9 research outputs found

    Mathematical aspects relative to the fluid statics of a self-gravitating perfect-gas isothermal sphere

    Full text link
    In the present paper we analyze and discuss some mathematical aspects of the fluid-static configurations of a self-gravitating perfect gas enclosed in a spherical solid shell. The mathematical model we consider is based on the well-known Lane-Emden equation, albeit under boundary conditions that differ from those usually assumed in the astrophysical literature. The existence of multiple solutions requires particular attention in devising appropriate numerical schemes apt to deal with and catch the solution multiplicity as efficiently and accurately as possible. In sequence, we describe some analytical properties of the model, the two algorithms used to obtain numerical solutions, and the numerical results for two selected cases.Comment: Revision accepted for publication in "Communications in Computational Physics"; 23 pages, 9 figure

    Bvps codes for solving optimal control problems

    Get PDF
    Optimal control problems arise in many applications and need suitable numerical methods to obtain a solution. The indirect methods are an interesting class of methods based on the Pontrya-gin’s minimum principle that generates Hamiltonian Boundary Value Problems (BVPs). In this paper, we review some general-purpose codes for the solution of BVPs and we show their efficiency in solving some challenging optimal control problems

    Application of exponential fitting techniques to numerical methods for solving differential equations

    Get PDF
    Ever since the work of Isaac Newton and Gottfried Leibniz in the late 17th century, differential equations (DEs) have been an important concept in many branches of science. Differential equations arise spontaneously in i.a. physics, engineering, chemistry, biology, economics and a lot of fields in between. From the motion of a pendulum, studied by high-school students, to the wave functions of a quantum system, studied by brave scientists: differential equations are common and unavoidable. It is therefore no surprise that a large number of mathematicians have studied, and still study these equations. The better the techniques for solving DEs, the faster the fields where they appear, can advance. Sadly, however, mathematicians have yet to find a technique (or a combination of techniques) that can solve all DEs analytically. Luckily, in the meanwhile, for a lot of applications, approximate solutions are also sufficient. The numerical methods studied in this work compute such approximations. Instead of providing the hypothetical scientist with an explicit, continuous recipe for the solution to their problem, these methods give them an approximation of the solution at a number of discrete points. Numerical methods of this type have been the topic of research since the days of Leonhard Euler, and still are. Nowadays, however, the computations are performed by digital processors, which are well-suited for these methods, even though many of the ideas predate the modern digital computer by almost a few centuries. The ever increasing power of even the smallest processor allows us to devise newer and more elaborate methods. In this work, we will look at a few well-known numerical methods for the solution of differential equations. These methods are combined with a technique called exponential fitting, which produces exponentially fitted methods: classical methods with modified coefficients. The original idea behind this technique is to improve the performance on problems with oscillatory solutions

    Differential Equation Models in Applied Mathematics

    Get PDF
    The present book contains the articles published in the Special Issue “Differential Equation Models in Applied Mathematics: Theoretical and Numerical Challenges” of the MDPI journal Mathematics. The Special Issue aimed to highlight old and new challenges in the formulation, solution, understanding, and interpretation of models of differential equations (DEs) in different real world applications. The technical topics covered in the seven articles published in this book include: asymptotic properties of high order nonlinear DEs, analysis of backward bifurcation, and stability analysis of fractional-order differential systems. Models oriented to real applications consider the chemotactic between cell species, the mechanism of on-off intermittency in food chain models, and the occurrence of hysteresis in marketing. Numerical aspects deal with the preservation of mass and positivity and the efficient solution of Boundary Value Problems (BVPs) for optimal control problems. I hope that this collection will be useful for those working in the area of modelling real-word applications through differential equations and those who care about an accurate numerical approximation of their solutions. The reading is also addressed to those willing to become familiar with differential equations which, due to their predictive abilities, represent the main mathematical tool for applying scenario analysis to our changing world

    Analysis of Hamiltonian boundary value problems and symplectic integration: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Manawatu, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesCopyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise in most scientific disciplines that make use of mathematical techniques. As exact solutions are in general not computable, numerical methods are used to obtain approximate solutions. In order to draw valid conclusions from numerical computations, it is crucial to understand which qualitative aspects numerical solutions have in common with the exact solution. Symplecticity is a subtle notion that is related to a rich family of geometric properties of Hamiltonian systems. While the effects of preserving symplecticity under discretisation on long-term behaviour of motions is classically well known, in this thesis (a) the role of symplecticity for the bifurcation behaviour of solutions to Hamiltonian boundary value problems is explained. In parameter dependent systems at a bifurcation point the solution set to a boundary value problem changes qualitatively. Bifurcation problems are systematically translated into the framework of classical catastrophe theory. It is proved that existing classification results in catastrophe theory apply to persistent bifurcations of Hamiltonian boundary value problems. Further results for symmetric settings are derived. (b) It is proved that to preserve generic bifurcations under discretisation it is necessary and sufficient to preserve the symplectic structure of the problem. (c) The catastrophe theory framework for Hamiltonian ODEs is extended to PDEs with variational structure. Recognition equations for AA-series singularities for functionals on Banach spaces are derived and used in a numerical example to locate high-codimensional bifurcations. (d) The potential of symplectic integration for infinite-dimensional Lie-Poisson systems (Burgers' equation, KdV, fluid equations,...) using Clebsch variables is analysed. It is shown that the advantages of symplectic integration can outweigh the disadvantages of integrating over a larger phase space introduced by a Clebsch representation. (e) Finally, the preservation of variational structure of symmetric solutions in multisymplectic PDEs by multisymplectic integrators on the example of (phase-rotating) travelling waves in the nonlinear wave equation is discussed

    Algorithm 927: the MATLAB code bvptwp.m for the numerical solution of two point boundary value problems

    No full text
    In this article we describe the code bvptwp.m, a MATLAB code for the solution of two point boundary value problems. This code is based on the well-known Fortran codes, twpbvp.f, twpbvpl.f and acdc.f, that employ a mesh selection strategy based on the estimation of the local error, and on revisions of these codes, called twpbvpc.f, twpbvplc.f and acdcc.f, that employ a mesh selection strategy based on the estimation of the local error and the estimation of two parameters which characterize the conditioning of the problem. The codes twpbvp.f/tpbvpc.f use a deferred correction scheme based on Mono-Implicit Runge-Kutta methods (MIRK); the other codes use a deferred correction scheme based on Lobatto formulas. The acdc.f/acdcc.f codes implement an automatic continuation strategy. The performance and features of the new solver are checked by performing some numerical tests to show that the new code is robust and able to solve very difficult singularly perturbed problems. The results obtained show that bvptwp.m is often able to solve problems requiring stringent accuracies and problems with very sharp changes in the solution. This code, coupled with the existing boundary value codes such as bvp4c.m, makes the MATLAB BVP section an extremely powerful one for a very wide range of problems
    corecore