHA-1 (Junaid Israr, 2012).  A faulting property of hash functions is that two 

sets of input text may produce the same output hash message; this property is called a 

collision.  When referring to the strength of a hashing algorithm, strength describes the 

difficulty in using the hash to obtain the original text without running into collisions 

(Butler et al., 2010).  More complex hashing algorithms typically introduce higher levels 

of computational overhead in comparison to their weaker counterparts. 

Message Authentication Codes (MAC) 

Message Authentication Codes (MAC) are used in BGP security to provide for 

integrity checking of a message as well as authenticity for the sending node (Al-Hamami, 

2014).  Authorized or participating parties should have access to a shared secret key.  

This key along with the message are fed into a mathematical computation to produce the 

MAC.  When the sending node issues an update or BGP message, the MAC is typically 

appended to the tail end of the message.  A receiving node that also has access to the 

secret key will compute its own MAC based off the message.  If the two MACs match, 

then the recipient can know that the sender had access to the key (authentication) and the 

message has not been tampered with in transit (integrity).  MAC used by TCP MD5 is 

often considered too weak due to the cryptographic shortcomings in the MD5 

specification while those that incorporate hash functions such as SHA are considered 

more secure (Jethanandani, Patel, & Zheng, 2013). 

Diffie-Hellman Key Negotiation 

There are undoubtedly some issues with pairwise-keying, especially when 

considering the computational management overhead.  For that reason, it is important to 
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have an efficient way for routers to learn about each other’s’ keys to be comparatively 

more scalable.  The Diffie-Hellman key exchange is a way for two parties with no prior 

knowledge of each other to exchange a shared secret key (Rescorla, 1999)  At a high 

level, the key exchange works by each participating party generating a private and public 

key.  One party will generate a number based off a combination of their own private key 

and the other party’s public key.  The result will be that each party will have 

computationally generated the same number, which is then used as a key-encryption key 

in the encryption of data.  Effectively, capturing prior messages between the two parties 

does not give any insight into how to generate or guess the keys, making the shared secret 

more secure (Butler et al., 2010). 

Public Key Infrastructure (PKI) 

One of the significant challenges in pair-wise keying when used in a large-scale 

environment such as BGP on the Internet is the distribution of keys.  In pair-wise keying, 

neighboring nodes need to agree upon shared keys and exchange them via some 

mechanism.  This method does not scale well as it requires more intervention of the 

network administrators.  There is an estimated 35,000 nodes participating in BGP (Butler 

et al., 2010), thus highlighting the need for scalability.  Public Key Infrastructure (PKI) 

approaches the problem slightly differently, but in a more scalable way.  Rather than 

nodes relying upon shared secret keys, each node will generate a private key along with a 

public key.  The public keys are distributed via the Public Key Infrastructure and are 

available to participating nodes without manual intervention (Junaid Israr, 2012).  These 

key-pairs are then used in place of shared keys during the generation of cryptographic 

messages.  PKI solutions allow for a hierarchical distribution of pubic keys, which helps 

with efficient distribution and scalability of the system.  As Butler et al. (2010) indicated, 
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there is ongoing research as to using a trusted authority like the IANA to serve as a top 

hierarchical node in PKI for BGP.   

Public Key Cryptography 

BGP sub-prefix hijacking solutions can be separated into two broad encompassing 

categories: cryptography-based and non-cryptography based (Zheng, Ji, Pei, Wang, & 

Francis, 2007). In a cryptographic solution, a BGP router must sign and verify either the 

autonomous system origin or the advertised BGP path.  This type of solution has the 

ability to perform immediate validation and verification of route updates as soon as they 

are received, but the cryptographic functions introduce overhead that can have significant 

detrimental impacts on router performance.  On the other hand, non-cryptographic 

solutions often require changes to the router software or additional attributes to be 

appended to the BGP updates to assist in the detection of invalid or malicious updates. 

Numerous types of models exist that attempt to validate route updates coming 

from peers using strong public key cryptography (M. Zhao, S. W. Smith, & D. M. Nicol, 

2005).  The central idea of using public key cryptography in validating BGP route 

updates hinges around each router in an autonomous system digitally signing each piece 

of information it adds into the route path.  When an update is received by a peer, the peer 

router will then cryptographically validate each of the signatures accompanying the 

added path data (Butler et al., 2010).  According to M. Zhao et al. (2005) introducting 

cryptography in such a manner has several costs associated with it in terms of generating 

the signatures, processing the routing path and validating the signatures within the path, 

and also checking the certificate status to determine if the signing party is still validated.  

The result from this is larger route updates, slower convergence time, and increases the 

storage and processing requirements of each participating device.  
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Cryptography has been analyzed in a number of different applied solutions 

including attestations.  Within cryptography as it relates to BGP security models typically 

two schemes can be used: asymmetric keys and symmetric keys.  In a pair-wise scheme 

where two neighboring autonomous systems have no prior knowledge of each other the 

participating parties agree upon a key ahead of time in an offline manner; the trust that 

they share is then based upon this key (Butler et al., 2010).  Lee, Leung, Wong, Cao, and 

Chan (2007) demonstrated that pairwise keying is often not scalable due to the manual 

interaction required between parties to update and maintain key pairs.  The complexity of 

this type of key management according to Butler et al. (2010) is 𝑂(𝑛2) in the number of 

peers.  Conversely, asymmetric key models require more computing in key generation, 

but key management is greatly simplified and more scalable (Butler et al., 2010).  

Attestations with Certificates 

As previously discussed, route attestation shows that an autonomous system is 

authorized to advertise a prefix and proves that the autonomous system owns the prefix as 

well.  The IANA is the root authority for delegating the ownership of address blocks to 

autonomous systems, and those autonomous systems can further delegate the ownership 

of smaller portions of the blocks (Butler et al., 2010).  Attestation or validation of the 

owners of a prefix are traceable back up the hierarchical structure back to the root. 

In order for a participating router to perform attestation in proposed solutions, the 

PKI is used to obtain the public keys needed for attestation.  The key is often times 

accessed using digital certificates that are issued by a trusted certificate authority.  

Certificates contain the public key along with a signature indicating the ownership and 

validity of the information contained within (Junaid Israr, 2012).  According to Butler et 

al. (2010), due to the way that certificates are delegated in a hierarchical structure, they 
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can often be traced back to a trusted root authority much in the same way that attestations 

can be traced. 

IPsec 

Many BGP messages are transmitted over the TCP protocol, which protects 

against faults that may cause packets to be received out of order, lost, or replayed on a 

network.  TCP by itself does not protect the integrity or provide authentication.  This is a 

common problem within protocols that talk over TCP and exists within the way BGP 

operates as well.  In an attempt to provide integrity checking and authentication between 

BGP peers, some solutions have looked to IPsec to provide the desired functionality 

(Butler et al., 2010; Kent et al., 2000).  IPsec is a suite of protocols that are able to 

provide security at the network layer of communications by providing methods for 

encrypting and authenticating IP headers according to Butler et al. (2010).  In addition to 

encrypting and authenticating IP headers, IPsec also provides methods for key 

management between peers to help with the establishment and maintenance of secret 

keys. 

IPsec is seen in many secure scenarios such as implementing Virtual Private 

Networks (VPNs) or providing end-to-end security between nodes.  IPsec is also 

standardized in IPv6, although it is not necessarily required.  If it is properly configured, 

IPsec has the ability to provide certain protections against network attacks such as replays 

or man-in-the-middle scenarios.  In fact, Butler et al. (2010) asserted that IPsec is the 

most comprehensive solution when compared to other popular ones such as MD5 

Integrity (Heffernan, 1998) and the General TTL Security Mechanism (GTSM) (V. Gill, 

Heasley, Meyer, Savola, & Pignataro, 2004) although it may have a higher cost. 
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Despite the advantages and protections that IPsec offers, it may not be suitable for 

protecting a BGP update message throughout its entire transit.  In BGP there are four 

types of control messages: open, update, keepalive, and notification (Y Rekhter et al., 

2006).  The message types of open, keepalive, and notification are unique because they 

occur between two nodes and are not forwarded to other peers.  The update message on 

the other hand is more characteristic of a broadcast message in the sense that a BGP 

speaking router may forward a single update message to multiple destinations.  

Bruhadeshwar et al. (2011) stated that in such a case, update messages cannot be 

protected solely through IPsec due to their broadcast-like nature.  Furthermore, as routers 

process update messages and append their path, they must modify the contents of the 

message, which poses additional challenges for IPsec.  Bruhadeshwar et al. (2011) also 

identified IPsec as an appropriate security mechanism for query and answer sessions, 

which may be leveraged in route attestation. 

In contrast to IPv4 where it was an add-on to the protocol, IPsec exists and is built 

into IPv6 as a standard and mandatory feature (Lammle, 2013).  In addition to being built 

into IPv6, IPsec does share many attributes with its IPv4 counterpart.  For example, 

applications may still chose between two different supporting protocols including 

Encapsulating Security Payload (ESP) and Authentication Headers (AH) (Shue, Gupta, & 

Myers, 2007).  To facilitate the establishment and periodic refresh of the cryptographic 

keys, IPsec leverages the Internet Key Exchange (IKE) protocol (Harkins & Carrel, 

1998).  According to Shue et al. (2007), when analyzing the performance of IPsec, IKE 

typically accounts for most of the overhead in the protocol compared to supporting 

protocols like ESP. However, when a significant number of packets are being processed, 

the relationship may invert and IKE will account for less overhead.  As overhead may 
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impact adoption rates of protocols, this relationship needs to be taken into account when 

implementing IPsec. 

IPv6 Extension Headers 

In addition to IPsec, IPv6 has additional properties that may assist with 

performing route attestation.  According to Lammle (2013) among the many 

improvements in the IPv6 protocol over IPv4 are extension headers.  IPv4 has been 

adapted and added on to many times since its introduction.  Due to its longevity, certain 

requirements that protocols have were simply not thought of in the original design of 

IPv4 such as IPsec.  Therefore, the complicated add-ons and compensations that exist to 

give IPv4 the required functionality make certain implementations more difficult to use 

and negatively impact the efficiency of the protocols (Lammle, 2013).   

IPv6 extension headers are one of the improvements added into the specification.  

They are described as any header following the initial 40 bytes of the packet that also 

precedes the packet’s upper-layer header (Carpenter & Jiang, 2013).  These extension 

headers are intended to be used by the originating node to send information and are not 

processed by any intermediary nodes along the path until the packet reaches its 

destination (Deering, 1998).  This is an important property of the extension headers as 

Carpenter and Jiang (2013) noted, it allows for nodes without understanding of the header 

to continue passing the information along.  Compatibility with the use of the extension 

headers is then required on the sending and final destination nodes. 

When looking at IPv6 extension headers in the lens of performing route 

attestation for BGP, the Authentication Header stands out as particularly interesting.  The 

Authentication header has the ability to provide integrity and origin authentication for 

packets traversing an IPv6 connection (Kent, 2005).  These two properties combined with 
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another that will account for correctness of an update can feasibly be combined to 

perform attestation.  In addition, since the Authentication header is built into the IPv6 

protocol, the overhead can be examined in comparison to solutions who rely on external 

sources of authentication. 

Existing Route Attestation Models 

This section provides an investigation into existing route attestation models that 

have been introduced and studied to provide authorization and validation of BGP route 

updates.  The literature review of these models is intended to objectively highlight crucial 

strengths and weaknesses of the models.  The lack of models pertaining specifically to 

IPv6 is an important issue in the area as IPv6 adoption has been slow to adoption but 

increasing as IPv4 space is exhausted.  The existing models address BGP version 4 of the 

protocol that is the same version used in IPv6, so relevant information is gained from this 

exploration in terms of challenges, future study, impacts, and implementations of these 

models.  The literature review of existing route attestation models will include both 

control plane and data plane prevention taxonomies as well as the following proposed 

solutions: Secure BGP (S-BGP), RPKI, Secure Origin BGP (soBGP), and ROVER. 

Control Plane and Data Plane Prevention Taxonomies 

Many of the BGP solutions proposed aim to ensure that BGP sends and receives 

control messages such as updates and route withdrawals properly.  This focus places the 

solutions into the control plane of the protocol (Butler et al., 2010).  The control plane in 

BGP handles the logic of keeping an updated router information base (RIB) that 

maintains adjacencies of neighboring networks (Vissicchio et al., 2013).  Most detection 

methods for BGP sub-prefix hijacking reside in the control plane according to Zheng et 

al. (2007).  By the nature of BGP convergence and the control plane’s responsibility for 
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determining a path to a given destination (Schuchard et al., 2010), sub-prefix hijacking 

attacks directly affect the control plane. 

In BGP, the data plane is slightly abstracted from the control plane in that its 

intended purpose is to handle the actual transmission and forwarding of packets that can 

contain route update and other BGP messages (Schuchard et al., 2010).  Certain models 

have been proposed to measure metrics in the data plane about the distance and 

reachability of remote networks learned through BGP (Zheng et al., 2007).  The data 

plane has visibility into metrics such as hop-count and similarity between autonomous 

system paths that form the foundation of Zheng’s model.  This type of model requires 

numerous systems distributed throughout the BGP domain in order to form a 

comprehensive and accurate view of the stable routing environment. 

Questions arise as to whether or not BGP can be secured entirely in the control 

plane or the data plane.  It is often seen only security one element of a protocol or system 

that has numerous mechanism may actually reveal additional vulnerabilities within that 

protocol (G. Huston et al., 2011).  If one secures only the control plane, they may assume 

that the BGP speaker can trust the autonomous system path it receives in a BGP update.  

However, without also securing the data plane the actual transmission of the data may 

still be susceptible to being sent down an untrusted path via the data plane.  G. Huston et 

al. (2011) suggested that there is a law of diminishing return that applies when adding 

incremental security features in such a scenario the added benefit in light of the 

complexity tapers off as well. 

S-BGP 

One frequently rerenced model is the Secure Border Gateway Protocol (S-BGP) 

designed by Kent et al. (2000).  The S-BGP model uses public keys as a new path 
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attribute and introduces IPSec into the route update process.  At a high level, this model 

works on two PKI’s: one for IP address allocation and the other for the assignment of 

autonomous systems and router associations wihtin those routers.  Through the use of 

certificates, address/route attestations, and IPSec the authors of S-BGP were able to 

migitate certain vulnerabilities within BGP including sub-prefix hijacking.  S-BGP has 

been refered to as the most comprehenssive solution for protecting against BGP attacks 

(Gersch & Massey, 2013).  However, there were significant performance impacts wihtin 

the implementation when considering processing, transmission bandwidth, storage and 

memory on the routers with the latter two being the largest issue.  Accoridng to M. Zhao 

et al. (2005), these implications are a contributing reason to the solution not being 

implemented wide-spread. 

RPKI 

RPKI is a model that was developed by the Internet Engineering Task Force 

(IETF) in an effort to secure BGP and interdomain routing implementations (Wählisch et 

al., 2012).  Similar to S-BGP, RPKI uses a certificate hierarchy to create relationships 

between autonomous systems and gives them the authority to authorize the origin of 

route updates.  A limitation of this particular model is it does not take into account a 

malicious entity may spoof their autonomous system and then perform attacks such as 

sub-prefix hijacking.  Adoption of RPKI is relatively low and is estimated to authroize 

only 4% of the Internet’s routes (Malhotra & Goldberg, 2014).  RPKI is an important 

model to study because it is gaining the most traction in implementation (Goldberg, 

2014). 
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soBGP 

A third proactive, cryptographic solution that has been introduced and studied is 

Secure Origin BGP (soBGP).  Through it’s design, soBGP implements certificates to 

address specific questions  related to secure routing objectives.  These questions help a 

router identify a peer transmitting an update and determine their key, define 

authorization, discover peer routers, and control what should be done with a route update.  

Although the protocol is not specifally designed to defend against any one attack, it does 

by nature prevent sub-prefix hijacking attacks as the maliciuos entity would not be 

authorized to inject such a route into BGP (White, 2003).  An advantage of soBGP over 

S-BGP is that it does not require encryption mechanism to be run directly on the router; 

the encryption processing can take place elsewhere.  This design should reduce the 

overhead and negative impacts of requiring router to perform all of the cryptographic 

functions. 

ROVER 

ROVER much like S-BGP, soBGP, and RPKI is another model that successfully 

can mitigate sub-prefix hijacking attacks and like RPKI securely maps an autonomous 

system to a subnet (Malhotra & Goldberg, 2014).  ROVER operates slightly different 

than RPKI and bases its functinality off of an already adopted standard reverse-DNS 

(rDNS) rather than heavy modification to an exsting infrastructure.  Using a trusted DNS 

server, an autonomous system can register their ownership of address blocks through the 

use of a new Secure Route Origin (SRO) DNS record.  This would allow routers 

receiving a BGP update to validate that the origination point of the udpate was authorized 

to do so. 
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Each of these solutions share similar characterisitcs in the sense that they are 

based on some form of public key infrastructure which is used to assist in the route 

attestation.  Furthermore, each of the models are proactive in that they validate routes 

recived immediately before allowing changes to be made to a router’s routing table.  

They can be classified as a proactive cryptographic prevention solution operating in the 

data-plane. 

Adoption of Existing BGP Route Attestation Models 

Regardless of the type of model, proposed solutions to improve the BGP security 

posture against sub-prefix hijacking attacks remain largely unadopted.  Considering the 

massive scale of the Internet and autonomous systems within, it is impractical to make a 

clean cutover to where all participating BGP speakers adopt a more secure 

implementation.  This type of change would require thousands of organizations who are 

not governed by a central authority to adopt new standards that may not work well unless 

a large portion of the organizations adopt them (Goldberg, 2014). This is similar to the 

scenario of IPv6 and DNSSEC (Herzberg & Shulman, 2013) on the Internet; even though 

the protocols offer distinct advantages over their predecessors, the Internet is slow to 

adopt them as it creates additional work, computational overhead, and may force systems 

to be upgraded.  The advantages do not outweigh the accompanying burden in some 

administrative domains. 

With the global scale of BGP and the aforementioned lack of regulation on the 

adoption of new secure protocols, a solution will need to be able to work in a partial 

deployment.  Realistically, this introduced the assumption that while a secure BGP 

solution is operating in partial deployment, an autonomous system may need to accept 

legacy or insecure routes from destination networks that do not participate (Lychev et al., 
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2013).  The research performed by Lychev et al. suggested that even partial deployments 

of secure BGP instances could improve the overall nature of interdomain routing in 

certain scenarios depending on the hierarchical level of the implementing autonomous 

system. 

Since securing BGP and implementing improvements to the protocol will require 

each autonomous system to make the adaptation, one should understand how autonomous 

system operators prioritize secure routes.  Lychev et al. (2013) surveyed 100 autonomous 

system operators on how they prioritize secure routes over insecure routes and classified 

them into three models.  The three models included:  

1. Security 1st where secure routes are always preferred over insecure routes. 

2. Security 2nd where a secure route is preferred over an insecure route if it is 

calculated to be less costly route is available. 

3. Security 3rd where a secure route is preferred over an insecure route if and 

only if a less costly and shorter insecure route does not exist.  This means 

that the secure route must be the shortest and have the least cost associated 

with it to be chosen. 

Lychev et al. determined through their survey that the security 1st model was least 

popular in a partial deployment scenario while the security 3rd model was the most 

popular among autonomous system operators.  The operators of those autonomous 

systems cited the risk of lost revenue and uncertainty of the adaptation as contributing 

factors for choosing security 3rd.  Nonetheless, a secure BGP protocol in partial 

deployment was found to contribute to the overall security of routing updates 

demonstrating the feasibility of such application. 
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The scale of the Internet is global and it continually changes and becomes a 

denser, richer environment.  This property of the Internet makes it infeasible to have a 

“flag day” where all participating autonomous systems may adopt a new transition to 

any technology including those that secure BGP (G. Huston et al., 2011).  The result of 

this will be a piecemeal deployment of any solution where the idea of a transition period 

becomes an ongoing or indefinite factor. 

In addition to issues faced with autonomous system operators electing to adopt a 

secure BGP standard and the scale of the Internet, there are also technical implications 

imposed by many of the solutions that may be a barrier to the option of security 

enhancements.  Cryptographic solutions may require the routers to implement crypto 

hardware accelerators or absorb the performance penalty in terms of hardware overhead 

(Goldberg, 2014).  There is clearly a tradeoff between solutions that perform address 

proof validation offline and those that attempt to do it in real-time using cryptographic 

solutions(M. Zhao et al., 2005).  Other solutions require modifications the actual update 

messages and come with their own challenges in updating router operating to 

acknowledge the changes.  As G. Huston et al. (2011) concluded in their survey of BGP 

security solutions, there is a cost in improving no matter the solution; security needs to 

become an essential part of BGP rather than a desirable property. 

Measuring Overhead in Routing and Cryptography 

 As overhead is a limiting factor in the adoption rates of BGP security solutions, it 

is important to understand and measure sources of overhead.  Routers have a finite 

amount of resources when considering time for a routing table to fully converge, the size 

of the routing table, as it is stored in memory on the router, processing load, and scaling 

capability of the protocol.  The first metrics including convergence time, memory 
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consumption, and CPU consumption are easily measured quantitatively and can be used 

to measure the impact of security enhancements to BGP.  The last metric mentioned by 

G. Huston et al. (2011), scaling capability, is much more difficult or even impractical to 

measure as the scale of the Internet and its volatile nature introduce many variables; thus 

scalability is a metric that is largely understood in its fullest extent.  These same metrics 

and associated measurements are used by the authors of S-BGP to evaluate performance 

and operational issues as well (Kent et al., 2000).  S-BGP is often touted as the most 

comprehensive BGP security proposal to date (M. Zhao et al., 2005) which builds the 

importance of these measurements. 

Routing table convergence times are another factor that comes up in the 

measurement and the impact of proposed BGP security solutions.  Route convergence is 

the measurement of time from when a routing update is sent and when participating 

routers settle on a stable route (Dan et al., 2002).  This is an especially important property 

of BGP as changes in the Internet topology need to be replicated out quickly.  If there are 

large delays from when a topology change takes place and when all routers in the BGP 

space are aware of the new stable route, networks may effectively become unreachable to 

certain autonomous systems.  The very purpose of a routing protocol is to provide quick 

adaptive changes in an evolving topology to ensure reachability of systems. 

Existing Infrastructure as Functional Components 

BGP speaking routers need a way to look up the ownership of a subnet in order to 

determine if an advertised route it authorized.  As Gersch and Massey (2013) indicated 

through their research, DNS and reverse-DNS are already deployed in a global scale, are 

well understood, and have had significant amounts of testing. Reverse-DNS (rDNS) 
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serves as a platform for resolving an IP address into a domain name, thus attributing 

ownership of the IP address (Howard, 2015). 

The naming conventions of a proposed solution for leveraging rDNS to attribute 

network prefix ownership need to follow a standardized approach to ease adoption.  

Multiple naming conventions have been proposed to address this (Eidnes, de Groot, & 

Vixie, 1998; Gersch & Massey, 2013; Thomson, Huitema, Ksinant, & Souissi, 1995).  By 

and large, solutions proposed by the IETF (Thomson et al., 1995) have become the 

standard and are widely adopted. 

One problem with using DNS or any central authority is an attacker may be able 

to spoof the origin of the message making it appear that it has originated from a trusted 

location.  This type of problem is particularly relevant when observing email 

communications (Delany, 2006). Delany’s DomainKeys (Delany, 2007) solution is built 

around the principal that if a recipient of an email can irrefutably determine the 

origination point of an email and whether or not that source was authorized to do so, 

granular filtering and acceptance policies can be applied. This draws a parallel to a 

recipient of a BGP route update.  If that recipient was able to determine beyond doubt the 

origination of an update and if that source was authorized to do so, sub-prefix hijacking 

attacks will be easy to detect in nature.  

DomainKeys is a solution that relies heavily upon DNS to store and distribute 

cryptographic keys (Delany, 2007). The cryptographic signatures are used as a method of 

signing and authenticating the origination of a message.  From the cryptographic 

authentication system an authorization system can be developed.  In the case of this 

research, the authorization component builds from the previously discussed rDNS model.  

DomainKeys have been frequently discussed by the IETF (Crocker, Hansen, & 
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Kucherawy, 2011; Hansen & Hallam-Baker, 2009) and are further developing increased 

adoption rates.  

Summary 

The research studied in Chapter 2 provided an overall viewpoint of the state of 

BGP security and identified properties of a successful BGP security model.  An 

examination of existing route attestation models is performed to identify existing factors 

that contribute to the adoptability or lack thereof in such models.  Through validity 

testing and measurements of overhead presented in the reviewed literature, similar 

methodologies will be utilized in Chapter 3.  Route attestation methods are further 

evaluated by studying the research presented to determine the routing plane in which a 

successful route attestation model may operate.  Finally, methods of effectively weighing 

performance implications in terms of overhead in routing and cryptographic solutions are 

studied in an effort to provide consistent measurements and common understanding of 

the proposed solution.  
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CHAPTER 3: RESEARCH METHODS 

Chapter 2 surveyed literature that applies to the background of this research study.  

The purpose of this study was to evaluate the performance implications on a router 

participating in a model where IPv6 extension headers are used to perform BGP route 

update attestation.  In the following sections, Chapter 3 will present the research methods 

that will be used in this proposed research study.  Furthermore, the chapter will both 

discuss and justify how the model is apposite to the study.  Lastly, important details 

surrounding the research method will be presented including: design of model, data 

collection methods, instrumentation, legitimacy, dependability and data analysis methods. 

Research Method and Design Appropriateness 

Quasi-experimental design is intended to investigate what effect a treatment has 

on an outcome variable (Salkind, 2010) where participants are not randomly assigned.  

Furthermore, according to Balasubramanian, Raman, and Selvakumar (2013), before-

and-after studies are designed to be used when a researcher is able to establish a before 

observation prior to any interventions are introduced into the sample population.  This 

negates the need for a researcher to retroactively reconstruct the before observations.  In 

essence, a quasi-experimental before-and-after study is designed to measure the resulting 

effects of an intervention on a non-randomly assigned study group.  This will take into 

account the measurement of primary variables as they relate to the hypothesis. 

The proper identification of a research method is crucial to designing a research 

study.  According to Salkind (2010), quantitative research methodologies are commonly 

used in scientific investigations of quantifiable properties and their relationships.  On the 

other hand, qualitative research methodologies are often found in social and human 
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studies where resulting data is a representation of general themes or interpretations from 

the study (Creswell, 2009).  Although quantitative and qualitative research methodologies 

do produce different types of results, Salkind (2010) indicated that the methodologies 

should not be antithetical.  In fact, due to necessity, many research processes contain 

aspects of both quantitative and qualitative methods.  In this study, quantitative data was 

used primarily to describe the performance implications of using IPv6 extension headers 

in a BGP route attestation model. 

In the light of BGP being the only routing protocol across the public Internet that 

facilitates the exchange of routing information between autonomous systems such as 

ISPs, performance is an important measurement.  The nature of this study, as described in 

Chapter 1, was to numerically measure the performance impacts of routers participating 

in an IPv6 BGP route attestation model compared to routers not participating in the 

model.  Since several studies have been performed to measure similar metrics in IPv4 

BGP attestation models using quantitative methods (Biersack et al., 2012; Kent et al., 

2000; M. Zhao et al., 2005), this study also used quantitative methods to measure the 

resulting performance impacts.  The chosen quantitative methodologies provided 

numerical insight into the relationship being studied with statistical analysis on observed 

results. 

Quantitative data results in numeric values that can be measured and used to test 

the effects of researcher intervention (Kumar, 2005).  The researcher intervention in this 

study was the introduction of the attestation model where the BGP routing process was 

modified to verify route updates.  Numeric values obtained through quantitative research 

allows researchers to understand the performance and scalability of software systems 
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(Liu, 2009).  To better define the scope of this study, numeric results were analyzed 

rather than broad generalizations that may be seen in qualitative work.   

According to Creswell (2009) the selection of a research design methodology 

takes into account a few factors including the type of data being collected, analysis of the 

data, and interpretation of the results.  Despite research being a mix of methods, this 

study aligned most closely with quantitative research.  From within the quantitative 

research category, a researcher must understand the available methodologies when 

determining the design appropriateness.   

Creswell (2009) further classified quantitative research into two methods of 

inquiry: survey and experimental, while Salkind (2010) also suggested correlational 

research and casual-comparative research.  Although different variations of these 

methods of inquiry exist to describe relationships between variables, experimental 

research was the most appropriate for this study.  Experimental research aligns with the 

purpose and nature of this study as there was at least one independent variable that 

received intervention while other dependent variables were measured.  These variables 

represented the participation in the model, performance impacts, and scalability as 

described in subsequent sections. 

Survey-based research is intended to generalize opinions, trends, or attitudes via 

structured interviews or questionnaires (Creswell, 2009).  Due to the highly technical 

nature of this research, survey-based research was not suitable as there were not human-

subjects being studied or intervened with in the research.  Furthermore, the intent and 

data gathered from survey-based research represents descriptive data about the current 

status of variables within the study (Salkind, 2010) as opposed to the relationship 

between variables through descriptive statistical analysis. 
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Correlational research is another similar option in research design to experimental 

research.  According to Salkind (2010), correlational research does have the ability to 

show relationships between variables and is limited by the lack of randomness in 

participants.  However, correlational research aims to describe these relationships 

between variables in naturally occurring situations as opposed to experimental design.  

Experimental design is the process where a researcher intervenes or acts upon variables 

seeking an outcome.  Therefore, correlational research was not suitable for this study 

because the variables were not naturally occurring. 

Casual-comparative or ex post facto research is a third research approach that falls 

within the quantitative research scope.  Casual-comparative studies measure differences 

within existing or established groups (Salkind, 2010).  This type of research also 

examines the groups from a retrospective lens in the sense that the events within the 

groups have already occurred.  As a result, of the events occurring in the past, any 

variable manipulation is impossible, making this approach inappropriate for the study. 

In contrast, experimental research focuses on whether or not a specific treatment 

results in an influenced outcome.  Taking into account the goals and data collection 

methods described by Creswell (2009), this study used an experimental research strategy.  

This strategy allowed for researcher intervention and variable manipulation as well as 

control of the groups being studied.  

Within the experimental research strategy, Salkind (2010) identified two sub-

categories: true experimental research, and quasi-experimental research.  True 

experimental research requires that participants be randomly selected and placed into 

either control or experimental groups prior to the researcher’s intervention.  Random 
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selection is beneficial as it can provide for proper casual relationships between dependent 

and independent variables (Salkind, 2010).   

On the other hand, quasi-experimental research differs from true experimental 

research as the researcher may not or should not randomly assign participants to control 

and experimental groups.  While quasi-experimental studies cannot show a true cause and 

effect as a result, they can be used to show relationships between variables (Salkind, 

2010).  This study was not being performed in a production or live environment, rather 

the study focused on a simulated and highly controlled environment.  The simulated 

environment provided consistency amongst the attribute variables as they could not be 

actively changed or controlled Kumar (2014) and further eliminated outside influences on 

them.  In the proposed environment, if all participants were identical, or duplicates of 

each other, the randomization of an experimental study was not needed.  In this case, 

since technical objects were being studied and originated from copies of a master 

template, they were as close to identical as possible.  A benefit of randomization is the 

allowance of all participants to have an equal an independent chance of being in a control 

or experimental group (Creswell, 2009).  This state of randomization or the lack thereof 

is what dictated that a quasi-experimental study was most appropriate in this scenario. 

Lastly, the researcher needs to take into account the nature of the study when 

defining an experimental investigation.  There are three scopes in which a researcher may 

look at the study’s nature.  The first being an experimental study where the researcher 

intervenes introducing an effect and measuring an outcome or the cause.  On the opposite 

end of the spectrum, a researcher may observe the outcome of an intervention and try to 

determine the effect; this is known as non-experimental.  Additionally, there exists a 

hybrid of the two approaches known as semi-experimental where a researcher 
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retrospectively associates the effects with outcomes.  These three definitions given by 

Kumar (2005) further clarified why this study was an experimental study in nature as 

opposed to non-experimental or semi-experimental.  

Research Question, Hypothesis, and Variables  

This study aimed to measure the extent of the relationship between routers 

participating in a BGP model to perform route attestation with IPv6 headers and the 

resulting performance impacts.  The research question which guided the study is: In a 

model where IPv6 extension headers are used to successfully perform route attestation of 

BGP updates, what is the resulting degree of difference exists in terms of router CPU 

utilization percentage, RAM utilization percentage, route convergence time, and BGP 

update packet size in comparison to a router not participating in the model?  This 

research question was answered through a systemic gathering and analysis of numerical 

data obtained from the participating routes. 

The hypothesis is a statement of predictions about the relationships among 

variables that the researcher intends to ascertain (Creswell, 2009).  As previously 

described, the hypothesis for this study was: Given a model designed to perform 

lightweight route attestation, necessary information needed to perform the attestation 

may be carried inside of IPv6 extension headers within constraints defined by the 

protocol specification without imparting performance overhead.  This hypothesis guided 

the study and shaped the variables, data collection methods, and analysis of results. 

Population 

In an effort to align with goals of quasi-experimental research design, the routers 

that composed the population were as similar as possible.  Virtual machines are software 

instantiations of computers that run operating systems and applications (Patterson & 
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Hennessy, 2013). Virtual machines are backed by physical hardware on a host referred to 

as a hypervisor or virtual machine manager (VMM).  The relationship between a 

hypervisor and a virtual machine is that the hypervisor or “host” provides the physical 

resources needed for the virtual machine referred to as the “guest”.  To facilitate creating 

a group of similar routers to be studied, virtual machines were used, as they are easily 

copied and duplicated.  The duplication of a single virtual machine into a larger group of 

virtual machines produced a population with an extremely similar identity between all 

routers. 

 The virtual machines used in the study were running pfSense, an open source 

firewall operating system based off the FreeBSD distribution, a variant of the BSD 

operating system.  Due to the lineage and origin, pfSense is technically a variant of the 

BSD operating system.  One of the major contributing factors to selecting pfSense as the 

operating system for the virtual machines was the open source nature of the project.  

Open source software includes code that has been published publicly for consumers of 

the project to copy, modify, and redistribute (Fitzgerald, 2011).  Furthermore, according 

to Fitzgerald (2011), since the software or operating system is open source, royalties and 

fees no longer become a limiting factor as long as those using the code respect and quote 

the primary contributions.  These properties of open source software allowed for the 

researcher to implement the proposed model programmatically.  Furthermore, open 

source software allows the study to be repeated by other entities more easily by 

protecting them from the royalties, fees, and accessibility of closed-source software. 

In addition to being open source, pfSense has a large community of users ranging 

from single instances to larger enterprise consumers that have many installations.  

Because of the high adoption rates and community support of the pfSense project, the 
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pfSense distribution is a viable alternative to systems built and maintained by major 

vendors such as Cisco, SonicWALL, WatchGuard, and others (Ribeiro & Pereira, 2009).  

The wide-adoption, scalability, open source code, and expansive feature set of pfSense 

made it an optimal choice for this study. 

For the purpose of simplification in taking measurements while collecting data, 

the topology only accounted for one BGP speaker in each autonomous system at a time.  

This model did simplify the operation on of BGP on the Internet, but most security 

protocols pertaining to BGP focus on inter-autonomous system communication (M. Zhao 

et al., 2005).  Furthermore, routing instability can be attributed to dropped packets, 

network congestion, and abnormal network activities.  To keep the assessment of the 

model’s performance as focused as possible, these network anomalies were not accounted 

for in the study.  The study assumed that the network used by the model is in a reliable, 

predictable, and functional state. 

To serve the virtual machines or routers, a piece of software called a hypervisor 

was required.  Hypervisors are software instantiations that present hardware interfaces to 

operating systems by serving resources and isolating virtual machines from each other 

(Natanzon et al., 2013).  Two main types of hypervisors; those that are native and those 

that are hosted within an operating system.  According to Natanzon et al. (2013), native 

hypervisors are installed directly on top of hardware similar to an operating system 

whereas hosted hypervisors run under a host operating system.  Native hypervisors are 

often referred to as “Type I” whereas hosted hypervisors are referred to as “Type II” 

(Iqbal, Pattinson, & Kor, 2015).  Due to concerns with efficiency of hypervisors and 

eliminating external variables such as a host operating system, this study implemented 
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native hypervisor.  Examples of native hypervisors include VMware ESXi and Xen 

(Desai, Oza, Sharma, & Patel, 2013). 

A single hypervisor hosted the virtual environment that the model and simulation 

results were performed in.  In addition, the hypervisor was free of other virtual machines 

so that only those being studied were running.  The exclusion of other virtual machines 

was again intended to reduce the possibility of unintended influences affecting 

measurements from within the hypervisor.  In addition, the hypervisor was isolated from 

other networks and servers itself as to not impose any external influences on the system 

hosting the virtual machines.  By keeping the system isolated and as purpose-driven as 

possible, the risk of impurities in the data were lessened. 

Research Model and Design 

The basis of the problem in the study was that a BGP message recipient does not 

validate route updates before accepting them.  To provide a vector for BGP speakers to 

attest routing updates, the resulting artifact was built upon proven models and 

methodologies that have been implemented to solve similar issues.  These grounds 

provided for a more easily adoptable solution and one that has been established in certain 

capacities.  This section will detail the research from two lenses: the introduction of a 

condition into the environment and the treatment of said condition. 

BGP sub-prefix hijacking attacks are a situation where unauthorized BGP 

speaking peers claim specifically defined networks that they do not own.  Essentially, the 

advertisements of these unauthorized networks appear the same way that authorized route 

advertisements do to receiving routers.  When a router receives any route advertisement, 

the process of convergence happens.  Convergence includes everything that takes place 

on a router from the time a BGP route is sent and when the receiving router stabilizes its 
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routing table.  This convergence process can result in a measurement of the time it takes 

for a router to receive an update, process the update and either commit or reject the 

update form the routing table.   

This process of convergence was a primary measurement of the overall impact of 

introducing a model to perform BGP route attestation in terms of performance and 

overhead.  As previously stated, convergence happens through the processing of both 

valid and invalid routing updates.  Therefore, in order to measure the resulting data, 

convergence was forced on participating routers by the introduction of valid and invalid 

routing updates from a trusted peer.  These routing updates did not only simulate real 

routing updates, but they also covered the sub-prefix hijacking scenario.  Using route 

introduction as the condition to cause convergence gave insight into the overhead of the 

proposed model as well as the effectiveness in performing route attestation. 

The second piece of the research design in addition to the condition is the 

treatment.  In the scope of this study, the treatment was the introduction of a model to 

perform route attestation on received routes to allow legitimate route updates and 

disallow other updates.  This treatment or model is detailed in the subsequent design 

characteristics and procedures. 

 One of the cornerstones of the proposed model was a trusted and secure Central 

Authority (CA).  Numerous examples show that due to the design of the BGP-4 protocol, 

participating routers cannot simply trust each other as they have been.  The plentiful route 

hijacking attacks that have taken place (Butler et al., 2010) support this idea. The CA was 

a standalone component that routers were able to query much like a traditional DNS 

server.  The CA served the following roles and asserted these properties. 
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1. The CA provided ownership information of an autonomous system 

through reverse and standard DNS queries.  These attributing DNS records 

were named in a scalable, standardized fashion as discussed in the 

literature review such as ip6.arpa (Eidnes et al., 1998). This property 

provided authorization for an autonomous system to advertise a prefix. 

2. Resource records used in the DNS lookups mapped from the network 

prefix and resolved to the owner/authorized advertising autonomous 

system for that prefix.  Also contained in a DNS record for the prefix was 

a public key generated by the autonomous system owner. 

3. Information contained within and disturbed in the DNS system was 

assumed to also be accurate from the vantage point of the routers.  

Validation was achieved through this property.  Trust information was 

established with PKI infrastructure. 

4. PKI keys stored and distributed with DNS modeled the scheme seen in 

DomainKeys (Delany, 2007). These provided a mechanism for 

authentication. 

The above assets of the central authority facilitated authorization, validation, and 

authentication of a BGP speaker and the route update.  This follows the standards for 

route attestation prescribed by Delany (2007). 

A second critical component in the artifact was the actual BGP speaking routers.  

Communication between BGP routers and the CA happened over IPv6, which natively 

establishes IPSec tunnels for secure delivery of information.  To supplement the 

communication with the central authority over IPv6, extension headers were used to carry 

authentication information.  Carrying data in the extension headers resolved the need for 
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a large amount of extra network traffic in terms of packets sent.  In addition, as the IPv6 

extension headers are 64-bit aligned, the processing of such headers is more efficient than 

the processing of IPv4 counter parts.  Routers participating in the new model followed 

this high-level process as a BGP update message is prepared for delivery and received: 

1. A BGP speaking router used the private key (public key is available in the 

public DNS records) to sign any BGP advertisements originating from the 

autonomous system. 

2. The resulting signature of signing the BGP advertisement was be placed 

into one of the IPv6 extension headers and the update was transferred to 

the recipient routers. 

3. When a router received the BGP update message, it processed the headers 

and extracted the signature.  

4. With the signature in hand, the router performed a DNS lookup on the 

advertised network and claimant autonomous system.  From that 

information, the public key was sent back by the trusted DNS system. 

5. The public key was then be used to determine if the signature associated 

with the BGP was generated with the associated private key, and based on 

the results of that test, the validity of the update was determined. 

For the routers to participate in this type of model, they needed to run a modified BGP 

software engine as this design was not in the BGP-4 specification (Yakov Rekhter & Li, 

1995). The model was able to identify sub-prefix hijacking attacks as the malicious actor 

would not be able to generate the correct signature in the update assuming the keys are 

secure and the DNS system is uncompromised as stated above. 
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Sampling Frame 

Sampling is a method of studying a subset of a whole population with the intent 

of providing an estimate of the prevalence of an unknown outcome on the larger 

population (Kumar, 2014).  The process of sampling has both advantages and 

disadvantages that affect the accuracy of results produced by a study.  According to 

Kumar (2014) sampling is beneficial in situations where a population may not be studied 

in its entirety or financial and human resources do not allow the whole population to be 

studied.  If the researcher chooses a sample appropriately and the tolerance of error is 

acceptable, the results produced will be reasonably accurate.  On the other hand, 

sampling a population at best can only provide an estimate of the outcome on a 

population.  Effectively, error is possible when sampling, but can be calculated for and 

minimized through correct inquiry and population selection (Kumar, 2014). 

Due to the infeasibility of implementing this model across routers on the Internet 

in production environments, a representative sample was used.  Certain barriers exist that 

make studying the Internet routers as a whole impractical including cost, closed-source 

software, and the immense scale of the Internet.  Due to the unknown number of routers 

in the public Internet as it is a highly volatile environment, non-random sampling was 

used.  Kumar (2014) suggested non-random sampling is acceptable in such environments 

where the total population is unknown.  Again, due to similar issues with the size of 

environment and available routers to be studied, a purposive sampling approach was 

used.  Purposive sampling allowed for the researcher to choose the sub-population based 

upon necessary requirements (Kumar, 2014) such as following BGP implementation as 

specified in the original protocol design. 
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In order for this study to satisfy the goals of a sampling frame and describe the 

potential impacts of implanting such a model in a larger population on the Internet, the 

routers needed to be representative of those actively being used.  To achieve a 

representative population of real routers on the Internet, routers running pfSense were 

studied.  The rationale behind choosing pfSense was the open source nature of the 

operating system and its implementation of the OpenBGPD service for providing BGP 

routing.  OpenBGPD is an open source project that extends BGP functionality to 

operating systems such as pfSense.  Furthermore, OpenBGPD has been noted for its 

compliance with standards documents indicating its correct operation of the protocol 

(Bakker, Jasinska, Raszuk, & Hilliard, 2013).  This helped bridge the gap between the 

sample population and the Internet population of BGP speaking routers as the correct 

operation of BGP should be present in both groups. 

From a hardware standpoint, pfSense machines are present on the publicly facing 

Internet and would consist of the same components as far as CPU, RAM, and network 

interfaces as traditional routers.  Those pfSense routers in the Internet population would 

be represented by the non-random sample population in that sense.  Numerous vendors of 

physical and virtual routers beyond those running pfSense have slightly different 

architectures and components such as application-specific integrated circuit (ASIC) chips 

in their devices (Ganegedara, Jiang, & Prasanna, 2014).  Those components may affect 

the results of this study as they are applied to such devices, but that is beyond the scope 

of what is being measured and observed.  In a pure hardware scope, the study focused on 

the overhead in CPU and memory utilization, which can be applied more universally to 

all routers. 
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In essence, the software operations of BGP speaking routers was accounted for in 

the sample population by choosing an accepted and correct implementation of the 

protocol provided by OpenBGPD.  The hardware measurements taken in the sample 

population were designed to take into account components that routers universally share 

regardless of vendor.  These two contributing factors to the composition of the purposive 

sample group help suggest what an implementation of the model outside of the sampling 

frame may result in.  When interpreting results, the researcher needs to know that a 

limitation of sampling and more specifically non-random sampling is that the results are 

an estimation of the impacts on a population as a whole (Kumar, 2014). 

Data Collection 

Virtual routers participating in the BGP environment were the primary source of 

data to be collected throughout the study.  The data collection took place using various 

operating system tools within the virtual routers alongside of reporting systems that exist 

within the host or hypervisor virtualization environment.  Measurements were collected 

to cover the areas of CPU performance, RAM utilization, bandwidth 

utilization/consumption, and route convergence times on all participating routers.  These 

measurements showed how the model affected each router individually and gave insight 

into the scalability of the model as more routers are added. 

When investigating the impact on BGP security solutions the most important 

metrics are BGP convergence time, message size, and memory costs rather than CPU 

utilization (M. Zhao et al., 2005).  Specifically, M. Zhao et al. (2005) argued that 

convergence time better demonstrates the impacts of computational overhead pertaining 

to security protocols as opposed to CPU utilization.  Convergence time demonstrated the 

amount of time it took for a route update to be sent, received, processed, and forwarded if 
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necessary.  According to Liu (2009), CPU consumption is a very important metric when 

assessing software performance which is closely related to this study.  Therefore, CPU 

utilization was gathered in addition to the other metrics. 

The virtualized routers ran the pfSense operating system, which is based off the 

FreeBSD distribution.  FreeBSD is the base upon which pfSense is built, therefore it is a 

closely-related operating system that has gained a reputation for being free, highly stable, 

powerful, and efficient (Chen & Zhu, 2014).  Since pfSense is based off FreeBSD, 

technically a version of the BSD operating system, it has many of the same tools and 

utilities designed to measure CPU utilization, bandwidth consumption, RAM 

consumption, and other metrics.  These performance monitoring tools and utilities have 

been used in various studies (Seo, Hwang, Moon, Kwon, & Kim, 2014; Zhao, 2002) and 

provide accurate and valid measurements.  The usage of built-in utilities that are widely 

implemented is their general acceptance among the community of users as a quasi-

standard. 

One of the pivotal tools that was used in the study to monitor performance and 

consumption of relevant computing resources is called “vmstat”.  This utility has the 

ability to show quantitative system performance metrics in the following areas: processes, 

memory, paging, disks, faults, and CPU (Lucas, 2008).  Furthermore, vmstat is able to 

display performance measurements in real-time or as snapshots in time.  This gives 

flexibility to how the information can be interpreted, either as instantaneous readings or 

as a summarization of events over time.  The metrics of CPU, memory, and bandwidth 

consumption were used collectively to describe overall overhead.  A researcher should 

consider that the actual measurement of CPU, memory, and bandwidth consumption 

could itself have a performance impact on the system.  This potential performance impact 
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was accounted for as vmstat has been used in other studies minding performance 

(Weikuan, Yandong, & Xinyu, 2014; Xiao, Song, & Chen, 2013; Yu & Lan, 2016) and 

was ran in all tests, theoretically introducing the same if any performance impacts. 

Convergence time in BGP is the time span from when a speaker announces an 

update until the entire network returns to a stable state (Meiyuan Zhao, Sean W Smith, & 

David M Nicol, 2005).  The originating peer of a BGP update message generated an entry 

into a log file with the exact time that the message was advertised to peers.  As each 

neighboring router received the update and stabilized their routing tables, they too 

generated timestamps of the event.  The convergence time could then be calculated by 

subtracting the time of the origination message from the last routing table stabilization 

time.  This calculation represented the convergence time of all routers participating in the 

security model, which could then be compared to the same environment that did not 

participate in the security model.  To ensure consistency, the participating routers had 

their clocks synchronized to a central system such as a Network Time Protocol (NTP) 

server. 

Bandwidth consumption can take shape of many different measurements such as 

packets per second, size of packets or messages, time the line is in use, and others.  Since 

the model introduces a fixed number of additional packets when compared to traditional 

BGP message processing, there was an increase of total packets transmitted.  Therefore, 

the measurement of additional packets in this study was excluded.  As M. Zhao et al. 

(2005) identified message size as an important metric of assessing BGP security proposal 

performance, the study focused on that measurement.  Message update size can be 

measured by accounting for all packets received and transmitted during the transaction 
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and totaling the number of bytes in those packets.  This represents the total bandwidth 

consumed for an update message.   

When sampling performance or scalability issues in software designs, one of the 

first and most important measurements to take is that of CPU utilization on each of the 

systems being tested (Liu, 2009).  Since computers are time-based, performance 

monitoring happens at set intervals called samples.  Specifically related to processor 

performance, the samples can be measured with processor time.  Every processor has an 

idle thread, which effectively consumes CPU cycles while there is no work for the 

processor to do.  Essentially, this idle thread represents the utilization or lack thereof of 

the CPU.  According to Liu (2009), processor time can be calculated by monitoring the 

time that an idle thread is active during a sample interval, and subtracting it from the 

interval duration.  This formula was taken into account when measuring the processor 

performance and the data can be obtained from vmstat. 

RAM may be simpler to measure as far as utilization is concerned than compared 

to measuring the use of a processor.  Since every computer system has a finite amount of 

RAM available, the measurement of how much is available and how much is consumed 

can provide an accurate representation of its utilization (Tanaka, 2005).  When RAM is 

over utilized, computer systems will offload some of the memory contents to disk which 

is known as paging.  If no paging is occurring while the measurement of memory 

utilization is taken, the measurement will show an accurate representation according to 

Tanaka (2005). 

These metrics were queried from the operating system level within the virtual 

machine and logged to a file that exists on the host.  This allowed a baseline to be 

gathered of the routers operating in a controlled environment.  Once a baseline was 
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established for the virtual routers, the attestation model could be introduced and the same 

performance counters were used to gather the new set of data.  If the data collection 

process occurred in the exact same way, this should negate the introduced performance 

hit of additional logging.  Once all of the tests had been run, the results were compiled 

into a computational program for analysis and validation.  By pulling all of the results 

into a single repository, the data could analyzed and evaluated centrally. 

To provide a more-accurate overview of the results from the model simulations, 

multiple iterations of the tests were done.  In similar tests, M. Zhao et al. (2005) 

suggested that 20 iterations of each test was sufficient to provide mean values of the 

results using descriptive statistics.  By running multiple iterations for each simulation, 

those participating in the model and those not participating, would help account for any 

external influences that may impact the testing despite isolation efforts, and assist with 

providing validity and reliability of the data.  The results in the report contain the mean 

values gathered across the multiple iterations of each instance. 

Instrumentation 

The instrumentation of the research exercise details how pertinent information is 

going to be gathered (Creswell, 2009).  The instruments used to gather data for the study 

were those discussed in the Data Collection section.  These instruments were responsible 

for gathering CPU utilization, bandwidth consumption, RAM consumption, and route 

convergence times.  The instruments used to collect this data were designed for 

measuring those specific data sources by design and were not modified by this study.   

As Creswell (2009) noted, if existing instruments are being used in an unmodified 

form, the researcher must consider the established validity and reliability of such tools.  

Certain areas surrounding the validity of the instrument need to be considered depending 
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on the nature of what is to be collected.  The three main areas of validity to look for in 

chosen instruments include: content validity, predicative or concurrent validity, and 

construct validity (Creswell, 2009).  Effectively, these forms of validity cover ground that 

an instrument measures what it is intended to measure, accurately predicts a criterion 

measure, or measures hypothetical constructs and concepts.   

For this study, content validity was of the most importance.  Content validity is 

significant as the tools available to measure metrics such as CPU consumption, RAM 

utilization, and route convergence times are observational in nature.  The nature of those 

tools aligned well with the design of the study, which was a before-and-after comparison 

of the model minding the researcher’s intervention.  Predictive validity did not align as 

well because the study was not designed to predict the impact of the model; rather it was 

to measure the actual impact of the proposed mode.  Furthermore, construct validity was 

not suited as well as content validity as the study was not intended to measure a certain 

explanatory variable that is not directly observable. 

Validity and Reliability 

Establishing the quality of research results can be described as the researcher’s 

duty to establish the validity and reliability of research performed (Kumar, 2014).  The 

terms validity and reliability both are used in describing the quality of research results, 

but they are not the same.  Creswell (2009) noted that validity is not a companion of 

reliability or even generalizability.  Validity should answer the simple question as to 

whether or not the researcher is measuring what he or she thinks they are measuring 

(Kumar, 2005). Therefore, it is important for the researcher to understand how validity 

should be described in the context of this research. 
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When viewing validity, the same connotations do not exist in quantitative 

research as they do in qualitative research.  According to Creswell (2009), qualitative 

validity is determined if the research checks the accuracy of findings by implementing a 

set of certain procedures, whereas Venkatesh, Brown, and Bala (2013) state that 

quantitative validity refers to the legitimacy of findings.  Furthermore, in quantitative 

research, two key issues that define validity are addressed, those issues being reliability 

and validity of measures.   

Due to the nature and design of this quasi-experimental study, quantitative 

validity methods were more appropriate because the data collected is numeric, 

measurable data.  Kumar (2014) constructed the definition of content validity as the 

instruments’ ability to measure what they are designed to measure.  One method of 

validating tools used to measure computational performance metrics is to collect the same 

metrics with another tool (Fortier & Michel, 2003).  Testing measurements with multiple 

tools is popular when modeling is used to study the research problem.  Fortier and Michel 

(2003) suggested that when a real system is available instead of a conceptual model, real 

system measurements are the most reliable means of validation as opposed to multiple 

simulated measurements.  This study employed the operation of virtual routers actively 

participating in the proposed BGP route attestation model rather than the research being 

carried out in a simulated fashion.  As a result, real system measurement was used to 

perform validation. 

Reliability is another important part of evaluating a research instrument in 

addition to validity.  Reliability is defined as the repeatability or consistency of a research 

instrument’s measurements (Creswell, 2009).  In essence, reliability is the repeatability of 

a measurement.  An estimation of reliability describes a relationship between the 
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consistency and stability of the instrument that shows the predictability and accuracy of 

the measurements (Kumar, 2014).  A higher degree of consistency and stability observed 

in an instrument indicates a stronger presence of reliability of the instrument.   

To obtain this estimation of reliability, two main lenses may be used: how reliable 

an instrument is, and how unreliable an instrument is.  If an instrument produces 

consistent measurements in the same or even similar environments, the should be 

considered reliable (Kumar, 2014).  On the other hand, if collected measurements show a 

degree of difference when the instrument is used in the same or similar environments, the 

level of error can be used to describe how unreliable the instrument is.  This forms an 

indirect relationship, the higher degree of error in the measurements, the lower degree of 

reliability of the instrument.  Likewise, the lower degree of error or deviation in results 

indicates a higher degree of reliability of the instrument. 

Of the different ways in measuring the reliability of an instrument, Kumar (2014) 

suggested observing two groups: internal and external consistency procedures.  External 

consistency employs two separate processes of data collection that are used to verify the 

reliability of the measure.  Within the external consistency group methods that exist are 

the “test/re-test” method as well as running parallel forms of the same test.  Both methods 

provide the same insight into external consistency and circumstantially one method may 

fit a study better than the other method. 

The test/re-test method is a repeatability test where the researcher takes 

measurements with an instrument, and the instrument is administered a second time 

within the same or as close to the same conditions as possible (Kumar, 2014).  The 

resulting ratio is an indication of how reliable the instrument is; that is, the higher the 

ratio the higher reliability.  The test/re-test method is particularly advantageous because 
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the method allows the researcher to test the instrument against itself, thus eliminating 

some complications that can arise when determining reliability.  In certain studies such as 

a survey, the test/re-test method may be unfavorable as it can educate users in the test 

phase, possibly skewing the results.  Unintended consequences such as user education 

during testing are not observed in technical studies where human subjects are not used. 

A second method of performing external reliability testing is to run parallel forms 

of the same test.  Kumar (2014) described this approach as creating a second instrument 

that is designed to measure the same results and administering both instruments at the 

same time against different populations.  Reliability is determined if both of the 

instruments produce similar results at the end of administration.  A parallelized approach 

is disadvantageous because of the difficulty in creating two instruments that are designed 

to measure the same phenomenon and deemed valid.  Furthermore, the inconsistencies in 

population groups may also hinder the usability of this method.  This approach does 

however remediate the problem of recall or user education as seen in the test/re-test 

external reliability testing. 

For this research, a test/re-test methodology was used to determine external 

consistency.  The rationale for choosing the test/re-test procedure takes into account both 

the population being studied as well as the instrumentation used to measure quantitative 

results related to computational overhead and route convergence times.  Since the 

population was not human or learning by nature, rather the population was composed of 

virtual routers, the problem of recall did not exist.  Secondly, the software used to 

measure CPU performance, RAM utilization, bandwidth utilization/consumption, and 

route convergence as previously described composed an instrument to measure overhead.  

These pieces of software were consistent with other related research (Seo et al., 2014; 
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Zhao, 2002).  Those studies that utilized a similar toolset as outlined in the Data 

Collection section ran the tests numerous times and presented mean scores of the 

measurements, not in parallel execution.  Running numerous tests and quantifying the 

results most closely aligns with the test/re-test procedure. 

In addition to external consistency, internal consistency needs to be considered as 

well in certain circumstances.  The goal of internal consistency is to ensure that any items 

measuring the same phenomenon should produce similar results (Kumar, 2014).  Internal 

consistency is commonly observed when dealing with human subjects in a survey or test 

related technique.  The idea being that multiple questions measuring the same type of 

data should produce similar results, thus indicating internal consistency.  In this research, 

the instruments used to collect data were specifically designed to take the measurements 

related to overhead, and were not modified or adapted to suit a different purpose.  In that 

scenario, a test/re-test method serves to estimate the reliability of empirical measurements 

most easily (Carmines & Zeller, 1979). 

Data Analysis 

Data analysis encompassed multiple areas to summarize the individual test results 

into meaningful and manageable results.  While many different variations of data analysis 

exist and are applicable in different studies, there are central concepts to what data 

analysis should provide.  Two key categorizations of data analysis exist, those being 

descriptive and inferential statistics (Babbie, 2013).  Nonetheless, the intended result is 

the same, to interpret and present the data into a succinct summarization. 

Choosing the appropriate categorization of data analysis is important to accurately 

make statements about general populations or to describe what is happening in a studied 

situation.  Inferential statistics are commonly used when a research studies a sample 



 

 

77 

population and uses those observations to make larger generalizations (Rugg, 2007).  On 

the other hand, descriptive statistics are designed to describe what is happening in a 

population or data set.  Given the high-level nature of what inferential and descriptive 

statistics are intended to represent, descriptive statistics more closely aligned with the 

research goals in this study.  The primary rationale for analyzing the data with descriptive 

statistics was that the study focused on an entire, controlled population rather than 

piecing out a sample of a larger population. 

Descriptive statistics can be further broken down into two sub categories: central 

tendency and degree of spread.  Central tendency is one of the most common methods of 

descriptive statistics as it aims to determine where the average set of values resides 

(Salkind, 2010).  These values from central tendency may include mean, median, and/or 

mode.  Salkind (2010) described the degree of spread as how data is disturbed with 

measurements of range.  To maintain consistency with other similar studies (M. Zhao et 

al., 2005), mean values were used to describe performance and route convergence 

overhead. 

Certain challenges do exist in performing statistical analysis of network data 

problems and computational performance monitoring.  One of the primary challenges is 

the enormity of data that can be collected (Heard & Adams, 2014).  Another challenge 

that relates particularly to network data is the correlation or timing of events.   

To facilitate the analysis of this data, Kumar (2014) suggested that the data should 

undergo three primary steps including: editing the data, reducing the data, and analyzing 

the data.  For this study, computational programs were used to better the fluency and 

accuracy of these three tasks.  These computational programs were primarily used in the 

data analysis phase to perform complicated calculations used to derive descriptive 



 

 

78 

statistics (Kumar, 2014).  Cleaning and reducing the data was an important part of 

making the collected data more manageable.   

A primary set of goals for this process was to remove samples collected before 

and after the researcher’s intervention, remove invalid results, and categorize the 

measurements.  Once that was done, measures of central tendency or measures of spread 

were used to present trends or changes among the variables.  Once the data was cleaned 

and categorized, the actual analysis was performed in order to test the hypothesis of the 

research and to draw conclusions.  The results from the analysis will be detailed in 

Chapter 4. 

Summary 

The purpose of this quasi-experimental quantitative study was to determine what 

degree of overhead is introduced into BGP speaking routers when a model for route 

attestation is implemented.  Chapter 3 provides details and insights into the overall design 

of the study, the technical objects being studied, and what methods will be leveraged.  

Areas surrounding the instrumentation, validity, reliability, and data analysis were also 

addressed in this chapter.  Chapter 4 will detail the results of the study along with design 

characteristics and analysis of findings. 
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CHAPTER 4: RESULTS 

The purpose of this quasi-experimental before-and-after study was to measure the 

extent of the relationship between routers participating in a BGP model to perform route 

attestation with IPv6 headers and the resulting performance impacts.  Performance 

metrics were further defined as CPU utilization, RAM utilization, bandwidth 

consumption, and route convergence time.  Measurements were taken to describe 

performance on virtual routers running the open source operating system, pfSense, in an 

isolated environment as described in Chapter 3.  To summarize the collection methods, 

CPU utilization and RAM utilization were gathered using the vmstat utility.  Bandwidth 

consumption was collected by running packet captures on both the router originating 

updates as well as a DNS server responsible for serving cryptographic keys used in 

attestation.  Lastly, route convergence time was obtained through code changes in the 

OpenBGPD service on the routers.  Chapter 4 describes the data that was collected as it 

pertains to answering the research question. 

Data Collection 

As described in Chapter 3, routers running in the virtual environment were 

subjected to a series of tests to obtain data describing the performance impacts of the 

proposed attestation model.  A single set of virtual routers and virtual networks were used 

to gather the performance data in all tests.  Using a single set of virtual routers and virtual 

networks provided consistency between resources allocated and device configurations.  

The OpenBGPD configuration used on each of the routers was unchanged throughout the 

study, and can be found in Appendix A.  Details about the BGP environment are 

described by the OpenBGPD configurations including neighbor adjacencies and network 
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prefixes owned.  In addition, the DNS server contained a TXT record populated with a 

public key that provided ownership for each network prefix.  An example of the TXT 

record used for a DNS zone configuration can be found in Appendix B.  A depiction of 

the network used in the study is represented below in Figure 1.  Router AS1000 served as 

the sender of BGP update messages while router AS2000 received the updates and 

processed them.  The Client workstation was used to remotely access the virtual routers 

via secure shell (SSH) in order to retrieve statistics and initiate each trial. 

Figure 1. Network diagram representing the virtual environment used in data gathering phase. 

Statistical data on receiving host’s RAM and CPU performance utilization was 

gathered using the vmstat utility.  This data was appended to a log file residing on the 

receiving host’s file system and analyzed in CSV format.  The vmstat utility was set to 

gather data on CPU and RAM consumption every 0.5 seconds throughout the duration of 

the trail.  The receiving host logged vmstat output immediately before the BGP updates 

were sent and ceased logging the output immediately after the last BGP update was 

processed.  Data gathered from vmstat was in a raw output format from the utility and 

was later sanitized and converted to CSV format in Microsoft Excel for analysis.  A new 

log file was created for each trial performed and the summarized output can be found in 

Appendix C. 
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To obtain quantitative results about bandwidth consumption in the BGP updates 

received by a host, a packet capture utility, Wireshark, was used.  Wireshark allowed for 

a host to record packets entering or exiting a network interface without modifying them.  

This technique is also known as a passive packet capture.  The passive packet captures 

were run from the router originating the BGP update as to not impart additional or 

unaccounted for overhead on the host receiving the update.  Even though the packet 

captures were passive in nature, RAM and processor resources were needed to interpret 

and store the data.  By nature of the TCP protocol that is responsible for carrying BGP 

messages across a network, the packets were the same on the sending and receiving 

routers. 

Initially, metrics were to be gathered for each trial consisting of 20 BGP updates 

to align with the study by M. Zhao et al. (2005).  However, due to the speed of processing 

20 route updates and the relative ease of gathering more data points, the desired sample 

size was increased to 1,001 updates per trail.  Three trials were run without the attestation 

model as well as with the attestation model.  As a result, more data was collected during 

the study, and provided a truer representation of the costs associated with the model.  

Furthermore, the increase in data collected allowed the trials to be run for a longer period 

and gave insight into the reliability of the data collection instruments. 

In each trial, the sending router, AS1000, initiated 1,001 BGP updates, which 

were delivered to the receiving router, AS2000.  Three trials were run in the environment 

before the attestation model was introduced, and three trials were run after the model was 

implemented.  In total, the trials resulted in 3,003 convergence data points to be 

examined in each model.  Having an equal number of data points between samples 

guaranteed that each treatment condition contributed equally to the results of the study 
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(Keppel & Wickens, 2004). Additionally, the BGP routing updates sent during the testing 

phases contained identical message contents and were initiated via a shell script to further 

promote consistency in timing and delivery.  These convergence metrics were logged in 

comma-separated value (CSV) format on the Client host and later analyzed using 

Microsoft Excel.  These summarized metrics can be found in Appendix D. 

Results 

Analysis of the data gathered through the trials describes the impact on 

performance that the BGP route attestation model had on participating routers.  Guided 

by Kumar (2014), the collected data was organized, reduced, and analyzed to provide 

descriptive statistical results.  The following sections detail the results as they pertain to 

BGP route attestation performance impacts: CPU Performance, RAM Utilization, 

Bandwidth Consumption, and Route Convergence Time. 

Descriptive Observations: CPU Performance 

CPU performance metrics were gathered via the vmstat utility, which polled every 

0.5 seconds during each of the trials.  According to (Weaver et al., 2013) a measurement 

of user and system CPU time, called process time, is an effective measurement to 

evaluate the performance of a program.  The output of vmstat represented the process 

time in three different columns that showed user time, system time, and idle time as 

percentages of the total processor capacity.  As Weaver et al. (2013) indicated, the sum of 

user time and system time forms process time.  The process time served as the 

measurement describing performance on the participating routers as depicted in 

Appendix C. 

A router running OpenBGPD while processing BGP update messages averaged 

0.55% processor consumption.  After the BGP update attestation model was introduced, 
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the average processor consumption of the router attesting BGP update messages was 

4.17%.  Overall, an increase of 3.62% processor time was observed relative to the trials 

where no route attestation was performed.  This increase demonstrated the additional 

performance overhead imparted on a router that obtained the sender’s public key through 

DNS and used it to verify the cryptographic signature of the BGP update message. 

Descriptive Observations: RAM Utilization 

Another important measurement in determining the overhead resulting from using 

IPv6 headers to carry BGP update attestation information was RAM utilization.  Again, 

vmstat was used to gather information on the size of the free memory list belonging to the 

receiving router.  The free list represents a linked-list of pages in memory that are readily 

available for a virtual memory manager (VMM) to allocate (Bacon, Cheng, & Shukla, 

2013).  In the duration of this study, the free list size decreased throughout the time the 

router was processing BGP updates for each trial.  This indicated that the blocks of 

memory used to process the update had not been returned to the free table as the process 

BGP process was continually running.   

By knowing the size of the free list before the trials of updates were sent, and the 

size of the free list after the router was done processing all of the messages, a sum of 

memory consumption could be calculated and averaged out for each update message.  

The resulting value showed the amount of RAM utilization for the duration of the trial.  

These memory consumption measurements were gathered as the receiving router was 

processing BGP update messages.  Averaged figures representing the delta in free 

memory pages for each trial can be found in Appendix C. 

On average, during the unsinged update trials, the free table decreased by 1.15MB 

or approximately 1,150KB.  Therefore, the average amount of memory accessed per BGP 
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update was 1.15KB.  As far as the signed update trials, the free table decreased by an 

average of 24.97MB per trail or 24,970KB.  As a result, an average of 24.95KB was 

consumed by the receiving router to process and attest each signed BGP update message.  

In total, an increase of 23.81KB of RAM overhead was introduced per BGP update by 

the attestation model. 

Descriptive Observations: Bandwidth Consumption 

Bandwidth consumption as previously defined in this study is the number of bytes 

transmitted and received by a host while processing a BGP update message.  In 

particular, bandwidth measurements were taken only in the lens of the host receiving the 

update message.  Other relevant packets beyond the BGP update messages included the 

DNS queries sent to and from the DNS server used for route attestation.  

Adhering to the definition of a quasi-experimental before-and-after study (Kumar, 

2014), unmodified BGP update messages were gathered and served as a baseline for 

bandwidth consumed in a route advertisement.  These packets displayed what the 

receiving host acknowledged in terms of bandwidth on an incoming BGP update.  

Analysis of the packet captures showed that each update message was 155 bytes in total.  

In the unmodified environment, no additional packets were needed to complete the 

update transaction.  The format of a standard IPv6 packet carrying a BGP update and the 

attribution of the size of the packet can be seen in Figure 2.  The depiction of the packet 

shows the minimum costs in terms of bandwidth consumed for BGP updates sent in an 

environment following the IP and BGP specifications.  Understanding the minimum size 

and structure of the BGP update packets helps establish a baseline to measure any 

increases from the route attestation model.  A bassline will also be used to demonstrate 
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where an observed size increase can be attributed to, and how the packet structure is 

modified by the model. 

Ethernet Frame – Header (14B) 

IPv6 Datagram 

IPv6 Header (40B) 

IP Data 

TCP Header (32B) 

TCP Data 

BGP Update Message for /64 Prefix (69B) 

 
 

 
 

Figure 2. Standard format of an IPv6 packet carrying a BGP message with size shown in bytes. 

A condensed packet dissection obtained from the passive packet capture can be 

found in Appendix E.  The packet dissection shows that the environment was producing 

valid and compliant BGP update packets as presented in Figure 2 above.  Confirming the 

generated BGP update packets were valid contributes to the validity and significance of 

comparative measurements made in the route attestation model.  Such measurements 

were made to demonstrate the effects of using IPv6 extension headers to carry route 

attestation information have on packet size and bandwidth consumption. 

In the modified model, IPv6 extension headers were used to carry attestation 

information by means of a cryptographic signature.  In particular, the Authentication 

Header was used to transport the signature.  Analysis from the passive packet captures 

obtained the model showed an increase in size of the update messages which is to be 

expected.  Much like a signature on a document where the signees’ name consists of 

letters on paper, the BGP sender’s attestation signature consists of bytes in a packet 
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header.  Regardless of the format, a signature adds data to the medium carrying it; in this 

case, the medium was the packet Authentication Header.   

In the attestation model, a signed BGP update message consisted of 295 bytes.  

When comparing the unsigned BGP updates at 155 bytes to the signed BGP updates at 

295 bytes, a 140-byte increase in bandwidth consumption was observed.  Because the 

actual BGP update messages remained unchanged, the entirety of the increase in packet 

size resulted from adding an Authentication Header containing the signature of the 

message.   

By the IPv6 specification for Authentication Headers, a minimum of 12 bytes are 

consumed in specifying the format and contents of the header (Kent, 2005).  The 12-byte 

cost in adding an Authentication Header is therefore unavoidable.  An additional 128 

bytes existed in the Authentication Header that were composed the signature of the 

update message.  In total, the size of the Authentication header was 140 bytes.  A 

different length signature could be used in signing the packets, which would affect the 

total packet size of the message directly.  A larger key-pair may be used to generate the 

message signature, but would also impart additional overhead on the receiving node in 

terms of incoming bandwidth consumed.  Larger key-pairs in RSA signing schemes such 

as the one used in this study result in larger signatures. 

With the programmatic changes to the BGP service, a packet carrying attestation 

information had the format shown in Figure 3.  The depiction of the modified packet 

clearly shows how the model modified the structure by the addition of the Authentication 

Header.  All other portions of the packet retained the same size and structure of the 

unmodified BGP update as previously shown in Figure 2.  Comparison on the unmodified 

and modified packets clearly shows where an increase of packet size occurred due to the 
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Authentication Header.  Furthermore, no other elements of the packet were modified by 

the model, thus attributing the 140-byte increase that was observed directly to the 

Authentication Header. 

Ethernet Frame – Header (14B) 

IPv6 Datagram 

IPv6 Header (40B) 

Authentication Header (140B) 

IP Data 

TCP Header (32B) 

TCP Data 

BGP Update Message for /64 Prefix (69B) 

 
 

 
 

Figure 3. Format of a modified IPv6 packet carrying a BGP message and attestation data with size shown 

in bytes. 

Appendix F contains an abbreviated packet dissection obtained from the passive 

packet capture detailing the modified packet.  The dissection of the modified packet 

shows the detailed addition of the Authentication Header as well as its attestation 

contents.  Further analysis of the packet dissection reveals that the only change between 

the unmodified packet and the packet carrying attestation data was the addition of the 

IPv6 Authentication Header.  Therefore, by comparative analysis, the Authentication 

Header was the source of bandwidth overhead in carrying the signature.   

A more detailed view of the Authentication Header shows the fixed fields that 

cannot be changed as well as the variable length field used to contain the 128-byte 

message signature.  The following five fields within the Authentication Header have a 

static length and imparted a 12-byte cost: Next Header, Payload Length, Reserved, and 
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Security Parameters Index.  The remaining field, Integrity Check Value, is a variable 

length field, and held the 128-byte update signature in this study as shown in Figure 4. 

Next Header (1B) Payload Length (1B) Reserved (2B) 

Security Parameters Index (4B) 

Sequence Number (4B) 

Integrity Check Value (variable, 128B in this study) 

Figure 4. IPv6 Authentication Header format with size shown in bytes. 

An additional source of increased bandwidth consumption in the attestation model 

was introduced by the necessary DNS queries initiated by the receiving host.  As outlined 

in the model’s design, a router receiving a BGP needed to obtain the sender’s public key 

to validate the authenticity and authorization of the update.  For every BGP update packet 

that the receiving router acknowledged, two DNS packets were created.  These DNS 

packets were composed of one query packet from the receiving router to the DNS server, 

and one response from the DNS server to the querying router.   

DNS query packets originated from the receiving node and asked the DNS server 

to return the sender’s public key, which was held in a TXT record.  The query packets 

used to ask the DNS server for the key were each 154 bytes long.  In response, the DNS 

server’s reply that contained the public key consisted of a single DNS query response 

packet of 383 bytes in length.  Again, this response may vary based on the key size 

chosen for the cryptographic signature.  In this model, DNS overhead introduced in 

obtaining the sender’s public key was 537 bytes in total.  A summarized DNS 

conversation gathered from the packet capture can be found in Appendix G. 

In summary, the attestation efforts introduced by this model resulted in a 677-byte 

increase in bandwidth consumed.  In total, the transaction of a receiving and validating a 
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BGP update message costed the receiving router 832 bytes as compared to 155 bytes in 

an unsigned update.  Within the 677 bytes of overhead, 154 of the bytes were transmitted 

by receiving router as outgoing bandwidth, and the remaining 523 bytes of data were 

received by the router as incoming bandwidth.  An autonomous system operator may 

view different costs in terms of ingress and egress bandwidth as the costs may affect the 

adoptability of the model.   

Descriptive Observations: Route Convergence Time 

To gather convergence timing metrics, the researcher modified the OpenBGPD 

source code to include timestamps for route received events as well as when routes were 

placed into the routing table.  The programmatic changes can be observed in Appendix H.  

Other than the addition of timestamp routines, OpenBGPD remained otherwise 

unmodified in the before portion of the study.  In the after portion of the study where the 

source code included attestation methods, the timing routines were unmodified from the 

prior sequence.  Therefore, the same modification existed in both before and after the 

intervention, thus eliminating variances between the two tests. 

Before the attestation model was introduced, data was gathered to describe the 

processing time it took the BGP service to receive an update and commit it to the routing 

information base.  When OpenBGPD received an update to the Session Engine (SE), the 

process responsible for handling BGP messages, it performed a check to determine what 

type of message was received.  After the message-type was determined, any updates were 

sent over to the Route Decision Engine (RDE) for processing.  The RDE then determined 

update validity and placed the prefix from the update in the routing table or discarded it 

accordingly.  At this point, the processing of the update was finished and a measurement 

was taken.  Therefore, the collection of this data spanned from when the route was 
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deemed and update by the SE until the point at which it was processed or discarded by 

the RDE. 

As aforementioned in the Data Collection section, trials of 1,001 updates were 

studied.  In total, 3,003 updates were processed in the unattested environment and 3,003 

additional updates were processed with the attestation model in place.  An average 

convergence time was calculated to serve as a baseline in typical BGP operation, which 

formed a baseline to perform relative comparison against.  The average convergence 

times are displayed in Appendix D.   

Averages were calculated of all 3,003 updates that were gathered between the 

three different trials for unsigned and signed updates.  The average processing time for 

OpenBGPD receiving an update on the SE and accepting it in RDE without attestation 

routines was 0.000211 seconds.  When attestation routines were added to perform the 

public key lookup and cryptographic signature verification, the average increased to 

0.018330 seconds.  In relative comparison, the signed updates took 0.018119 seconds 

longer to process on average.   

The increase in convergence time includes the retrieval of the sender’s public key 

through DNS as well as the cryptographic validation of received BGP messages.  On an 

average across the attested route updates, DNS query and response time took 0.000689 

seconds.  The data collected from all three trials as describing overhead imparted by the 

DNS transactions can be found in Appendix I.  The remaining increase in route 

convergence time compared to the unattested model can be attributed to the processing of 

the cryptographic message signature. 
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Statistical Analysis 

Many different methodologies exist to demonstrate the applicability of a study to 

larger populations demonstrating statistical significance (Keppel & Wickens, 2004).  

Choosing the most appropriate model for evaluating research requires the analysis and 

understanding of factors contributing to the measured results (Creswell, 2009).  Salkind 

(2010) asserted that when collecting data in an experiment, the outcome is always 

susceptible to a degree of unpredictability by chance.  Due to the degree of unpredictably 

by chance is therefore necessary to identify areas within a study that can be described in 

terms of statistical significance. 

Statistical significance is used in order to show that any difference observed in the 

analyzing the results is an outcome of the researcher’s intervention, not chance given the 

research hypothesis (Keppel & Wickens, 2004).  Tests are used to prove or disprove the 

research hypothesis and demonstrate statistical significance by the ability to reject the 

null hypothesis.  Keppel and Wickens (2004) described the null hypothesis as the exact 

opposite of a research hypothesis.  Guided by definition, the null hypothesis in this study 

would be that the BGP route attestation model adds no additional cost in terms of 

performance overhead. 

Identifying a Method to Demonstrate Statistical Significance 

The research proposal of this study did not specifically identify a method for 

determining statistical significance.  Not identifying a method for determining 

significance in the proposal promoted the opportunity for the researcher to select 

appropriate tests based on the sample size and types of data collected.  Factors including 

the number and variety of data points were taken into consideration as well as the focus 

of answering the research question contributed to the choice of method.   
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Choosing the correct test to demonstrate statistical significance takes into account 

several factors about a study including variances in a population, number of data points 

collected, and the research hypothesis (Terrell, 2012).  In addition, the number of 

independent and dependent variables were taken into account as well as the quantitative 

nature of the study.  The independent variable in this analysis was observed to have two 

levels: environment using the attestation model, and environment not using the attestation 

model.  Alongside of the independent variable, measurements were taken to describe the 

dependent variable, route convergence times.  In a scenario where there is one 

independent variable with two levels and one independent variable, Terrell (2012) 

recommended the use of a t-test to evaluate statistical significance. 

Statistical Significance 

Multiple tests are designed to demonstrate statistical significance (Keppel & 

Wickens, 2004; Salkind, 2010; Terrell, 2012).  T-test and F-tests are among the statistical 

significance tests for evaluating contrasts recommended by Keppel and Wickens (2004). 

F-tests may be used to indicate variance between populations, which then contribute to 

the calculation of the t-tests.  Keppel and Wickens (2004) noted that t-tests are effective 

in providing conclusions where groups may contain unequal sample sizes or variances.  

F-tests were first calculated to determine the population variances and indicated that the 

samples did not share the same variance.  For this study, t-tests were used to evaluate 

statistical significance because of the difference in variance of the measured route 

convergence times. 

Proper statistical procedures were followed throughout the t-test calculations 

(Keppel & Wickens, 2004; Terrell, 2012).  Data was analyzed and calculations were 

performed using Microsoft Excel.  To calculate the variance and t-test statistics, the 
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collected data on route convergence times were split into two groups: routers not using 

the attestation model, and routers participating in the attestation model.  After separating 

the collected data into two groups, calculations were performed to determine each sets’ 

mean and sum squared deviates.  The mean and sum squared deviates were used in 

determining the populations variance, standard deviation, and t-value.  

Sample Variance 

Sample variance provides insight into the spread and variability of data values 

(Ross, 2004).The first major calculation in determining the type of t-test to be used was 

to find the variance of the sample.  Acceptable degrees of freedom in a t-test are in part 

dictated by knowing the sample variances, specifically if the variances are equal or not 

(Terrell, 2012).  A method of computing variance in samples is defined by Ross (2004) as 

an average of the squared differences of each measurement from the mean of the sample.  

Another common methodology of calculating variance in applied research is through the 

computation of an f-test (Keppel & Wickens, 2004).  Due to the applied nature of this 

study, the f-test was chosen to calculate sample variances. 

Variance was calculated by performing an f-test two-sample test.  The f-test 

computations were run using Microsoft Excel as suggested by Salkind (2010) to obtain 

sample variances.  For the signed update set of data, the calculated variance was 

0.00032874.  As far as the unsigned update set of data, the calculated variance was much 

smaller at 5.2916x10-9.  The resulting F value was then calculated as a ratio of variances 

in the unsigned update data set and the signed update data set.  F for this study was 

calculated as 62124.60722.  The information gained from the f-test dictated the type of t-

test to be used to evaluate the statistical significance of the data which assumed unequal 

variances (Terrell, 2012). 
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Calculation and Evaluation of Statistical Significance 

Next, a t-test statistic was calculated to estimate the population mean and evaluate 

the null hypothesis.  The t-test statistic was calculated by assuming unequal variances in 

two samples as guided by the results of the f-test.  This study focused on comparing 

results of new model to an established one, which aligns with applied research.  A one-

tailed, directional approach was used as Keppel and Wickens (2004) suggested that it is 

best suited for applied research.  Additionally, Terrell (2012) stated that a one-tailed 

directional test is most appropriate in research where a directional hypothesis is to be 

evaluated as it is in this study.  

One of the first steps to computing a t-test result is to determine the alpha level, 

also referred to as the significance level (Terrell, 2012). An alpha level of 0.05 was 

chosen giving a 95 percent confidence interval, which is most common among 

researchers (Keppel & Wickens, 2004; Terrell, 2012).  The t-test was performed with 

3,002 degrees of freedom and was used to determine a level of significance (p-value) 

between the unsigned and signed samples.  Given the desired confidence interval and the 

degrees of freedom of the test, the critical one-tail value needed to demonstrate statistical 

significance was calculated as 1.64536 (Terrell, 2012).  Additionally, the p-value was 

calculated as less than 0.00001, significantly less than the alpha level of 0.05.  Analysis 

of the data revealed a t-value of 54.76270, which is well above the required critical value 

of the t distribution.  Therefore, the null hypothesis is rejected and the difference between 

sample means statistically shows the increase in route convergence time when using the 

proposed model.  
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Other Measurements 

The other measurements gathered in the study are examined under a slightly 

different lens than the route convergence times.  CPU performance and RAM utilization 

measurements resulted in less descriptive data points as they represent the mean over all 

3,003 updates in each sample.  Nonetheless, the same t-test procedure was calculated 

against each of the metrics across the trials.  CPU consumption averages were higher in 

the attestation model as compared to those measurements gathered in the model where no 

attestation was performed.  Computation of the t-value for CPU performance showed 

statistical significance with calculation of 8.18693 and a p-value of 0.00730.  Average 

RAM utilization was higher in the model where route attestation was being performed 

across all three trials and resulted in a t-value of 31.53878 and a p-value of 0.00050.  

Bandwidth consumption was not analyzed for statistical significance as the costs 

associated with the attestation model were fixed.  As OpenBGPD was assumed to be 

implementing BGP correctly (Bakker et al., 2013), the modifications to the packet 

contents and structure would be the same across a larger population that also correctly 

implements BGP.  Key sizes and all other data structures remain the same in the model 

design, and therefore would impart the same bandwidth consumption increases as defined 

in the descriptive observations.  Other routers adopting the model should have the same 

observations in terms of bandwidth consumption assuming that they elected the same 

implementation of the mode.  

Summary 

The quantitative results of the research study were presented in Chapter 4.  As 

dictated by the before-and-after design, a series of tests were performed on a set of 
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routers running BGP with no route attestation model implemented.  After the initial set of 

data was collected on the environment, the researcher introduced the route attestation 

model and performed the same tests on the environment.  Together, the series of tests 

formed a comparative foundation on which to draw descriptive statistics.   

Microsoft Excel was used to analyze the results from both scenarios that were 

obtained from log files and terminal output within the environment.  The analysis on the 

data was performed through two lenses: descriptive analysis and analysis for statistical 

significance.  The descriptive analysis of the quasi-experimental before-and-after study 

showed that the introduction of a model where IPv6 headers are used to carry BGP 

attestation information caused performance overhead.  The additional performance 

overhead was observed in all areas measured during the study including CPU 

performance, RAM utilization, bandwidth consumption, and route convergence time.  

Attribution of the performance overhead was discussed and is further detailed in Chapter 

5.  Additionally, a t-test statistical model was used to evaluate the statistical significance 

of measurements as they pertained to CPU performance, RAM utilization, and route 

convergence times.  The increases in performance overhead observed in all three 

categories was found to be statistically significant.  Finding statistical significance 

furthered the case that the observations were in fact a result of the researcher’s 

intervention on the environment, the intervention being an introduction of the attestation 

model.   

Chapter 5 will detail the study’s limitations as they pertain to research design, 

impact of external variables, specific security risks mitigated, and considerations 

surrounding the cryptographic model used.  Furthermore, findings interpretations about 

the CPU performance, RAM utilization, bandwidth consumption, and route convergence 
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times will be presented.  Lastly, the researcher’s recommendations and identified 

opportunities for future research related to the study are detailed in the subsequent 

sections. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

Attacks on BGP, specifically sub-prefix hijacking, have the potential to cause 

widespread outages and impact resources across the Internet (Bornhauser & Martini, 

2011; Yun & Song, 2015).  Furthermore, since BGP is the public routing protocol used to 

facilitate communication between Autonomous Systems, the possible consequences of  

attacks on BGP are vast (Cardona et al., 2016).  Therefore, providing security 

mechanisms to protect BGP against such attacks is critical in the continued accessibility 

of Internet resources (Bullock et al., 2015; FCC, 2012; Mahajan et al., 2002). 

Several different BGP security mechanisms have been introduced and designed to 

mitigate the risks of successful attacks being carried out (Bruhadeshwar et al., 2011; Hu 

et al., 2004; J. Israr et al., 2010; Kent et al., 2000; Malhotra & Goldberg, 2014; White, 

2003; Ying et al., 2009).  However, none of the aforementioned solutions have addressed 

the associated security issues still present in the IPv6 implementation of BGP (Butler et 

al., 2010).  Additionally, previously proposed solutions suffered from poor adoption rates 

due to the perceived overhead and cost associated with them (P. Gill et al., 2011). 

The specific problem addressed by this research is that extremely limited research 

has been done on using IPv6 in an effort to protect BGP against attacks such as sub-

prefix hijacking.  This study proposed a model to address the sub-prefix hijacking 

shortcoming of BGP through an examination of literature on attacks against BGP, 

cryptographic solutions, IPv6 packet structure, IPv6 security mechanisms, and proposed 

BGP security solutions.  The proposed model used IPv6 extension headers to carry BGP 

update attestation information generated by a cryptographic solution, and studied the 

resulting performance-related impacts. 
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Limitations 

The choice of research design and methodology may have imposed certain 

limitations regarding the results of the study.  As Kumar (2014) indicated, a before-and 

after design does not allow one to draw conclusive evidence that change can be credited 

to the researcher’s intervention.  In part, conclusive results cannot be obtained due to the 

non-random sampling and selection of the population.  As seen with true experiments, 

random sampling eliminates certain differences in the characteristics of the devices being 

studied (Creswell, 2009).  Since this study was done under a quasi-experimental design, 

the careful duplication and resource allocation of virtual routers minimized possible 

differences in the population to diminish the impact of non-random sampling.  Other 

disadvantages exist within before-and-after studies as they result in a measurement of 

total change.  This means that the baseline measurements are compared to those taken 

after researcher intervention.  As a consequence, extraneous and independent variables 

cannot be quantified as to their direct contribution of change (Kumar, 2014). 

While effort and planning was put forth to eliminate outside variables affecting 

the results of the study, it is not possible to entirely account for all possible variables.  A 

segmented virtual environment was used to host the set of routers, DNS server, and client 

machine that were used for each test performed.  This environment provided for a 

consistently configured set of routers and devices while maintaining the exact underlying 

hardware and resource allocation.  Type I hypervisors as used in this study have a 

complex nature in terms of potentially unaccounted for influences on the results, as do 

the routers that were studied.  In both the hypervisor and the router, there are many 

necessary supporting processes that perform tasks both known and unannounced to 

reporting software.  Therefore, throughout the study, it is conceivable that variables 
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unaccounted for may have affected the overall results.  Additionally, the point of variance 

due the enormity of data in a computer network study and correlation of timing is 

underlined by Heard and Adams (2014). 

This study aimed to provide a system to attest BGP routes in order to protect a 

recipient from sub-prefix hijacking attacks.  Other attacks against BGP such as Denial of 

Service (DoS), neighbor spoofing, subversion, or redirection attacks may still affect 

routers operating BGP (Ola & Constantinos, 2004; Qi, Xinwen, Xin, & Purui, 2015).  No 

attacks or threats to BGP other than sub-prefix hijacking were intended to be mitigated by 

the proposed attestation model.  Other undesirable impacts to BGP caused by 

misconfigurations and accidental route advertisements may be avoided using the 

attestation model.  Such cases of misconfigurations may occur where an autonomous 

system operator accidentally advertises a route belonging to another autonomous system.  

While the mitigation of such misconfigurations could be an effect, it is unintended. 

Part of the attestation model was based on a similar concept as seen in Domain 

Keys (Hansen & Hallam-Baker, 2009).  As in Domain Keys, the model required a sender 

of a message to publish their public keys into a DNS record.  The idea being that the 

sender of a message signed their message with a private key, and the recipient decoded 

the message using the public key obtained from the sender’s DNS record.  This key-pair 

was used to create and decode a signature providing attribution and authenticity of an 

update message.  Similar problems to those observed in DKIM existed in the attestation 

model.  For example, if an attacker were able to capture a valid update message in transit 

to the intended recipient, the attacker would also have captured the signature of the 

message.  A captured signature could allow the attacker to perform a replay attack, thus 

relaying false information appearing to originate from the valid sender (Kahate, 2013).  
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Furthermore, storing the cryptographic keys within a DNS record imposed certain 

limits on the size of the key which may affect overall cryptographic strength.  

Technically speaking, a DNS TXT record can be a maximum of 65,535 bytes, but are 

more practically implemented at just a few hundred bytes (Cheshire & Krochmal, 2013).  

According to Cheshire and Krochmal (2013), constituent strings within DNS TXT 

records are limited to 255 bytes.  The 255-byte limit forced a restriction on the length of 

public key able to be stored in one record, and therefore affects the potential effectiveness 

of a cryptographic signature.  A shorter cryptographic signature may be more susceptible 

to the deciphering or derivation of a sender’s public key, compromising the attestation 

information. 

Lastly, the skills of the researcher may have affected the validity of the study.  

The researcher’s limited experience and research expertise attribute to the possibility of 

impact in soundness.  During the study, an assumption was made that the researcher did 

indeed possess the needed skills and mentorship to conduct and report on a study of this 

design and nature.   

Findings and Interpretations 

Literature shows that BGP is susceptible to cyber-attacks that can result in 

compromise to availability and integrity of services across the Internet (Bornhauser & 

Martini, 2011; Sun et al., 2015; Yun & Song, 2015) .  While solutions have been 

proposed to secure BGP in IPv4 space, little has been done to assess and enhance the 

protocol’s security in IPv6 (Butler et al., 2010).  Furthermore, adoption rates of BGP 

security solutions are affected by negative impacts to performance and route convergence 

times as identified by network administrators (Lychev et al., 2013).  These given facts led 

the focus of this quasi-experimental before-and after study to investigate the possibility of 
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using IPv6 extension headers to carry route attestation information.  An attestation model 

was built to evaluate the quantitative costs of performing BGP route attestation with the 

IPv6 extension headers.  The following discussion delivers a summary of the numeric 

findings and interpretations that were discussed previously in Chapter 4 as they describe 

the following metrics: CPU performance, RAM utilization, bandwidth consumption, and 

route convergence times. 

CPU Performance 

Metrics on CPU performance were gathered over the course of three trials totaling 

3,003 BGP updates for unattested routes as well as 3,003 BGP updates for attested routes.  

When compared to an environment where no route attestation was being performed on 

BGP updates, the attestation model required a higher percentage of CPU time 

consumption.  On average, processing the signed update messages increased processor 

time consumed by 3.62%.  The bar graph in Figure 5 shows the comparison of average 

CPU percentage consumed during each trial in the signed and unsigned BGP update 

models.  A clear increase in CPU consumption was observed in the signed update model, 

with the highest average increase being 5.01%.  Again, while there is a notable increase 

when compared to the unsigned model, the overall increase is a relatively small portion 

of the router’s overall processing resources. 
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Figure 5. Average CPU consumption % for the trials in both attested and unattested models. 

Statistical significance was primarily evaluated using a t-test statistical method, 

which showed a strong indication of statistical significance in the measurements.  The 

observed increase in CPU processing time was likely due to the cryptographic routines 

required to validate the sender’s message signature.  Software-based cryptography has 

been shown to be resource intensive and often times a cause of overhead in security 

models (Mathew et al., 2015). 

RAM utilization 

RAM utilization was measured simultaneously with CPU performance 

measurements, using vmstat.  On average, in an unattested model, an attested BPG route 

update took 24.97KB extra memory when compared to updates carrying no attestation 

information.  The bar graph displayed in Figure 6 shows the average amount of RAM it 

took for the router receiving the BGP update message to process it.  While the increase in 

RAM utilization looks large on the chart, the data sizes are relatively small compared to 
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the router’s overall memory capacity of 1GB in this study.  The overall memory 

consumption of the router was increased by 0.002497% when performing route 

attestation. 

 

Figure 6. Average RAM utilization per update processed for each trial in the attested and unattested 

models. 

Statistical significance t-test showed this result to be statistically significant in the 

analysis phase of interpreting the results.  RAM consumption may also be attributed to 

the cryptographic routines as Mathew et al. (2015) indicated.  Additionally, RAM was 

used to store the sender’s attestation signature obtained from the IPv6 authentication 

header.  Both the storage of the signature and cryptographic processing contributed fixed 

and variable costs in RAM utilization respectively. 

Bandwidth Consumption 

Bandwidth consumption metrics were gathered for each signed and unsigned 

update sent across the network throughout the duration of the trials using the Wireshark 

utility.  Due to the way specifications designate the IPv6 Authentication Header format 
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(Carpenter & Jiang, 2013), BGP message size, DNS query, and DNS response sizes, a 

fixed cost in terms of bandwidth consumption was exposed.  The added bandwidth 

consumption when compared to an environment where no attestation was taking place 

stemmed from two areas: retrieval of the sender’s public key and the BGP update 

message signature.  Over the course of each DNS transaction used to acquire the sender’s 

public key, 537 extra bytes were exchanged between the querying router and the trusted 

DNS server.  The IPv6 authentication header introduced 12 bytes of header formatting 

and an additional 128 bytes of cryptographic signature, or 140 total bytes of overhead.  In 

whole, 677 bytes of bandwidth overhead were introduced by the model per update.   

Figure 7 shown below depicts the sources of the aforementioned costs in terms of 

the increases in bandwidth consumption.  These costs did not exist in the unattested BGP 

routing environment, and are therefore a representation of the overall bandwidth 

overhead introduced by the attestation model.  The data can be separated out into two 

categories for further explanation: DNS retrieval of the sender’s public key, and 

attestation signatures carried in IPv6 Authentication Headers. 
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Figure 7. Pie chart representing the attribution of bandwidth consumption overhead. 

The largest source of bandwidth consumption overhead introduced by the model 

was from the DNS query and response packets.  The query packet was used by the sender 

to ask the trusted DNS server for the sender’s public key.  The response packet was sent 

from the trusted DNS server back to the querying router and contained the sender’s 

public key.  Only certain information contained within the DNS packets was essential to 

the attestation process.  In the query packet, the attesting router identified the network to 

be attested.  In response, the DNS server’s reply contained the sender’s public key.  

These two pieces of information introduced unavoidable overhead given the chosen 

cryptographic methods.  The rest of the data transmitted through the query and response 

can be classified as overhead introduced by DNS. 
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Figure 8. Pie chart showing critical attestation information for public key retrieval and DNS transaction 

overhead. 

Figure 8 graphically represents the breakdown of bandwidth consumption 

overhead imparted by the DNS transactions used to obtain the route originators public 

key.  The largest portion of overhead came from the transfer of the actual public key 

associated with the sender.  This 216-byte cost would be unavoidable in scenarios that 

used the same RSA public key size to represent the owner of a network prefix.  In the 

original query, a 63-byte cost was also unavoidable, as the recipient of the update had to 

identify the network that it was requesting the key for.  Therefore, a total of 258 bytes of 

bandwidth overhead were introduced by the DNS protocol itself.  Despite the overhead 

related to the protocol itself, DNS was chosen as it is widely accepted and understood in 

the public Internet space by autonomous system operators.  However, in an effort to 

minimize the impact of the model, a different protocol that shares the adoptability aspects 

of DNS may be considered for the retrieval of a sender’s public key. 
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Following the increases caused by DNS, the second largest contributor of 

bandwidth consumption in the attestation model was the inclusion of a message signature 

on each BGP update.  The attestation model required the sender of a BGP update 

message to cryptographically sign the message and place the contents into an IPv6 

Authentication Header.  A result of using the Authentication header was less transmitted 

packets between the sender and receiver of a BGP update and therefore, less bandwidth 

consumed.   

 

Figure 9. Pie chart displaying IPv6 Authentication header size and BGP update message signature size.  

Figure 9 depicts the size relationship between the IPv6 Authentication Header’s 

mandatory fields and the size of the BGP update message signature.  The minimized 

impact on bandwidth overhead is clearly visible as only 12 unnecessary bytes of data are 

transmitted in addition to the required 128 bytes of the message signature.  At a 

minimum, if an additional IPv6 packet was sent to carry the message signature, 40-bytes 
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would be introduced for the traditional IPv6 packet header.  Extension headers remove 

the need for additional packets and in examples such as this, have a lower cost.  No 

matter the carrier, the message signature will be a fixed size in all models using the same 

type of RSA public and private key pairs.  Overall, a very marginal amount of bandwidth 

consumption overhead was introduced in relation to using the Authentication Header. 

Unlike the other measurements in this study, bandwidth consumption was not 

analyzed for statistical significance.  The bandwidth overhead introduced by the model 

would have the same impacts to other routers that properly implement IPv6 

authentication headers, the BGP protocol, and chose the same cryptographic key sizes.  

Due to the universality of these measurements, statistical analysis for significance was 

omitted. 

Route Convergence Times 

The last significant measure of this study described route convergence times, or 

the time it took a router to receive, process, and commit a BGP update to the routing 

table.  On average, attested route updates took 0.018119 second longer for the router to 

converge on when compared to unattested route updates.  As with CPU processing time 

and RAM utilization, these measurements were shown to be statistically significant using 

t-tests.  Many contributing factors composed this increase in route convergence time, as it 

is essentially a measurement of the attestation model’s delay.  DNS transactions caused 

an average of 0.000689 seconds delay in that the querying router had to generate a 

request and wait for the trusted DNS server to respond.  Furthermore, the cryptographic 

routines also accounted for the increase in route convergence time.  The relationship 

between the DNS transactions and the cryptographic routines are depicted in Figure 10. 
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Figure 10. Relationship between overhead in convergence time caused by DNS transactions and 

cryptographic functions. 

Recommendations 

This study pursued the relationship between implementing a BGP route attestation 

model using IPv6 extension headers and the resulting impacts to router performance.  A 

review of literature showed a clear need to improve the overall security of BGP against 

various attacks, including sub-prefix hijacking.  Several studies showed that such 

protections were possible in the IPv4 implementations but exploration into IPv6 solutions 

was extremely limited.  Furthermore, the previously proposed solutions were associated 

with high performance costs to the operation of the routers, which directly affected their 

adoptability.  Idealistically, the overall benefits of enhanced security and protection of 

network resources would be the top priority of network operators, but such is not the 

case.  Usability and end user experience are often prioritized over security.   

Guided by the preparation, literature review, design of the model, implementation 

of the model, and analysis of the results, recommendations can be made.  These 
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recommendations encompass viewpoints and insight gained from the performance of the 

study.  This section addresses recommendations in the following areas: using IPv6 

extension headers for route attestation, reducing performance costs in the attestation 

model, motivation to adopt secure routing models, and the need for additional research on 

the subject. 

Using IPv6 Extension Headers for Route Attestation 

A proof-of-concept BGP route attestation model was created and implemented in 

this study.  The attestation model showed that IPv6 extension headers could be 

successfully used to carry signatures of a BGP message to prove authenticity and 

authorization.  The study demonstrated that IPv6 extension headers could be used to carry 

signature information efficiently due to the performance driven qualities that surround 

them while imparting a limited amount of bandwidth overhead.  In addition to the 

enhanced performance of IPv6 headers compared to IPv4 headers, other extension 

headers exist to promote encrypted communication between endpoints.   

In the study, the Authentication Header was used to carry the cryptographic 

signature of the BGP update message.  As seen in Chapter 4, the overhead imparted by 

the header itself was only 12 bytes.  When compared to other means of exchanging keys 

with additional packets, the cost comparison favorably aligns with the use of extension 

headers.  Other internal routing protocols are already using Authentication Headers to 

provide integrity, authentication, and confidentially of routing exchanges such as 

OSPFv3 (Coltun, Ferguson, Moy, & Lindem, 2008).  These types of extension headers 

are proven effective in internal routing and they should be tapped into for securing 

external routing protocols such as BGP in a similar fashion. 



 

 

112 

Overall, efficiencies and security gained from using extension headers further 

necessitates the need for more entities to adopt IPv6 in place of IPv4.  The movement of 

autonomous systems to the IPv6 space will enhance the adoptability of such models.  As 

IPv6 matures, the headers and processing times are likely to follow, and use will be 

widened across autonomous systems. 

Reducing Performance Costs in the Attestation Model 

Performance costs were introduced by the attestation model; a common 

observation when implementing security enhancements in applications.  Cryptographic 

operations impart overhead on an environment, and their costs need to be evaluated 

accordingly.  In the proposed attestation model, costs in terms of bandwidth consumed 

per route update under 677 extra bytes and only two additional packets were transmitted.  

Similarly, route convergence times also increased from the unattested model, but still 

measured in a just over one-hundredth of a second to process.  Likewise, RAM and CPU 

consumption showed 23.81KB and of 3.62% increases respectively.   

These costs were all depicted as deltas from a model where no BGP route 

attestation was in place.  While the costs were in cases substantially higher in percentage 

increases, their real numeric increases describe the impact more truthfully.  True costs 

should be evaluated by potential adopters of any security model including the one 

proposed in this research when determining the adoptability and impact on an 

environment.  

Reducing costs in the proposed attestation model of this study can be done in 

many areas.  The two most impactful areas to reduce overhead would be the retrieval of a 

sender’s public key as well as the cryptographic processing of the signed message.  Using 

DNS to store a sender’s public key has been done in other accepted models such as 
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domain keys for email integrity (Crocker et al., 2011).  While it does help verify an 

owner of a domain or a net block in this case, several limitations exist that make DNS a 

less attractive option when considering the future.   

The biggest drawback to using DNS as a host for the public key is the limitation 

of key size to 255 bytes (Cheshire & Krochmal, 2013).  As the ability for systems to 

solve cryptographic problems increases, the response has been to use longer key pairs or 

algorithms that are more complex.  When limited to 255 bytes held within a single TXT 

record, the potential length of key pairs is severely limited.  Therefore, the longevity of 

such solutions is minimal and alternatives to key storage should be explored. 

Additionally, the transactions for DNS proved costly to transmit the 216 bytes 

representing the sender’s public key.  When considering the DNS transaction to retrieve 

the sender’s public key, approximately 48% of the transaction did not carry data directly 

related to attestation.  The additional data was comprised of packet headers and fields 

specifically related to the DNS protocol.  Therefore, DNS is an effective, but costly 

method of querying and retrieving public keys.  Furthermore, when considering the 

limitations of the key size, the opportunity to evaluate different key delivery mechanisms 

is apparent. 

Outside of the DNS realm, a large contributor to the increase in route convergence 

times was attributed to the cryptographic routines.  These routines were responsible for 

parsing the IPv6 packet to retrieve the message signature, and resigning the message with 

the sender’s public key.  If the transmitted signature matched the newly calculated 

signature, the message was deemed valid.  Certain challenges existed with this model as 

the cryptographic implementations were done entirely in software.  Routers should be 

using hardware-based cryptographic processors or application specific integrated circuits 
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(ASICs) to lessen the resulting overhead.  Keshavamurthy, Upadhyaya, and Gopal (2011) 

exemplify how such hardware accelerators can be used to improve cryptographic 

calculation times.  This study and other similar attestation models would benefit from 

such enhancements. 

Motivation to Adopt Secure Routing Models 

Autonomous system operators are strongly encouraged to investigate and weigh 

the cost of adopting a secure routing model against the risk of potential routing attacks.  

There is no governing body on the Internet enforcing networks move to secure routing, 

adopt IPv6, or make changes to advance the state of the Internet.  Therefore, the 

realization of the need to adopt secure routing falls on researchers and network 

administrators alike. 

In certain scenarios, the benefit of adopting a secure routing model is obvious.  

For example, when YouTube was affected by a sub-prefix hijacking attack in 2008, the 

adverse effects lasted for approximately two hours twenty minutes.  (Bornhauser & 

Martini, 2011).  Consider the average increase in time for route convergence by this 

model of 0.018119 seconds per update.  For the cost of the model to outweigh the time 

YouTube was affected by the adverse BGP route, YouTube would have needed to see 

approximately 463,602 BGP updates.  That is not an unforeseeable amount of BGP 

updates for a large organization, but this would be the number for a single routing 

incident.  Additionally, the initial problem may have been avoided altogether by the use 

of such a model. 

When these types of measurements and metrics are evaluated, additional 

performance costs are better put into perspective.  The potential positive impact of such 

models can outweigh the cost associated with running environments in insecure routing 
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models.  All routing protocols, not just BGP, should be continually evaluated and built 

upon to offer enhanced security to protect the integrity and authorization of routes, but 

equally as important, adoptability needs to be considered.   

Need for Future Research 

In addition to the statistically significant outcomes, this study shows a clear 

necessity for further research.  Literature illustrates that BGP speaking networks are 

continually affected by sub-prefix hijacking attacks from malicious and unintentional 

actors (Ballani et al., 2007; Biersack et al., 2012; Bornhauser & Martini, 2011; Wählisch 

et al., 2012).  Costs associated with the adverse effects of sub-prefix hijacking can 

substantial in terms of downtime, disruption to service, and economic side effects.  As 

IPv4 address depletion continues and IPv6 address adoption grows, further research 

should to be done in securing protocols the Internet depends on.  To further the research, 

this study be explored further to reduce performance costs and address adoptability 

issues.  Similar models have been developed and studied; different combinations of ideas 

or the introduction of new suggestions will progress the field in a positive direction. 

Recommendation for Future Research 

The problem identified throughout the literature review upheld the idea that BGP, 

the Internet’s routing protocol, is impacted by many shortcomings in security.  One of 

those shortcomings allows an attacker to hijack traffic intended for a destination by 

advertising a more specific or longer prefix.  This type of attack is known as sub-prefix 

hijacking.  An examination of the literature revealed that proposed solutions to the 

shortcomings in BGP resulted in high costs in terms of overhead, and left the IPv6 

protocol unevaluated.  This study analyzed one method of leveraging the performance 

benefits and extendibility of IPv6 headers to protect BGP against sub-prefix hijacking 
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attacks.  Although this study provided insight into the cost of the model in terms of CPU 

performance, RAM utilization, bandwidth consumption, and route convergence times, 

other areas of interest remain for future study.  This section is intended to provide 

recommendations and insight into related areas of interest for future research. 

 The two largest sources of overhead in this study resulted from the retrieval of 

the public key via DNS and the cryptographic signature validation.  Minimizing those 

impacts could further benefit the model by reducing overhead and increasing the 

adoptability.  Similar challenges existed in the Domain Keys Identified Mail (DKIM) 

solution that this model was in part based upon (Keshavamurthy et al., 2011).  Hardware 

accelerators are being developed for performing cryptographic functions including digital 

signing, hashing, and authentication (Mathew et al., 2015).  Keshavamurthy et al. (2011) 

demonstrated a significant increase in performance in RSA-sign and verify operations 

when using hardware acceleration such as the IBM Power7+ processor (Blaner et al., 

2013) or Intel’s Xeon v3 processors.  Their results showed a 49.84% increase in speed of 

performing DKIM operations by simply moving the cryptographic functions to a 

hardware accelerator.  As this study used RSA-sign and verify operations in a very 

similar structure and programmatic environment, similar performance increases may also 

be observed by using hardware accelerators. 

DNS costs associated with retrieving the sender’s public key also contributed to a 

major increase in performance overhead for both bandwidth consumption and 

convergence times alike.  Without restricting the fundamental ways DNS is implemented 

in IPv6, future investigation should consider ways to reduced overhead.  Callahan, 

Allman, and Rabinovich (2013) specified that performance-driven tactics such as caching 

or pre-fetching DNS queries as well as load balancing between DNS servers might 
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minimize the perceived impact of performing lookups.  In this model, similar tactics such 

as DNS pre-fetching during idle time on the router may be able to shift some of the delay 

to less crucial times in the BGP routing process.  Pre-fetching and caching operations 

impart overhead as well in terms of RAM and CPU utilization (Callahan et al., 2013), and 

analysis would need to be done in order to determine if that strategy is worth the cost. 

Additionally, software optimizations may be introduced into the OpenBGPD 

routing system as well as the proposed attestation model.  While the researcher intended 

to implement the model minding the limiting behaviors of the code changes, there may 

still be opportunities for further optimization.  Programmers should analyze new 

algorithms or models after they are implemented (Malik, 2014).  Asymptotic notation or 

Big-O notation could be used to describe the operation of OpenBGPD and the attestation 

model.  Once the algorithms are analyzed to determine their limiting behaviors can be 

augmented to reduce overall runtime with more efficient algorithms.   

Furthermore, parallel processing of the attestation model and the OpenBGPD 

route decision engine may improve overall performance.  Both the attestation model and 

the route decision engine filter and disseminate routes in a linear fashion.  Retrieving the 

sender’s key and validating the message signature could be done alongside of the 

standard route evaluation in a parallel implementation.  This likely would not reduce 

CPU and RAM utilization as the attestation methods still have a cost, but the results may 

be improved from an overall convergence timing aspect.  Certain barriers do exist in 

parallel programming that make some instantiations perform worse than their nonparallel 

counterparts perform.  On small distributions of a problem set synchronization of code 

between processes may cost more than the time saved through the parallel operations  
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(Bauer, 2014). Again, further research should be done on using parallel programming in 

routing environments as certain barriers  

Summary 

Problems identified by this research study resolved that BGP is susceptible to 

harmful attacks such as sub-prefix hijacking, and proposed solutions carried a high cost 

without recognizing potential impacts in an IPv6 environment.  This study evaluated the 

degree of impact using IPv6 extension headers would have on an environment when used 

to perform BGP route attestation.  Together, these principles were combined to create a 

research question and hypothesis that directed the research in establishing an outcome. 

The research showed that IPv6 extension headers are capable of carrying 

cryptographic route attestation information.  Statistically significant figures showed that 

the model did impart overhead on a router running BGP in the following areas: CPU 

performance, RAM utilization, bandwidth consumption, and route convergence times.  

Extension headers reduced the performance overhead by the use of efficient header 

processing and minimizing extra packets needing to be sent to perform attestation.  While 

the study was performed on the open source pfSense platform and OpenBGPD, they were 

assumed to be in correct operation by the protocol specification.  Overall, the model 

shows an opportunity to expand upon the research performed in this study on other 

factors that may lessen the observed performance impacts while still providing route 

attestation. 

This study adds to the overall body of knowledge pertaining to public routing 

protocol security in the IPv6 space.  In addition, the research performed in the study show 

the applicability of leveraging IPv6 enhancements over IPv4 in an effort to improve 

security.  These enhancements also encourage the community to be mindful of the need 
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to migrate to IPv6 and to consider the security implementations of doing so.  Lastly, the 

study supplies new literature and perspective to BGP security solutions and prospective 

pathways to better secure the public Internet routing infrastructure. 
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APPENDIX A: OPENBGPD ROUTER CONFIGURATIONS 

This appendix contains the OpenBGPD device configuration files (bgpd.conf) that 

were used on each of the participating routers in the study. 

Router 1 (AS100) 

AS 1000 

fib-update yes 

holdtime 90 

router-id 192.168.1.1 

log updates 

network 2001:12:12:12::/64 

neighbor 2001:12:12:12::2 { 

 descr "ASN2000" 

 announce all   

 remote-as 2000 

 local-address 2001:12:12:12::1 

} 

deny from any 

deny to any 

allow from 2001:12:12:12::2 

allow to 2001:12:12:12::2 
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Router 2 (AS2000) 

AS 2000 

fib-update yes 

holdtime 90 

router-id 192.168.1.1 

log updates 

network 2001:23:23:23::/64 

network 2001:12:12:12::/64 

network 2001:20:20:20::/64 

neighbor 2001:23:23:23::2 { 

 descr "ASN3000" 

 announce all   

 remote-as 3000 

 local-address 2001:23:23:23::1 

} 

neighbor 2001:12:12:12::1 { 

 descr "ASN1000" 

 announce all   

 remote-as 1000 

 local-address 2001:12:12:12::2 

} 

deny from any 

deny to any 

allow from 2001:23:23:23::2 

allow to 2001:23:23:23::2 

allow from 2001:12:12:12::1 

allow to 2001:12:12:12::1 
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Router 3 (AS3000) 

AS 3000 

fib-update yes 

holdtime 90 

router-id 192.168.1.1 

log updates 

network 2001:23:23:23::/64  

network 2001:30:30::/48 

neighbor 2001:23:23:23::1 { 

 descr "ASN2000" 

 announce all   

 remote-as 2000 

 local-address 2001:23:23:23::2 

} 

deny from any 

deny to any 

allow from 2001:23:23:23::1 

allow to 2001:23:23:23::1 
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APPENDIX B: DNS ZONE CONFIGURATIONS 

The following is an excerpt from the DNS server configuration showing a TXT 

record that contains a public key.  The public key obtained through a DNS record query 

by routers performing route attestation on a received update.  The TXT record was 216 

bytes in size. 

; 

;  Zone records 

; 

 

*                       TXT ( 

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCttCmLEmA3hH/wsk/u29

xPpRj+LlNFsEwg2P1IvNtVDcQaOhlPlqmUzXrztawANPXHlMjIR+Uzzsbzh

49Y4GZWw3dUMvE0KD76jz4RXQmtbh+nMNKKC3vDoDfFI6gT5trHZdWqLW0q

Lg8zaZKsjZqO8FBp6Sb8iI9QqryptKdVXwIDAQAB" ) 
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APPENDIX C: SUMMARIZED VMSTAT OUTPUT  

For the charts below, each row with a trial number represents the average 

gathered over 1,001 updates.  Rows with the All heading are representations of the three 

trials combined, being 3,003 updates. 

Table C1 

Summarized vmstat output collected from router receiving BGP updates with no route 

attestation model in place. 

Trial RAM Consumed (KB) Avg. RAM/Update (KB) Process Time % 

1                           1,224                              1.22  0.655104063 

2                           1,308                              1.31  0.478691774 

3                           1,000                              1.00  0.504468719 

All                           3,532                              1.18  0.546115702 

 

Table C2 

Summarized vmstat output collected from router receiving BGP updates with route 

attestation model in place. 

Trial RAM Consumed (KB) Avg. RAM/Update (KB) Process Time % 

1                         26,340                            26.31  3.529236868 

2                         26,340                            26.31  3.958415842 

3                         24,036                            24.01  5.005842259 

All                         76,716                            25.55  4.169402495 
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APPENDIX D: AVERAGE ROUTE UPDATE PROCESSING TIMES 

Trial Unsigned Update Average 

Time (s) 

Signed Update Average 

Time (s) 

1 0.000244 0.019270 

2 0.000193 0.018162 

3 0.000195 0.019295 

All 0.000211 0.018330 
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APPENDIX E: UNMODIFIED BGP UPDATE PACKET 

IPv6, Src: 2001:12:12:12::1, Dst: 2001:12:12:12::2 

    Version: 6 

    Traffic class: 0x00 (DSCP: CS0, ECN: Not-ECT) 

    Flowlabel: 0x0009783c 

    Payload length: 101 

    Next header: TCP (6) 

    Hop limit: 1 

    Source: 2001:12:12:12::1 

    Destination: 2001:12:12:12::2 

Transmission Control Protocol, Src Port: 24213 (24213), Dst 

Port: 179 (179), Seq: 1, Ack: 1, Len: 69 

Border Gateway Protocol - UPDATE Message 

    Marker: ffffffffffffffffffffffffffffffff 

    Length: 69 

    Type: UPDATE Message (2) 

    Withdrawn Routes Length: 0 

    Total Path Attribute Length: 46 

    Path attributes 

        Path Attribute - ORIGIN: IGP 

            Flags: 0x40 

            Type Code: ORIGIN (1) 

            Length: 1 

            Origin: IGP (0) 

        Path Attribute - AS_PATH: 1000  

            Flags: 0x40 

            Type Code: AS_PATH (2) 

            Length: 6 

            AS Path segment: 1000 

        Path Attribute - MP_REACH_NLRI 

            Flags: 0x80 

            Type Code: MP_REACH_NLRI (14) 

            Length: 30 

            Address family identifier (AFI): IPv6 (2) 

            SAFI: Unicast (1) 

            Next hop network address (16 bytes) 

            Number of Subnetwork points of attachment: 0 

            NLRI (9 bytes) 

                2001:30:30:fc17::/64  
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APPENDIX F: MODIFIED BGP UPDATE PACKET 

IPv6, Src: 2001:12:12:12::1, Dst: 2001:12:12:12::2 

    Version: 6 

    Traffic class: 0x00 (DSCP: CS0, ECN: Not-ECT) 

    Flowlabel: 0x0000007b 

    Payload length: 241 

    Next header: Authentication Header (51) 

    Hop limit: 10 

    Source: 2001:12:12:12::1 

    Destination: 2001:12:12:12::2 

    Authentication Header 

        Next header: TCP (0x06) 

        Length: 0x8c 

        AH SPI: 0x00000001 

        AH Sequence: 1 

        AH ICV:67c68635991af7400c2f8bf1280dbc12962ffc20b... 

Transmission Control Protocol, Src Port: 24213 (24213), Dst 

Port: 179 (179), Seq: 1, Ack: 1, Len: 69 

Border Gateway Protocol - UPDATE Message 

    Marker: ffffffffffffffffffffffffffffffff 

    Length: 69 

    Type: UPDATE Message (2) 

    Withdrawn Routes Length: 0 

    Total Path Attribute Length: 46 

    Path attributes 

        Path Attribute - ORIGIN: IGP 

            Flags: 0x40 

            Type Code: ORIGIN (1) 

            Length: 1 

            Origin: IGP (0) 

        Path Attribute - AS_PATH: 1000  

            Flags: 0x40 

            Type Code: AS_PATH (2) 

            Length: 6 

            AS Path segment: 1000 

        Path Attribute - MP_REACH_NLRI 

            Flags: 0x80 

            Type Code: MP_REACH_NLRI (14) 

            Length: 30 

            Address family identifier (AFI): IPv6 (2) 

            SAFI: Unicast (1) 

            Next hop network address (16 bytes) 

            Number of Subnetwork points of attachment: 0 

            NLRI information (9 bytes) 

                2001:30:30:fc17::/64 
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APPENDIX G: REPRESENTATION OF DNS QUERY AND RESPONSE 

DNS Query: 

Source: 2001:20:20:20::1  

Destination: 2001:20:20:20::2  

Protocol: DNS  

Length: 154  

Standard query 0xf271 TXT  

7.1.c.f.0.3.0.0.0.3.0.0.1.0.0.2 

Queries: 

Name: 7.1.c.f.0.3.0.0.0.3.0.0.1.0.0.2: type TXT, class IN 

 

DNS Response: 

Source: 2001:20:20:20::2  

Destination: 2001:20:20:20::1  

Protocol: DNS  

Length: 383  

Standard query response 0xf271 TXT 

7.1.c.f.0.3.0.0.0.3.0.0.1.0.0.2 TXT OPT 

Queries: 

Name: 7.1.c.f.0.3.0.0.0.3.0.0.1.0.0.2: type TXT, class IN 

Answers 

 TXT:MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCttCmLEmA3hH

/wsk/u29xPpRj+LlNFsEwg2P1IvNtVDcQaOhlPlqmUzXrztawANPXH

lMjIR+Uzzsbzh49Y4GZWw3dUMvE0KD76jz4RXQmtbh+nMNKKC3vDoD

fFI6gT5trHZdWqLW0qLg8zaZKsjZqO8FBp6Sb8iI9QqryptKdVXwID

AQAB 
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APPENDIX H: PROGRAMATIC PATCHES APPLIED TO OPENBGPD 

The accompanying online archive shows the programmatic changes applied to the 

OpenBGPD source code to gather timing statistics as well as the implementation of the 

attestation model.  These programmatic changes are displayed in the format of a diff-

patch, which examines the differences between the original OpenBGPD source code as 

compared to the changes necessary for compilation on pfSense and those required for this 

study.  Patches on the online archive are used to modify the bgpd process, the parent 

process of OpenBGPD. 

Files and Directories: 

• signed_bgpd/pfsense_patches 

• timed_bgpd/pfsense_patches 

Location of online repository: 

https://github.com/DSUmjham/Dissertation 
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APPENDIX I: DNS ROUND TRIP TRANSACTION TIMES 

Trial DNS Query Round Trip Time Avg. (s) 

1 0.000693 

2 0.000568 

3 0.000806 

All 0.000689 
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