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Editorial

Differential Equation Models in Applied Mathematics:
Theoretical and Numerical Challenges

Fasma Diele

Istituto per Applicazioni del Calcolo ‘M.Picone’, CNR, Via Amendola 122/D, 70126 Bari, Italy; fasma.diele@cnr.it

1. Motivations for the Special Issue

The articles published in the Special Issue “Differential Equation Models in Applied
Mathematics: Theoretical and Numerical Challenges” of the MDPI Mathematics journal are
here collected. The Special Issue intended to highlight old and new challenges in the formu-
lation, solution, understanding, and interpretation of models of differential equations (DEs)
in different real world applications. Indeed, models of differential equations can describe
complex mechanisms arising in a wide range of applications in many different sectors as
ecology, health, biology, economics, and finance. Differential modelling and difference
equations are tools to understand the dynamics, do forecasting and scenario analysis; in
addition, they allow for the detection of optimal solutions according to selected criteria.

The technical topics covered in the seven articles published in this book include:
asymptotic properties of high order nonlinear DEs [1,2], analysis of backward bifurca-
tion [3], stability analysis of fractional-order differential systems [4]. Models oriented to
real applications consider the chemotactic between cell species [5], the mechanism of on-off
intermittency in food chain models [6] and the occurrence of hysteresis in marketing [3].
Numerical aspects deal with the preservation of mass and positivity [5] and the efficient
solution of Boundary Value Problems (BVPs) for optimal control problems [7].

In the following, I summarize the main content of novelty of this book distinguishing
among contributes that concerns:

• Theoretical challenges of DEs [1,2,4];
• Numerical challenges of DEs [5,7];
• Real-word applications of DEs [3,6].

1.1. Theoretical Challenges of DEs

In articles [1,2] the focus is on high-order differential equations. In [1], new oscil-
lation theorems for fourth-order differential equations are established using the Riccati
and the integral averaging techniques. The article [2] investigates the inverse problem
for a non homogeneous, higher-order Sobolev type equation with assigned Cauchy and
overdetermined conditions. By using the theory of bounded polynomial operator pencils,
the problem is initially reduced into two regular and singular aggregates and then it is
restored using the method of successive approximations. A theorem on the solvability of
the original problem represents the main theoretical contribute of this paper to the literature
on this subject.

In the review article [4] systems of fractional-order DEs with Caputo derivative are
presented. Due to the dependence on the order of the fractional derivatives, the linear
stability analysis leads to properties fundamentally different from those of classical DEs:
unlike systems of integer order, coefficients of the systems are not sufficient to describe
stability properties of solutions. By reviewing the asymptotic analysis of the Mittag–Leffler
function and of its derivatives and by examining systems with some specific structures,
this paper intends to contribute to the research on the stability analysis of multi-order
higher dimensional systems that represents nowadays an important theoretical challenge
for fractional-order DEs.

Mathematics 2022, 10, 249. https://doi.org/10.3390/math10020249 https://www.mdpi.com/journal/mathematics
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1.2. Numerical Challenges of DEs

The transmission model for microfluidic chips presented in the featured paper [5]
involves doubly parabolic DEs in 2D spatial domains connected with either a doubly
parabolic or a hyperbolic-parabolic DEs in 1D domains. The important contribute of this
paper is the development of novel positive numerical conditions and numerical methods,
based on finite difference schemes, assuring the mass-preservation at the external bound-
aries and the interfaces between domains of different sizes. It has to be underlined that is
the first numerical work where this new technique of switching the size of the domains
and type of partial differential equations, i.e., parabolic vs. hyperbolic, is introduced in
the literature.

In paper [7], Hamiltonian boundary valued DEs deriving from the applications of
the indirect method, based on Pontryagin’s conditions, to optimal control problems are
considered. The main contribute of this paper is to show how to properly choose and
use codes on popular scientific platforms (Fortran, Matlab, R), for solving some specific
challenging optimal control problems. This paper gives important indications useful
to choose an initial mesh, to handle the input parameters or to use of a continuation
technique for nonlinear problems to achieve accurate solutions via a bvp (boundary value
problem) solver.

1.3. Real-Word Applications of DEs

In the featured paper [6], the power of DEs as leading mathematical tools for de-
scribing ecosystem dynamics is illustrated. In particular, some preliminary steps towards
a conceptual description of population outbursts grounded into an environment-driven
mechanism are described. The focus is on a three-species food chain represented by the
Hastings–Powell model: by stochastically perturbing the value of some parameters, the au-
thors show the emergence of on–off intermittency, i.e., an irregular alternation between
stable phases and sudden bursts in population size. The strength of this paper lies in
representing the first evidence of the possibility of on–off intermittent behavior in a food
chains model.

The original point of view adopted in the paper [3] illustrates the ability of DEs in
modelling and anlyzing dynamical scenarios in different real-word applications. Here the
expert approach of the author adopts the analogy between the key mechanism of contagion
for both the spread of an epidemic and for a referral marketing defined as viral because of it
involves a person-to-person transmission. The theoretical concept of backward bifurcation,
to avoid in the epidemic context, in the viral marketing could strengthen the campaign’s
chances of survival. However, the paper points out the possible introduction of a risk factor
in the bistability range where, according to the chosen initial conditions, hysteresis-type
behaviors can emerge.

2. Conclusions

I hope that this collection will be useful for those working in the area of modelling
real-word applications through differential equations and those who care about an accurate
numerical approximation of their solutions. The reading is also addressed to ones who
are willing to become familiar with differential equations which, due to their predictive
abilities, represent the main mathematical tool for making scenario analysis of our changing
world [8].
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Abstract: Systems of fractional-order differential equations present stability properties which differ
in a substantial way from those of systems of integer order. In this paper, a detailed analysis of the
stability of linear systems of fractional differential equations with Caputo derivative is proposed.
Starting from the well-known Matignon’s results on stability of single-order systems, for which a
different proof is provided together with a clarification of a limit case, the investigation is moved
towards multi-order systems as well. Due to the key role of the Mittag–Leffler function played in
representing the solution of linear systems of FDEs, a detailed analysis of the asymptotic behavior of
this function and of its derivatives is also proposed. Some numerical experiments are presented to
illustrate the main results.

Keywords: fractional differential equations; stability; linear systems; multi-order systems; Mittag–
Leffler function

1. Introduction

The investigation of stability properties plays a prominent role in the qualitative theory
of fractional-order systems, similarly as in the case of the classical theory of integer-order
dynamical systems [1,2]. The classical Hartman–Grobman linearisation theorem, which
states that the local behavior of a dynamical system in a neighborhood of a hyperbolic equi-
librium is qualitatively equivalent to the behavior of its linearisation near the equilibrium,
is extended to the case of fractional-order systems as well [3–5]. Consequently, linear stabil-
ity analysis is of fundamental importance in the investigation of fractional-order systems,
and, in particular, stability properties of linear autonomous systems of fractional-order
differential equations play a key role in this context.

For single-order systems of fractional differential equations (FDEs), namely systems in
which the FDEs have the same fractional order, the most important theoretical result, which
may now be considered classical, is Matignon’s stability theorem [6], recently generalized
in [7] for the case when the fractional order belongs to the interval (0, 2).

Thus far, the investigation of stability properties of multi-order (incommensurate)
fractional-order systems has unquestionably received less consideration. We refer to [8–11]
for the stability analysis of incommensurate fractional-order systems with rational orders.
Moreover, closely linked to this research topic, bounded input bounded output stability of
systems with irrational transfer functions has been investigated in [12,13]. Very recently,
the asymptotic properties of solutions of several classes of linear multi-order systems of
fractional differential equations (such as systems with block triangular coefficient matrices)
have been considered in [14].

The main difficulty in establishing necessary and sufficient conditions for the stability
of multi-order linear systems of fractional differential equations (conceivably comparable

Mathematics 2021, 9, 914. https://doi.org/10.3390/math9080914 https://www.mdpi.com/journal/mathematics
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to the classical Routh–Hurwitz conditions for integer-order systems) is due to the fact that
a large number of parameters are involved: the system’s coefficients, as well as multiple
fractional orders. Undoubtedly, the complexity of the problem is positively correlated with
the system’s dimension.

The case of two-dimensional multi-order fractional-order systems has been fully
investigated in [15–17]. On one hand, necessary and sufficient conditions for the asymptotic
stability and instability of the fractional-order system have been obtained, in terms of
the main diagonal elements and the determinant of the system’s matrix, as well as the
fractional orders of the Caputo derivatives. Moreover, necessary and sufficient fractional-
order independent conditions have also been presented, in terms of the main diagonal
elements and the determinant of the system’s matrix, which guarantee the asymptotic
stability or instability of the considered two-dimensional system, regardless of the choice
of the fractional-orders considered in the system. These latter results prove to be especially
useful in practical applications where the exact fractional orders of the Caputo derivatives
are not precisely known.

It is important to note that multi-term fractional-order differential equations [18]
and their qualitative properties are sharply linked to multi-order systems of fractional
differential equations. We refer to [11] for a thorough presentation of the relationship
between these two concepts. The investigation of stability properties of multi-term FDEs
is so far limited to two-term and three-term fractional-order differential and difference
equations, which have been recently studied in [19–22]. However, due to the increasing
complexity of the problem, equations with four or more fractional terms have not yet
been investigated.

This paper is organized as follows: Section 2 illustrates the statement of the problem
and the main definitions. Due to the importance in the description of the solution of linear
systems of FDEs, in Section 3, we provide a detailed description of the Mittag–Leffler func-
tion, of its derivatives and of the corresponding asymptotic behavior. Section 4 investigates
the stability properties of single-order systems of FDEs, by presenting classical Matignon’s
theorem and some simulations illustrating the different stability behavior in dependence
of the spectral properties of the matrix system. Stability analysis of multi-order systems is
discussed in Section 5; since general results are far from being formulated in this case, we
focus on some special cases and we separately investigate two-dimensional systems, higher
dimensional systems with block-triangular structure, and higher dimensional systems
with some special fractional orders. Some concluding remarks are hence provided in the
concluding Section 6.

2. Preliminaries

Consider an n-dimensional fractional-order system with Caputo derivatives:

CDqy(t) = f (t, y) (1)

with q = (q1, q2, ..., qn) ∈ (0, 1]n, assuming that f : [0, ∞) × Rn → Rn is a continuous
function on its domain of definition, Lipschitz-continuous with respect to the second
variable and y : [0, ∞) → Rn a vector-valued function. With CDqy(t), we denote the
application of the Caputo derivative of order 0 < qi ≤ 1 to each component yi(t) of
y(t), namely

CDqy(t) =

⎛⎜⎜⎜⎝
CDq1 y1(t)
CDq2 y2(t)

...
CDqn yn(t)

⎞⎟⎟⎟⎠, CDqi yi(t) :=
1

Γ(1 − qi)

∫ t

0
(t − τ)−qi y′i(τ)dτ.

Existence and uniqueness of the solution of initial value problems associated with
system (1) is ensured by Corollary 2.4 from [14].

6
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Whenever q1 = q2 = . . . = qn, system (1) is said to be single-order; otherwise, the
term multi-order will be used.

Let us further assume that y = 0 is an equilibrium solution of system (1), i.e.,

f (t, 0) = 0 for any t ≥ 0.

Definition 1. Let α > 0 and denote by ϕ(t, y0) the unique solution of (1) satisfying the initial
condition y(0) = y0 ∈ Rn. Then:

i. the trivial solution of (1) is called stable if for any ε > 0 there exists δ = δ(ε) > 0 such that,
for every y0 ∈ Rn satisfying ‖y0‖ < δ, we have ‖ϕ(t, y0)‖ ≤ ε for any t ≥ 0;

ii. the trivial solution of (1) is called asymptotically stable if it is stable and there exists ρ > 0
such that lim

t→∞
ϕ(t, y0) = 0 for ‖y0‖ < ρ;

iii. the trivial solution of (1) is called O(t−α)-asymptotically stable if it is stable and there exists
ρ > 0 such that, for any ‖y0‖ < ρ, we have:

‖ϕ(t, y0)‖ = O(t−α) as t → ∞.

Remark 1. In the particular case of linear systems of fractional-order differential equations with
constant coefficients, we say that the system is stable/asymptotically stable/unstable if and
only if its trivial solution is stable/asymptotically stable/unstable.

3. Mittag–Leffler Functions, Derivatives and Asymptotic Behavior

In the analysis of linear systems of FDEs, a crucial role is played by the Mittag–Leffler
(ML) function [23]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, z ∈ C, (2)

where Γ(x) =
∫ ∞

0 tx−1e−tdt is the Euler–Gamma function. Since Γ(k + 1) = k!, k ∈ N, this
function generalizes the exponential function when α = β = 1, namely E1,1(z) = ez. When
β = 1, the notation Eα(z) := Eα,1(z) is preferred.

For the purposes of this paper (the reasons will be clearer later on), it is convenient to
study and introduce a further generalization of the ML function.

3.1. The Prabhakar Function and Its Asymptotic Properties

For three real parameters α, β and γ, the three-parameter Mittag–Leffler (ML) function,
also known as the Prabhakar function [24], is defined by its series representation

Eγ
α,β(z) =

1
Γ(γ)

∞

∑
k=0

Γ(γ + k)zk

kj!Γ(αk + β)
, α > 0, z ∈ C.

This function is not only a generalization, to three parameters, of the two-parameter
ML function Eα,β(z) (indeed, when γ = 1, it is E1

α,β(z) = Eα,β(z)), but it also provides a
simple and elegant way to represent derivatives of two-parameter ML functions since

E(m)
α,β (z) :=

dm

dzm Eα,β(z) = m!Em+1
α,αm+β(z), m = 0, 1, 2, . . . , (3)

as one can easily check after a term-by-term differentiation of (2).
In order to introduce a result about the Laplace transform (LT), it is necessary to

introduce what is known as the Prabhakar kernel

eγ
α,β(t; λ) = tβ−1Eγ

α,β(t
αλ), t > 0, λ ∈ C,

7
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for which the following analytical representation of the LT is available:

Eγ
α,β(s; λ) := L

[
eγ

α,β(t; λ) ; s
]
=

sαγ−β

(sα − λ)γ
, �(s) > 0, |s| > |λ| 1

α .

Having in mind the stability analysis of linear FDEs, whose solutions will be expressed
in terms of Mittag–Leffler functions and their derivatives, it is of interest to recall some
results about the asymptotic behavior of the Prabhakar function in the complex plane.

In particular, for large arguments and 0 < α ≤ 1, we first identify exponential and
algebraic expansions, respectively given by

Fγ
α,β(z) =

1
Γ(γ)

ez1/α
z

γ−β
α

1
αγ

∞

∑
j=0

cjz−
j
α

Aγ
α,β(z) =

z−γ

Γ(γ)

∞

∑
j=0

(−1)jΓ(j + γ)

j!Γ(β − α(j + γ))
z−j,

and, thanks to the results obtained by Paris [25,26], we know that

Eγ
α,β(z) ∼

⎧⎪⎨⎪⎩
Fγ

α,β(z) +Aγ
α,β(ze∓πi) | arg z| < απ

2
Aγ

α,β(ze∓πi) +Fγ
α,β(z)

απ
2 < | arg z| < απ

Aγ
α,β(ze∓π i) απ < | arg z| ≤ π

, |z| → ∞

with the sign in e∓πi which must taken negative for z in the upper complex half-plane
and positive otherwise. Following the convention adopted in [27], in each sum, we have
first indicated the dominant term, namely the exponential term Fγ

α,β(z) when | arg z| < απ
2

and the algebraic term Aγ
α,β(ze∓πi) when απ

2 < | arg z| < απ. The lines | arg z| = απ and
| arg z| = απ

2 are, respectively, Stokes and anti-Stokes lines where asymptotic expansions
change their behavior. The above result is graphically summarized in Figure 1.

Figure 1. Asymptotic behavior of the Prabhakar function in the complex plane.

We first recall that coefficients cj in asymptotic expansion Fγ
α,β(z) are obtained [25]

from the inverse factorial expansion, for |s| → ∞ in | arg(s)| ≤ π − ε and any arbitrarily
small ε > 0, of

Fγ
α,β(s) :=

Γ(γ + s)Γ(αs + ψ)

Γ(s + 1)Γ(αs + β)
= α1−γ

(
1 +

∞

∑
j=1

cj

(αs + ψ)j

)
(4)

8
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with (x)j = Γ(x + j)/Γ(x) the Pochhammer symbol and ψ = 1 − γ + β. They can be
evaluated by means of a sophisticated algorithm introduced in in [25] and also explained
in [28]. The first few entries of ck are available in [26].

Based on the asymptotic properties of the Prabhakar function, we obtain the asymp-
totic equivalence:

eγ
α,β(t; λ) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

γ−β
α

Γ(γ)
tγ−1etλ1/α

if | arg(λ)| ≤ απ
2

e±γπi

λγΓ(β − αγ)
tβ−αγ−1 if | arg(λ)| > απ

2

(5)

as t → ∞, where the sign in the term e±γπi is positive if λ is in the upper complex half-plane,
and negative otherwise.

3.2. Asymptotic Behavior of Derivatives of the ML Function

Thanks to the relationship (3) between derivatives of the ML function and the Prab-
hakar function, the investigation of the asymptotic behavior of any m-th order derivative of
Eα,β(z) is hence possible by applying the corresponding results for the Prabhakar function
and afterwards replacing β with αm + β and γ with m + 1.

To this purpose, we first observe that, after these replacements, the function Fγ
α,β(s)

in (4) becomes Fm+1
α,αm+β(s) = (s + 1)m/(αs + ψ)m, with ψ = αm + β. Hence, coefficients cj

vanish for j = m + 1, m + 2, . . . and the exponential and algebraic expansions read

Fm+1
α,αm+β(z) =

1
m!

ez1/α
z

1−αm−β
α

1
αm+1

m

∑
j=0

cjz
m−j

α

Am+1
α,αm+β(z) =

1
m!

∞

∑
j=0

(−1)j(j + 1)m

Γ(β − α(j + 1))
z−j−m−1,

Therefore, by taking into account just the dominant expansions in each sector of the
complex plane delimited by Stokes and anti-Stokes lines, and just leading terms in each
expansion, we can describe the asymptotic behavior of derivatives of the ML function as

dm

dzm Eα,β(z) ∼

⎧⎪⎨⎪⎩
1

αm+1 ez1/α
z

m+1−αm−β
α | arg z| < απ

2

(−1)m+1 m!
Γ(β − 1)

z−m−1 απ < | arg z| ≤ π
, |z| → ∞

3.3. Behavior of Derivatives of the ML Function When | arg z| = απ
2

It remains to investigate the behavior along the anti-Stokes line | arg z| = απ
2 where

both the exponential and the algebraic terms are present. We therefore consider

z = ρe±
απ
2 i, ρ > 0

and, for large ρ = |z|, it is

dm

dzm Eα,β(z) ∼ e±iρ1/α 1
αm+1

m

∑
j=0

cjρ
1−αm−β+m−j

α e±(1−αm−β+m−j) π
2 i+

+
∞

∑
j=0

(−1)j(j + 1)m

Γ(β − α(j + 1))
1

ρm+1+j e−i(m+1+j)( α
2 −1)π .

Clearly, the second term asymptotically goes to zero when ρ → ∞. The first term,
instead, in modulus asymptotically tends to zero only for suitable values of α and β such

9
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that 1 − αm − β + m − j ≤ 0 for any j ∈ {0, 1, . . . , m}, namely, when 1 − αm − β + m ≤ 0
or, equivalently, when

m ≤ β − 1
1 − α

.

When we consider the one-parameter ML function Eα(z), namely β = 1, which is
the instance of the ML involved in the stability analysis of linear FDEs, for arg z = ± απ

2
just

∣∣Eα(z)
∣∣ asymptotically converges to 1/α for |z| → ∞ but any m-th order derivative of

Eα(z), with m ≥ 0, is unbounded when |z| → ∞.
This situation is illustrated in Figure 2, where we report the first derivatives of Eα(z)

for α = 0.6 and α = 0.8 evaluated for z along the anti-Stokes line arg z = απ
2 (results are

similar when arg z = − απ
2 ).

0 5 10 15 20 25 30 35 40
100

101

102

103

0 5 10 15 20 25 30 35 40
100

101

Figure 2. Modulus of Eα(z) and its first and second derivatives with arg z = απ
2 and α = 0.6 (left plot)

and α = 0.8 (right plot).

Remark 2. The behavior on the anti-Stokes line | arg z| = απ
2 of m-th order derivatives of the ML

function Eα(z), which are unbounded as |z| → ∞ for m ≥ 1, is quite different from that of the
exponential function ez (namely, the special instance of Eα(z) for α = 1). Indeed, derivatives of
the the exponential are never unbounded on the corresponding anti-Stokes lines | arg z| = π

2 since
there it is

∣∣dm/dzmez
∣∣ = 1 for any m = 0, 1, . . .

4. Stability of Linear Systems of Single-Order FDEs

We first consider the following linear system of Caputo-type fractional-order differen-
tial equations of the same fractional order:

CDqy(t) = Ay(t), (6)

where q ∈ (0, 1] and A ∈ Rn×n, coupled with the initial condition y(0) = y0 ∈ Rn.
In is important to emphasize that system (6) is equivalent to the following system of

weakly singular Volterra integral equations of convolution type (see, for example, [29,30]):

y(t) = y0 + A
∫ t

0

(t − τ)q−1

Γ(q)
y(τ)dτ. (7)

For the most important advances regarding the general theory of linear Volterra
integral equations, including the case when the convolution kernel is completely monotonic,
we refer to [31–34].

The characteristic equation associated with system (6) is

det(sq I − A) = 0, (8)

where, according to [35], the principal value (first branch) of the complex power function is
considered. Therefore, it is easy to see that s is a root of the characteristic Equation (8) if
and only if there exists an eigenvalue λ of the matrix A such that

sq = λ. (9)

10
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Hence, this leads to the following characterization of the stability properties of
system (6), in terms of the roots of its characteristic equation:

Proposition 1. The linear system (6) is asymptotically stable if and only if

σ(A) ⊂ Sq

where σ(A) denotes the spectrum of the matrix A and

Sq = {λ ∈ C : sq �= λ, ∀ �(s) ≥ 0}.

With the aim of investigating the stability properties of system (6) by characterizing the
stability region Sq, and presenting a concise proof of Matignon’s theorem [6], it is convenient
to use the Jordan normal form of the matrix A. Indeed, let us consider a nonsingular matrix
P ∈ Cn×n such that

A = PJP−1, J =

⎛⎜⎜⎜⎝
J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jp

⎞⎟⎟⎟⎠
where Jk, k = 1, . . . , p are Jordan blocks

Jk =

⎛⎜⎜⎜⎜⎜⎝
λk 1 0 . . . 0 0
0 λk 1 . . . 0 0
...

. . . . . . . . . . . .
...

0 0 0 . . . λk 1
0 0 0 . . . 0 λk

⎞⎟⎟⎟⎟⎟⎠
and λk are eigenvalues of the matrix A. The size of the largest Jordan block Jk of A
associated with the eigenvalue λk is called the index of λk [36]. On the other hand, the total
number of Jordan blocks associated with a given eigenvalue λk in the Jordan normal form
of the matrix A is the geometric multiplicity of the eigenvalue λk. Moreover, the sum of the
sizes of all Jordan blocks corresponding to λk is the algebraic multiplicity of λk. Therefore,
the index of an eigenvalue λk is equal to 1 if and only if its algebraic and geometric
multiplicities are equal.

With these observations, we next give a slightly modified version of the classical result
of Matignon, to fix a small imprecision in the second statement, related to the use of the
geometric multiplicity instead of the index of an eigenvalue:

Theorem 1 (Matignon, 1996 [6]). The linear system (6) is

i. O(t−q)-asymptotically stable if and only if

σ(A) ⊂ Sq =
{

λ ∈ C : | arg(λ)| > qπ

2

}
.

ii. stable if and only if σ(A) ⊂ Sq and the eigenvalues of A which satisfy | arg(λ)| = qπ

2
have

index 1.

Proof. With the notations introduced previously, denoting z(t) = Py(t), it is easy to verify
that system (6) is equivalent to

CDqz(t) = Jz(t). (10)

Applying the LT to the linear system (10) leads to the following formula for the LT of
the vector function z(t):

Z(s) = sq−1(sq I − J)−1z(0) (11)

11
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Since the Jordan normal form J is a block diagonal matrix, the matrix (sq I − J)−1 is
also block diagonal, and its blocks are upper triangular matrices of the form:

(sq I − Jk)
−1 =

⎛⎜⎜⎜⎝
(sq − λk)

−1 (sq − λk)
−2 . . . (sq − λk)

−dk

0 (sq − λk)
−1 . . . (sq − λk)

−(dk−1)

...
...

. . .
...

0 0 . . . (sq − λk)
−1

⎞⎟⎟⎟⎠
where dk represents the dimension of the k-th Jordan block Jk.

Correspondingly, the Laplace transform Z(s) is made up of “blocks” (of size dk) of
the form

Zk(s) = sq−1(sq I − Jk)
−1zk(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk
∑

j=1

sq−1

(sq − λk)
j zk,j(0)

dk
∑

j=2

sq−1

(sq − λk)
j−1 zk,j(0)

...
sq−1

sq − λk
zk,dk

(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k = 1, p.

Applying the inverse LT, and taking into account that

L−1
[

sq−1

(sq − λk)m ; t
]
= t(m−1)qEm

q,(m−1)q+1(t
qλk) = em

q,(m−1)q+1(t; λk) , m ∈ N∗

we obtain:

zk(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk
∑

j=1
ej

q,(j−1)q+1(t; λk)zk,j(0)

dk
∑

j=2
ej−1

q,(j−2)q+1(t; λk)zk,j(0)

...
e1

q,1(t; λk)zk,dk
(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k = 1, p.

Based on (5), we obtain the following asymptotic equivalence:

em
q,(m−1)q+1(t; λ) = t(m−1)qEm

q,(m−1)q+1(t
qλ) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ
(m−1)( 1

q −1)

(m − 1)!qm tm−1eλ1/qt if | arg(λ)| ≤ qπ
2

(−1)m

λmΓ(1 − q)
t−q if | arg(λ)| > qπ

2

as t → ∞, where m ∈ N∗.
Therefore, the following conclusions can be drawn:

• em
q,(m−1)q+1(t; λ) converges to 0 as t → ∞, if and only if | arg(λ)| > qπ

2 ; moreover,

in this case, em
q,(m−1)q+1(t; λ) = O(t−q) as t → ∞;

• if | arg(λ)| < qπ
2 , the function em

q,(m−1)q+1(t; λ) is unbounded;

• if | arg(λ)| = qπ
2 , the function em

q,(m−1)q+1(t; λ) is bounded if and only if m = 1.

With the above observations, the conclusions of Matignon’s theorem readily follow.
We emphasize that, for the case of statement ii., if there exists an eigenvalue of A which
satisfies | arg(λ)| = qπ

2 , the solutions of (6) are bounded if and only if the size of the largest
Jordan block associated with this critical eigenvalue is equal to 1, i.e., the index of the
eigenvalue is 1.

12
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Remark 3. The above proof slightly differs from the one in [6]. Matignon’s proof, indeed, makes
use of derivatives of the ML function instead of the Prabhakar kernel eγ

α,β(t; λ) as in the proof
of Theorem 1. A link between the two proofs can be, however, easily established in view of the
relationship (3) between derivatives of the ML function and the Prabhakar function.

Remark 4. Matignon’s theorem implies that, if 0 < q1 < q2 ≤ 1 and system (6) is asymptotically
stable for q = q2, then it will be asymptotically stable for q = q1 as well. In particular, if the classical
integer-order system ẏ = Ay is asymptotically stable (i.e., all eigenvalues of A have negative real
part), it follows that the fractional-order system (6) is asymptotically stable, for any fractional-order
q ∈ (0, 1).

Example 1. To present numerical evidences of the above results, we consider here the linear systems
of FDEs (6), with fractional order q = 2/3 and the coefficient matrix A chosen from one of the
following four matrices:

A1 =

⎛⎜⎜⎝
1 −√

3 1
4 0√

3 1 0 1
4

0 0 1 −√
3

0 0
√

3 1

⎞⎟⎟⎠, A2 =

⎛⎜⎜⎝
1 −√

3 0 0√
3 1 0 0

0 0 1 −√
3

0 0
√

3 1

⎞⎟⎟⎠

A3 =

⎛⎜⎜⎝
1 − ε −√

3 1
4 0√

3 1 − ε 0 1
4

0 0 1 − ε −√
3

0 0
√

3 1 − ε

⎞⎟⎟⎠, A4 =

⎛⎜⎜⎝
1 + ε −√

3 0 0√
3 1 + ε 0 0

0 0 1 + ε −√
3

0 0
√

3 1 + ε

⎞⎟⎟⎠.

The solution y(t) = Eq(tq A)y0 evaluates by direct computation the matrix ML function

thanks to the algorithm described in [37], after using the initial condition y0 =
(
1,−4,−2, 4

)T.
The value ε = 0.1 is used in A3 and A4.

The asymptotic behavior of the solution y(t) depends on the spectral properties of the matrix.
In particular, we observe that:

A1 has two eigenvalues λ1/2 = e±q π
2 i laying on the border of the stability sector Sq and both

having index 2; according to Theorem 1, the system produces unbounded solutions as clearly
shown in the left plot of Figure 3;

A2 has the same two eigenvalues λ1/2 = e±q π
2 i of A1, laying on the border of the stability

sector Sq, but their index is now 1; the expected bounded solutions are shown in the right plot of
Figure 3;

A3 has two eigenvalues λ1/2 with index 2, as A1, but now they lay inside the stability sector
Sq; the asymptotically stable solutions are illustrated in the left plot of Figure 4;

A4 has two eigenvalues λ1/2 with index 1, as A2, but lying outside the stability sector Sq; the
resulting unbounded solutions are illustrated in the right plot of Figure 4.

t

y1(t)
y2(t)
y3(t)
y4(t)

t

y1(t)

y2(t)

y3(t)

y4(t)

Figure 3. Solutions of the linear system CDq
0 = Ay(t), with q = 2/3, for A = A1 (left plot) and

A = A2 (right plot).
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t

y1(t)
y2(t)
y3(t)
y4(t)

t

y1(t)
y2(t)
y3(t)
y4(t)

Figure 4. Solutions of the linear system CDq
0 = Ay(t), with q = 2/3, for A = A3 (left plot) and

A = A4 (right plot).

5. Stability of Linear Multi-Order Systems of FDEs

Extending Matignon’s theorem to the case of systems of FDEs with multiple fractional
orders raises several technical difficulties, and, consequently, with the current state of the
art, we are unable to present an exhaustive theory regarding this matter.

One of the technical difficulties that should be mentioned in this context is the fact
that, for a general multi-order system of the form

CDqy(t) = Ay(t), (12)

where A ∈ Rn×n, q = (q1, q2, . . . , qn) ∈ (0, 1]n (such that not all qi are equal), considering
the Jordan normal form J of the matrix A and a nonsingular matrix P ∈ Cn×n such that
A = PJP−1 (similarly as in the previous section), the transformation z(t) = Py(t) does not
lead to an equivalent system of the form

CDqz(t) = Jz(t).

Therefore, different theoretical approaches should be used to tackle linear multi-order
systems of FDEs.

Using another approach, namely the Laplace transform method, we first obtain the
following system:

sqi Yi(s)− sqi−1yi(0) =
n

∑
j=1

aijYj(s), i = 1, n, (13)

where Yi(s) is the Laplace transform of the i-th component yi(t) of the solution y(t).
System (13) is equivalent to the following system:

Δ(s) ·

⎛⎜⎜⎜⎝
Y1(s)
Y2(s)

...
Yn(s)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1(s)
b2(s)

...
bn(s)

⎞⎟⎟⎟⎠,

where bi(s) = sqi−1yi(0), for any i = 1, n and

Δ(s) = diag(sq1 , sq2 , . . . , sqn)− A.

Using standard properties of the Laplace transform [8,14,35], the following result holds:

Theorem 2. The multi-order system (12) is asymptotically stable if all the roots of the characteris-
tic equation

det Δ(s) = 0 (14)

have negative real parts.

14
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It is important to point out that, for large-scale systems with many different fractional
orders for the Caputo derivatives, the analysis of the roots of the characteristic Equation (14)
is a very difficult and complex task.

Nevertheless, the case of two-dimensional linear multi-order systems has been fully
analyzed in [17], and a summary of the main results will be presented in the next section.

5.1. Stability of Two-Dimensional Systems of FDEs with Different Fractional Orders

In the general case of a two-dimensional linear system of fractional-order differen-
tial equations: { CDq1 y1(t) = a11y1(t) + a12y2(t)

CDq2 y2(t) = a21y1(t) + a22y2(t)
(15)

where A = (aij) ∈ R2×2 and q1, q2 ∈ (0, 1], applying the LT leads to the following
characteristic equation:

det(diag(sq1 , sq2)− A) = 0.

which can be written as

sq1+q2 − a11sq2 − a22sq1 + det(A) = 0, (16)

where sq1 and sq2 represent the principal values (first branches) of the corresponding
complex power functions [35].

Employing asymptotic properties and the Final Value Theorem of the LT [12,35],
the following result [16] holds:

Proposition 2.

1. System (15) is O(t−q)-globally asymptotically stable (where q = min{q1, q2}) if and only if
all the roots (if any) of the characteristic Equation (16) are in the open left half-plane.

2. If det(A) �= 0 and the characteristic Equation (16) has a root in the open right half-plane,
system (15) is unstable.

In general, computing the roots of the characteristic Equation (16) is not a straightfor-
ward task. Thus, departing from Proposition 2, we seek to obtain necessary and sufficient
conditions involving the coefficients a11 and a22 of the main diagonal of the matrix A as
well as the determinant det(A), which guarantee the stability or instability of system (15).

We first concentrate our attention on fractional-order-dependent stability and instability
conditions, as described below. The proof of the following results is rather elaborate,
involving the root locus method, and has been presented in detail in [17]. Note that only
the case det(A) > 0 is discussed here, as det(A) < 0 implies that system (15) is unstable,
for any fractional orders (q1, q2) ∈ (0, 1]2 (in fact, it is trivial to show that, if det(A) < 0,
the characteristic Equation (16) has at least one positive real root).

Lemma 1. Let δ > 0, q1, q2 ∈ (0, 1] and consider the smooth parametric curve in the (a11, a22)-
plane defined by

Γ(δ, q1, q2) :

⎧⎨⎩a11 = δ
q1

q1+q2 h(ω, q1, q2)

a22 = δ
q2

q1+q2 h(−ω, q1, q2)
, ω ∈ R,

where:

h(ω, q1, q2) =

{
ρ2(q1, q2)eq1ω − ρ1(q1, q2)e−q2ω, if q1 �= q2

cos qπ
2 − ω, if q1 = q2 := q

with the functions ρ1(q1, q2) and ρ2(q1, q2) defined for q1 �= q2 as
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ρk(q1, q2) =
sin qkπ

2

sin (q2−q1)π
2

, for k = 1, 2.

The following statements hold:

i. The curve Γ(δ, q1, q2) is the graph of a smooth, decreasing, concave bijective function φδ,q1,q2 :
R → R in the (a11, a22)-plane.

ii. The curve Γ(δ, q1, q2) lies outside the third quadrant of the (a11, a22)-plane.

Theorem 3 (Fractional-order-dependent stability and instability results).
Let det(A) = δ > 0 and q1, q2 ∈ (0, 1] arbitrarily fixed. Consider the curve Γ(δ, q1, q2) and

the function φδ,q1,q2 : R → R given by Lemma 1.

i. The characteristic Equation (16) has a pair of pure imaginary roots if and only if (a11, a22) ∈
Γ(δ, q1, q2).

ii. System (15) is O(t−q)-asymptotically stable (with q = min{q1, q2}) if and only if

a22 < φδ,q1,q2(a11).

iii. If a22 > φδ,q1,q2(a11), system (15) is unstable.

Theorem 3 provides a relatively simple algebraic criterion (in the form of inequalities
comprising the elements of the main diagonal of the system’s matrix A as well as its
determinant and the fractional orders) that enables us to immediately decide the question
of asymptotic stability or instability for a given two-dimensional multi-order system of
fractional differential equations. In fact, Theorem 3 may be seen as a generalization of the
Routh–Hurwitz stability criterion.

Remark 5. If q1 = q2 := q, the curve Γ(δ, q1, q2) reduces to the straight line:

a11 + a22 = 2
√

δ cos
qπ

2
.

Therefore, Theorem 3 provides that, for equal fractional orders, system (15) is asymptotically
stable if and only if

Tr(A) < 2
√

det(A) cos
qπ

2
. (17)

The eigenvalues of the system’s matrix A are

λ1,2 =
Tr(A)±√

Tr(A)2 − 4 det(A)

2

and, hence, inequality (17) is equivalent to | arg λ1,2| > qπ
2 . Consequently, for two-dimensional

systems, the conclusion of Matignon’s theorem is recovered as a particular case of Theorem 3.

Remark 6. The asymptotic stability of the two-dimensional integer order system ẏ = Ay does not
directly imply the asymptotic stability of system (15) for any fractional orders (q1, q2) ∈ (0, 1]2.
We can only state, based on Remark 4, that, if the integer order system ẏ = Ay is asymptotically
stable, then so is system (15) with equal fractional orders q1 = q2.

Example 2. Let us consider the system{ CDq1 y1(t) = a11y1(t) + a12y2(t)
CDq2 y2(t) = a21y1(t) + a22y2(t)

with A = (aij) =

(−2 0.5
−5 1

)
(18)

where q1, q2 ∈ (0, 1]. As Tr(A) = −1 < 0 and det(A) = 0.5 > 0, the Routh–Hurwith stability
test guarantees that, for q1 = q2 = 1, system (18) is asymptotically stable (see left plot in Figure 5);
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the eigenvalues of the matrix A are λ1,2 = − 1
2 (1 ± i). Therefore, for equal fractional orders

q1 = q2 ∈ (0, 1), system (18) is also asymptotically stable (see left plot in Figure 5); this can also
be verified by inequality (17).

t

y1(t)
y2(t)

t

y1(t)
y2(t)

Figure 5. Asymptotically stable solutions of system (18) when q = (0.8, 0.8) (left plot) and unstable
solutions when q = (0.2, 1) (right plot).

However, for q1 = 0.2 and q2 = 1, system (18) is unstable (see right plot in Figure 5). Indeed,
applying Theorem 3, system (18) with (q1, q2) = (0.2, 1) is unstable if

a22 > φδ,q1,q2(a11),

where a11 = −2, a22 = 1, δ = det(A) = 0.5 and, based on the notations from Lemma 1:

φδ,q1,q2(a11) = δ
q2

q1+q2 h(−ω∗, q1, q2)

where ω∗ is the unique root of the equation

a11 = δ
q1

q1+q2 h(ω∗, q1, q2).

Numerically solving this algebraic equation, we compute ω∗ = −2.19664 and, therefore,
we also obtain φδ,q1,q2(a11) = 0.895383. As a22 = 1, it follows that the instability condition
a22 > φδ,q1,q2(a11) is satisfied (see left plot of Figure 6).

Furthermore, it is important to emphasize that Theorem 3 can also be applied when at least one
of the fractional orders is irrational. For example, choosing q1 = 1

π and q2 = 1, in a similar way
as before, we compute φδ,q1,q2(a11) = 1.10307, and hence a22 < φδ,q1,q2(a11), which means that
system (18) with q1 = 1

π and q2 = 1 is asymptotically stable (see right plot of Figure 6).

-4 -2 0 2 4

-4

-2

0

2

4

a11

a
22

-4 -2 0 2 4

-4

-2

0

2

4

a11

a
22

Figure 6. Position of the point (a11, a22) = (−2, 1) (plotted in red) with respect to curve Γ(δ, q1, q2)

(shown in green) in the particular case (q1, q2) = (0.2, 1) (left plot) and (q1, q2) =
(

1
π , 1

)
(right plot)

from Example 2.
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Figure 7 showes region of fractional orders (q1, q2) for which system (18) is globally asymptot-
ically stable.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q1

q
2

Figure 7. Region of fractional orders (q1, q2) for which system (18) is globally asymptotically stable.

The next step is to seek necessary and sufficient conditions which ensure the asymp-
totic stability or instability of system (15) for any choice of the fractional orders. A complete
investigation of the family of curves Γ(δ, q1, q2) leads to the following fractional-order inde-
pendent stability and instability results [17]:

Theorem 4 (Fractional-order independent instability results).

i. If det(A) < 0, system (15) is unstable, regardless of the fractional orders q1 and q2.
ii. If det(A) > 0, system (15) is unstable regardless of the fractional orders q1 and q2 if and only

if one of the following conditions holds:{
a11 + a22 ≥ det(A) + 1 or
a11 > 0, a22 > 0, a11a22 ≥ det(A).

Theorem 5 (Fractional-order-independent stability results). System (15) is asymptotically
stable, regardless of the fractional orders q1, q2 ∈ (0, 1] if and only if the following inequalities
are satisfied:

a11 + a22 < 0 < det(A) and max{a11, a22} < min{1, det(A)}.

The previous theorems provide easily verifiable necessary and sufficient conditions
which ensure the asymptotic stability or instability of the two-dimensional system (15),
for any choice of the fractional orders q1, q2 ∈ (0, 1]. These conditions are expressed
as simple inequalities involving the main diagonal elements a11 and a22 as well as the
determinant det(A) of the system’s matrix. On one hand, if det(A) < 0, Theorem 4
provides that system (15) is unstable, for any choice of the fractional orders q1, q2 ∈ (0, 1].
Hence, we will focus our attention on the case δ = det(A) > 0. Let us denote by Rs and by
Ru the fractional-order independent stability and instability regions given by Theorems 4 and 5:

Ru={(a11, a22, δ) ∈ R2 × (0, ∞) : a11 + a22 ≥ δ + 1 or a11 > 0, a22 > 0, a11a22 ≥ δ}
Rs={(a11, a22, δ) ∈ R2 × (0, ∞) : a11 + a22 < 0 and max{a11, a22} < min{1, δ}}

The regions Ru and Rs are plotted in Figure 8. The intersections of these regions
with the δ = det(A) = 6 plane are shown in Figure 9. Moreover, it can be verified [17]
that the union of all the curves Γ(δ, q1, q2) (for δ > 0 and q1, q2 ∈ (0, 1]) represents the
complementary of Rs ∪ Ru (see Figure 9).
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Figure 8. The fractional-order-independent stability (red) and instability (blue) regions Rs and Ru

provided by Theorems 4 and 5 for system (15).
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Figure 9. Curves Γ(δ, q1, q2) given by Lemma 1, for det(A) = δ = 6 and qi ∈
{

k
40 , k = 1, 40

}
, i = 1, 2

(1600 curves), color-coded from red to violet according to increasing values of q1q2. The red/blue
shaded regions represent the intersections of the fractional-order independent stability and instability
regions (see Figure 8) with the det(A) = 6 plane.

Remark 7. The classical Routh–Hurwitz stability test for two-dimensional systems of the form
ẏ = Ay provide that the system is asymptotically stable if and only if Tr(A) < 0 and det(A) > 0.
However, based on Theorem 5, the additional inequality max{a11, a22} < min{1, det(A)} has to
be verified in order to ensure the asymptotic stability of the fractional-order system (15), regardless
of the choice of fractional orders q1 and q2.

Example 3. It is easy to see that, if system (18) is considered, as a11 = −2, a22 = 1 and
det(A) = 0.5, even though the Routh–Hurwitz conditions Tr(A) < 0 and det(A) > 0 are fulfilled,
the additional additional inequality max{a11, a22} < min{1, det(A)} does not hold, and hence

19



Mathematics 2021, 9, 914

system (18) is not asymptotically stable for any choice of the fractional orders q1, q2 ∈ (0, 1]. Indeed,
as we have seen in Example 2, for q1 = 0.2 and q2 = 1, system (18) is unstable.

In conclusion, based on the previously described results, the following steps should
be undertaken for the stability analysis of a two-dimensional system of FDEs:

1. if det(A) < 0, then the system is unstable, for any choice of the fractional orders
q1, q2 ∈ (0, 1], based on Theorem 4;

2. if (a11, a22, det(A)) ∈ Ru, then the system is unstable, for any choice of the fractional
orders q1, q2 ∈ (0, 1], based on Theorem 4;

3. if (a11, a22, det(A)) ∈ Rs, then the system is asymptotically stable, for any choice of
the fractional orders q1, q2 ∈ (0, 1], based on Theorem 5;

4. if (a11, a22, det(A)) /∈ Rs ∪ Ru, then the stability properties of the system depend on
choice of the fractional orders q1, q2 ∈ (0, 1] and Theorem 3 should be applied.

The results described in this section, particularly Theorems 3–5, give a comprehensive
method to assess stability properties of two-dimensional fractional-order systems. How-
ever, the generalization of these results to higher dimensional fractional-order systems still
remains an open question.

5.2. Stability of Higher Dimensional Systems of FDEs with Specific Structures

Consider that the matrix A of the linear system (12) has a block-triangular structure:

A =

⎛⎜⎜⎜⎝
A11 A12 . . . A1p

A22 . . . A2p
. . .

...
App

⎞⎟⎟⎟⎠
where Aii ∈ Rdi×di , for i = 1, m and Aii ∈ R2×2 for i = m + 1, p, such that

m

∑
i=1

di + 2(p − m) = n.

We also assume that

q = (q1, q1, . . . , q1︸ ︷︷ ︸
d1 times

, . . . , qm, qm, . . . , qm︸ ︷︷ ︸
dm times

, q1
m+1, q2

m+1, . . . q1
p, q2

p) ∈ (0, 1]n.

In this case, the characteristic equation associated with system (12) is

m

∏
i=1

det(sqi I − Aii) ·
p

∏
i=m+1

det(diag(sq2
i , sq2

i )− Aii) = 0 (19)

Therefore, combining Matignon’s theorem (Theorem 1) and Theorem 3, the following
statements are obtained:

• system (12) is asymptotically stable if and only if

– σ(Aii) ⊂ Sqi =
{

λ ∈ C : | arg(λ)| > qiπ
2
}

for any i = 1, m and
– A22

ii < φδi ,q1
i ,q2

i
(A11

ii ), for any i = m + 1, p, where A11
ii and A22

ii are the main
diagonal elements of matrix Aii, δi = det(Aii) and φ is defined in Lemma 1.

• system (12) is unstable if at least one of the following holds:

– there exists i ∈ {1, 2, . . . m} such that the matrix Aii has at least one eigenvalue λ

such that | arg(λ)| < qiπ
2 or
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– there exists i ∈ {m + 1, . . . , p} such that A22
ii > φδi ,q1

i ,q2
i
(A11

ii ), where A11
ii and A22

ii
are the main diagonal elements of matrix Aii, δi = det(Aii) and φ is defined in
Lemma 1.

5.3. Stability of Higher Dimensional Systems of FDEs with Special Fractional Orders

Let us consider the following n-dimensional linear multi-order system of fractional
differential equations:

CDqi yi(t) =
n

∑
j=1

aijyj(t), i = 1, n, (20)

where qi ∈ (0, 1], aij ∈ R and n ≥ 3.
If the coefficient matrix of the system is not of a triangular or block triangular form as

considered in the previous section, one can not provide a comprehensive stability theory.
Still, an approach that works under certain restrictions on the fractional orders of the
Caputo derivatives has been developed in [14]. We will next recall the general results
obtained by the mentioned authors.

Suppose qj ∈ (0, 1], for any j = 1, n and that there exists q∗ ∈ (0, 1] and ρj ∈ Q such
that qj = ρjq∗. It follows that there exists rj, sj ∈ N for j = 1, n such that gcd(rj, sj) = 1 and

ρj =
rj

sj
. Let s be the least common multiple of the denominators sj. Then, for any j, there

exists αj ∈ N such that

qj =
q∗αj

s

(
αj =

srj

sj

)
.

We can rewrite the j-th equation of system (20) as an equivalent system of αj differential

equations having the order
q∗

s
. It follows that system (20) can be expressed as a system of

n∗ =
n
∑

j=1
αj equations of order

q∗

s
:

CDq∗/sy∗(t) = A∗y∗(t), (21)

where A∗ has the following block structure

A∗ =

⎛⎜⎜⎜⎝
A11 A12 . . . A1n
A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

⎞⎟⎟⎟⎠
with Ajk ∈ Rαj×αk ,

Ajj =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . 0 1
ajj 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠, j = 1, n

and

Ajk =

⎛⎜⎜⎜⎝
0 0 . . . 0
...

...
. . . 0

0 0 . . . 0
ajk 0 . . . 0

⎞⎟⎟⎟⎠, j, k = 1, n, j �= k.

Even though the dimension n∗ of the system may be significantly higher than the
dimension n of the original system (20), resulting in higher computational costs, all the
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equations of the new system (21) now have the same fractional order, giving an advantage
in studying the stability properties of the solutions of the system.

We expose the main result of this section, based on [14], which gives us stability
criteria involving the components of the matrix A∗.

Theorem 6. Suppose that qj ∈ (0, 1] for any j and there exists q∗ ∈ (0, 1] and ρj ∈ Q such
that qj = ρjq∗, for all j. Then, all the solutions of system (20) converge to zero at infinity if the
eigenvalues λ∗

j of the associated system’s coefficient matrix A∗ satisfy

|arg λ∗
j | >

πq∗

2s
, ∀j = 1, n,

with s being the least common multiple of the denominators of ρj.

Example 4. Again, we reconsider system (18) with q1 = 0.2 and q2 = 1. In this case, the matrix
A∗ given by the above procedure is

A∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a21 a22 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

−2 0.5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−5 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and the system (18) is equivalent to a system of six fractional-order differential equations with the
same order q = q1 = 0.2. The matrix A∗ has a pair of complex conjugated eigenvalues (λ, λ),
λ = 0.543842 + i 0.133131 such that | arg(λ)| = 0.240076 < 0.1π = qπ

2 . Hence, based on
Matignon’s theorem, system (18) is unstable for q1 = 0.2 and q2 = 1. Therefore, this is in good
agreement with the results obtained in Example 2, based on Theorem 3.

However, it is important to note that cases q1 = 1
π and q2 = 1 cannot be investigated using

the technique provided by Theorem 6.

6. Conclusions

An extensive analysis of stability properties of linear systems of FDEs has been
provided. This analysis is of importance to describe the asymptotic behavior of physical
systems when modeled by means of FDEs. Both single-order and multi-order systems have
been studied, reviewing the most important theoretical results that have been obtained so
far in the literature. The role of the Mittag–Leffler function, and of its derivatives, has been
highlighted and a presentation of their asymptotic behavior has been proposed. We have
seen that, unlike systems of integer order, coefficients of the systems are not sufficient to
describe stability properties of solutions, due to the tight dependence on the order of the
fractional derivatives. This dependence becomes more and more difficult to investigate in
systems incorporating derivatives of different order, as we have observed from the analysis
of two-dimensional systems. Stability analysis of multi-order higher dimensional systems
is still an open problem which deserves to be investigated with more attention; with this
work, a first contribution has been provided by examining systems with some specific
structures, and we hope these results will stimulate the analysis of more general systems.
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Abstract: In this study we show that concept of backward bifurcation, borrowed from epidemics,
can be fruitfully exploited to shed light on the mechanism underlying the occurrence of hysteresis
in marketing and for the strategic planning of adequate tools for its control. We enrich the model
introduced in (Gaurav et al., 2019) with the mechanism of self-information that accounts for informa-
tion about the product performance basing on consumers’ experience on the recent past. We obtain
conditions for which the model exhibits a forward or a backward phenomenology and evaluate the
impact of self-information on both these scenarios. Our analysis suggests that, even if hysteretic
dynamics in referral campaigns is intimately linked to the mechanism of referrals, an adequate level
of self-information and a fairly high level of customer-satisfaction can act as strategic tools to manage
hysteresis and allow the campaign to spread in more controllable conditions.

Keywords: epidemic models; backward bifurcation; hysteresis; referral marketing; self-information

1. Introduction and Motivations

In the last century, mathematical models based on differential equations have been
fruitfully applied to describe phenomena belonging to even extremely different disciplinary
fields. As well known in literature [1], mathematical models can act essentially in two direc-
tions: those based on more sophisticated mathematical tools can give a great contribution
in terms of quantitative predictions but simpler qualitative models can be precious to shed
light on the constitutive mechanisms, highlighting their role and reciprocal interactions.

Precisely because they go to the heart of the phenomena, simple mechanistic qualita-
tive models are capable to create bridges between apparently very distant worlds, making
sure that models and methodologies used in a certain context could be exploited to open the
way to the understanding of phenomena that are similar in their underlying mechanisms.
On this line, it is not surprising that the simple mechanistic model found by Volterra [2] to
describe the interaction between preys and predators in the Italian Adriatic Sea displays
the same mathematical structure as the one introduced in those same years by Lotka [3] in
the context of the chemical kinetics. And, again, it is not surprising at all that a discipline
such as marketing has been able to benefit from the models and the modus operandi
of mathematical epidemiology. In this case, the unifying factor is the idea of contagion,
a key mechanism for those forms of marketing defined as viral. The viral name refers
in particular to all those marketer-initiated consumer activities that spreads a marketing
message unaltered across a market or segment in a limited time period mimicking an
epidemic [4]. Terms from epidemiology have been hence widely used to explain such viral
marketing process [5,6].

This interconnection has become even more pronounced with the unchallenged emer-
gence of new means of communication. With consumers showing increasing resistance to
traditional forms of advertising, marketers have been forced to rely on alternative strategies.
Among these are social networks, whose usage is sensitively growing among marketing
managers with the aim to promote an idea, a product or a brand at no additional cost to
the firm. If a marketer encourages consumers to share and spread a marketing message
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25



Mathematics 2021, 9, 680

through their social contacts, this is called Referral Marketing [7]. In few words, refer-
ral marketing spreads the word about a product or service through a business’ existing
customers, rather than traditional advertising. This kind of marketing uses referrals or
word-of-mouth to promote services or products and businesses may control it through
suitable strategies and make a viral referral campaign. Strategic use of referral marketing
can hence allow marketers to leverage the power of consumer recommendations in order
to achieve the desired results. On this line, questions as ‘Which are the underlying set of
interactions that ensure a marketing message to go viral? Which parameters can allow an
effective spread of a marketing message through a viral process?’ becomes simply crucial.
And since a viral marketing message involves a person-to-person transmission spreading
within a population just like an epidemic, it is not strange that the most likely enlightening
answers could hence come from epidemic models.

In the classical models of epidemiology, the interactions between susceptible and
infected is a key factor for the spread of an epidemic, qualitatively defined as a situation in
which the number of the infected reaches a significant percentage at steady state. In the
case of a viral marketing campaign it can be thought as a situation for which, because of
the sharing mechanisms, the marketing message reaches and attracts a majority of its target
consumers. Obviously in epidemiology one aims to contain epidemics whereas, within the
marketing framework, the main purpose is to maximize the spread.

In the context of online social networks and digital contagion, many efforts have
recently been made to model such kind of dynamics: reference [4] discussed the viral
marketing diffusion within the SIR and SEIAR epidemic framework and [8] proposed a
mathematical model borrowed from epidemiology to describe its spread. An extensive
survey in reference [9] underlined that along with the viral component, a particular focus
on customer behaviors should be given to ensure the relevance and survival of a newly-
launched campaign. On this line, references [7,10] considered more realistic models for
the viral campaign spread, where specific behavioral factors were introduced to take into
account a customer’s perspective about marketing messages, i.e., inherent adversion, brand
trust, remembering and reminding.

In this paper we want to pursue this line focusing on the interplay between two
behavioral mechanisms that can be involved together in a referral campaign. In fact,
if referral is obviously the key mechanism of a referral campaign, it is not the only one.
The Nielson Global Survey of Trust in Advertising [11] clearly supports the remarkable
potential of referrals showing that for the question ‘To what extent do you trust the
following form of advertising?’, the answer ‘Recommendation from the people I know’
gains the first position with 83%. But the answer ‘Consumer’s opinion posted online’ is
also on the podium with 66%, confirming how online reviews remain a trust source of
customer information. This means that, on average, two-thirds of consumers feels the
need of ‘self-information’ and make purchases after inspecting customers’ opinions posted
online about a particular product or service. In this case information comes from sources of
reviews with no conflicts of interest, such as specific consumers’ forum that collect opinions
by those who bought particular products or experienced certain services.

Therefore in a referral marketing campaign, the nature of the information for the
potential consumer can be twofold: passive, when it is linked to the mechanism of recom-
mendations by friends and acquaintances or active when it is linked to the self-information
mechanism described above. Our aim is to elucidate under what conditions the interplay
between ‘passive’ and ‘active’ information can strengthen or weaken the survival chances
of a referral campaign. On this line, we enrich the model introduced in [10] with the
mechanism of self-information that accounts for information about the product perfor-
mance basing on consumer’s experience on the recent past. Such a mechanism, based on
a kind of learning that a potential consumer can adopt during the referral campaign, is
mathematically obtained by introducing a distributed lag in the population equations that
therefore become an integro-differential system, i.e., a delay differential model. The impor-
tance of considering such kind of models is provided by the fact that the role of delays in
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biological [12–15] as well as in economic models [16–20] is widely recognized, being often
appropriate for these kind of problems to allow the rate of change of the system variables
to depend in some sense on the previous history. We want to establish conditions for which
the model exhibits a forward or a backward phenomenology and evaluate the impact of
self-information on both these scenarios. The backward phenomenology, in particular,
is connected to a situation of bistability between the campaign-free equilibrium and the
campaign-standing equilibrium and can lead the system towards hysteresis-type behaviors.
In a very qualitative way the term hysteresis, related to the idea of “irreversibility”, denotes
the effects that persist after the causes that determined them have been removed. The rel-
evance of using hysteresis at economic systems level is well recognized and marketing
provides a generous framework to improve the understanding of this phenomenon in
the economic sphere. In marketing, hysteresis is mainly thought in relation to consumer
behaviour as well as to temporary or permanent changes of consumption patterns caused
by specific marketing tools [21–23].

Its link with hysteresis is the reason why, in mathematical epidemiology, many papers
have been focused on backward bifurcation, i.e., [24–28]. In that context, the basic repro-
duction number R0 is usually defined as the expected number of new infections produced
by a single infective individual introduced into a disease-free population [29] and R0 = 1
represents the threshold value that separates the stability and instability regimes of the
disease-free equilibrium. There are two bifurcation scenarios commonly detectable at
R0 = 1: (i) forward bifurcation that implies disease eradication below the threshold R0 = 1;
(ii) backward bifurcation that includes a saddle-node (sn) bifurcation at R0 = Rsn

0 < 1
along with a subcritical transcritical bifurcation at R0 = 1; it involves a multiplicity of
endemic equilibria and subcritical persistence of the disease. When a backward scenario is
found, reducing R0 below 1 is not sufficient to eradicate the disease and a further effort
should be done until R0 is lowered below the critical value Rsn

0 . It is therefore obvious
that, in epidemic models, detecting and managing the occurrence of backward bifurcations
are two features of primary importance in the perspectives of the disease control. In viral
marketing, however, the backward scenario may play a different role than in epidemics
since it could be seen as an opportunity for the firm to carry on the viral campaign even in
adverse conditions, which in itself adds an interesting perspective to the problem. Also in
this case, however, the backward scenario must still be carefully monitored because in the
bistability regime, too large displacements from the campaign-standing equilibrium can
bring the system into the basin of attraction of the campaign-free equilibrium. That means
a sudden collapse of the referral campaign.

The paper is structured as follows: In Section 2, we enrich the model introduced
in [10] with the mechanism of self-information by the means of a variable that summarizes
information about the product performance basing on consumers’ experience on the recent
past. In Section 3 we get conditions for the existence of a campaign-free and of a campaign-
standing equilibria and establish under which conditions, expressed as a function of the
system parameters, the campaign spread goes towards stopping. In Section 4 a bifurcation
analysis in the neighbouring of the campaign-free equilibrium is performed and conditions
are obtained for the emergence of a forward or a backward scenario that are also discussed
in the perspective to improve the sustainability of the referral campaign. The effects of
self-information on the bifurcation thresholds is shown in Section 5 where the role of the
customer satisfaction parameter is also elucidated. Concluding remarks, in Section 6, close
the paper.
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2. A Referral Marketing Model with Self-Information

To mimics referral dynamics, a model was introduced in [7] with the total population
divided in three mutually exclusive subpopulations: Unaware, Broadcaster and Inert.
The unaware class U is the target market, namely ‘susceptible’ people that have not
yet received the message about a certain product but are exposed and have a chance of
receiving it; the broadcaster class B is composed of individuals who have received the
message earlier and have the potential to spread the message further to their social contacts;
the inert class I is instead made of individuals that, willingly or unwillingly, do not take
part in the campaign even if they have come across it at least once. This model is essentially
based on contagion as the basic transition mechanism between different subgroups.

To increase the degree of realism, the authors then proposed in [10] a more realistic
model including some additional features raised in a survey campaign developed in [9].
Analyzing the surveys and the interactions between different people, they modeled the
transition between different sub-groups with taking into account some additional factors
that more clearly reflect customer’s perspective about marketing messages: (a) inherent
aversion, i.e., a portion of individuals could be strongly against the mechanisms of referral
marketing in general; (b) brand trust, i.e., people need to ‘trust’ the person who is referring
the product (for example family or friends) as well as the brand-names while participating
in referral marketing; (c) remembering and reminding, i.e., strategically designed emails
from the company or casual reminders from friends can tempt inert individuals to become
broadcasters again. The following model was hence considered [10]:

u̇ = μ − ρ b u − μ u

ḃ = p ρ b u − σ b + α1 b i − μ b + λ i

i̇ = (1 − p) ρ b u + σ b − α1 b i − λ i − μ i

(1)

where u,b and i are the fraction of the unaware, broadcaster and inert classed normalized
by the total population. In (1), it is assumed that a broadcaster spreads the message to a
member from unaware class at a rate ρ and, whenever a broadcaster sends the referral
message to an unaware individual, this moves to the broadcaster class with a probability p
and to the inert class with a probability (1 − p). The parameter p ∈ [0, 1] assumes a high
value if the campaign comes from a trusted brand or the message comes from a trusted
member and can be hence interpreted as the ‘trust’ parameter. The term (1 − p) accounts
that some individuals of the unaware class might decide to ignore the messages or to not
take part in the campaign, i.e., groups of individuals that are for example rigidly inert.
Messages from not so trustworthy brand or members increases the value of (1 − p).

Once the unawares have become broadcasters or inert, they can ‘change their mind’
by moving from one class to another respectively. In fact, broadcasters can stop sharing the
message, hence moving to the inert class at a rate σ. On the other hand, inert people can
move back to broadcaster class following two different mechanisms: (i) independently of
their interaction with other individuals (like reminder from the company etc.) at a rate λ
or (ii) because of their interaction with another broadcaster (like reminder from a friend,
discussion with family members) at a rate α1 = α p where α is the original relapse rate and
p is the trust parameter. Obviously people can join or leave a particular social platform
where the campaign is going. It is then assumed a constant input μ in the unaware class and
a natural ‘mortality rate’ μ for each class so that a fixed population size can be maintained.

The analysis carried out in [10] showed that the brand loyalty and brand name
are two important factors to create positive reaction of a person towards a campaign
message. Moreover, model dynamics turned out to be critically affected by variations in the
relapse rate α that was recognized to be crucial to safeguard the survival of the campaign.
In particular, sufficiently high values of the relapse rate α could drive the system towards a
bistability situation between the campaign-free and the campaign-standing equilibria.
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In [10] the involved information mechanism was essentially passive because the
spread of the message is based on referrals. To investigate the role of an active information
on the spreading of the referral campaign, we equipped model (1) with a self-information
variable m that summarizes information about the product performance basing on the
customers’ experiences in the recent past, i.e., online customer reviews. Because of this
‘active’ information process, we assume that unaware individuals can exit their class at a
rate γ, moving to the broadcaster class with a probability q and to the inert class with a
probability (1 − q). The parameter q ∈ [0, 1] assumes a high value if the online reviews on
the product indicates an overall high level of satisfaction and can be hence interpreted as a
‘customer satisfaction’ parameter. We hence consider the following model:

u̇ = μ − ρ b u − μ u − γ m u

ḃ = p ρ b u − σ b + α1 b i − μ b + λ i + γ q m u

i̇ = (1 − p) ρ b u + σ b − α1 b i − λ i − μ i + γ (1 − q)m u

(2)

where the self-information variable m is given by

m(t) =
∫ t

−∞
f (u(τ), b(τ), i(τ)) Ka(t − τ)dτ (3)

The distributed lag (3) in the governing equations means that unaware, broadcaster
and inert individuals at time t are affected by the state variables u, b, i at possibly all
previous times τ ≤ t in a way prescribed by the function f (u(τ), b(τ), i(τ)) and distributed
in the past by the delay kernel Ka(t − τ) which is also called ‘memory function’.

We assume here that the function f (u(τ), b(τ), i(τ)) = k b where k is a positive
parameter. Among the possible types of delay kernels, we consider

Ka(t) = a e−a t (4)

which qualitatively represents a weak delay in the sense that the maximum (weighted)
response of the growth rate is to current population density whereas past densities have
exponentially decreasing influence. Such a kernel provides therefore a reasonable effect of
short term memory.

With (4) as delay kernel and by applying the linear chain trick [30], the set of delay
differential Equations (2) and (3) turns out to be equivalent to the following set of ordinary
differential equations that will be hereafter the object of our investigations:

u̇ = μ − ρ b u − μ u − γ m u

ḃ = p ρ b u − σ b + α1 b i − μ b + λ i + γ q m u

i̇ = (1 − p) ρ b u + σ b − α1 b i − λ i − μ i + γ (1 − q)m u

ṁ = a k b − a m

(5)

with α1 = α p.
In the next section, we get conditions for the existence of a campaign-free and of

a campaign-standing equilibria and establish under which conditions, expressed as a
function of the system parameters, the campaign goes viral or is forced to stop.

3. The Campaign-Free and the Campaign-Standing Equilibria

Model (5) always admits a campaign-free equilibrium E0 = (1, 0, 0, 0) and, under suit-
able conditions on the system parameters can admit one or two campaign-standing equilib-
rium E∗ = (u∗, b∗, i∗, m∗) where:
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u∗ = μ

b∗ (γ k + ρ) + μ
, i∗ = b∗ (γ k + ρ)σ + γ k μ (1 − q) + μ [σ + ρ (1 − p)]

(b∗ γ k + b∗ ρ + μ)(b∗ α p + λ + μ)
, m∗ = k b∗, (6)

and b∗ is a positive solution of the following algebraic equation,

P2 b2 + P1 b + P0 = 0, (7)

with

P2 = α p (γ k + ρ),

P1 = −p (γ k + ρ − μ) α + (γ k + ρ)(λ + μ + σ) = p (γ k + ρ − μ)(α0 − α),

P0 = (μ − γ k − ρ) λ + μ2 + μ σ − γ k μ q − ρ μ p = μ (σ − σc),

(8)

and

α0 =
(γ k + ρ)(λ + μ + σ)

p (γ k + ρ − μ)
, σc =

1
μ
[λ (γ k + ρ − μ) + γ k q μ + μ (p ρ − μ)]. (9)

By (6), it follows that E∗ is a positive equilibrium provided b∗ is a positive solution of (7).
Moreover being (7) a second order algebraic equation we observe that, for certain ranges of
the parameter values, model (5) could admit a multiplicity of campaign-standing equilibria.

In the next we assume μ ≤ p ρ so that the natural “mortality rate” for each class is
considered slow with respect to the marketing process. Under this condition, both σc and
α0 are positive quantities. We now determine the conditions for which model (5) can admit
feasible (i.e. positive) campaign-standing equilibria. To do that, we inspect the discriminant
of the algebraic Equation (7), namely

Δ = P2
1 − 4 P2 P0 = p2 (γ k + ρ − μ)2 (α0 − α)2 − 4 α p (γ k + ρ) μ (σ − σc) (10)

and observe that, if σ < σc, then (10) is a positive quantity so that by the Descartes’ rule of
signs, the algebraic Equation (7) admits only one positive real solution. On the contrary,
if σ > σc, then Δ < 0 ⇔ α1 < α < α2, where

α1/2 = α0 +
Q1 ∓

√
3 α2

0 Q2
0 + Q2

1 + 4 α0 Q0 Q1

2 Q0
(11)

and

Q0 = p2 (γ k + ρ − μ)2, Q1 = 4 p (γ k + ρ) μ (σ − σc).

For σ > σc, Q1 is a positive quantity and it is also easy to prove that α1 < α0 < α2.
We can hence conclude that: if α1 < α < α2 then Equation (7) admits no real solutions; if
α < α1 then, by the Descartes’ rule of signs, the algebraic Equation (7) admits two negative
real solutions; if α > α2 then it admits two positive real solutions.

The above results can be summarized in the following theorems:

Theorem 1. Let μ ≤ p ρ and σ < σc. Then model (5) admits the campaign-free equilibrium
E0 = (1, 0, 0, 0) and one positive campaign-standing equilibrium E∗.

Theorem 2. Let μ ≤ p ρ and σ > σc. Then model (5) admits the campaign-free equilibrium
E0 = (1, 0, 0, 0) and (i) if α < α2, none positive campaign-standing equilibrium exists; (ii) if
α > α2, two positive campaign-standing equilibria exist.
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As far as the local stability properties of the campaign-free equilibrium E0 = (1, 0, 0, 0)
are concerned, we observe that the Jacobian matrix of model (5) when evaluated at E0, is
given by

J(E0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ −ρ 0 −γ

0 p ρ − μ − σ λ γ q

0 (1 − p) ρ + σ −λ − μ γ (1 − q)

0 a k 0 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and admits ω = −μ as an eigenvalue. To reason about the sign of the other three eigenval-
ues, we introduce the following matrices:

A =

⎛⎜⎜⎝
pρ − μ − σ λ γ q

(1 − p)ρ + σ −λ − μ γ (1 − q)

ak 0 −a

⎞⎟⎟⎠,

A1 =

( −λ − μ γ (1 − q)

0 −a

)
, A2 =

(
(1 − p)ρ + σ γ (1 − q)

ak −a

)
, A3 =

(
(1 − p)ρ + σ −λ − μ

ak 0

)
.

and recall that the remaining three eigenvalues of J(E0) have negative real part if and only
if the following conditions holds:

det(A) < 0; tr(A) < 0;
3

∑
i=1

det(Ai) > det(A)/tr(A).

We get det(A) = μ a (σc − σ) and tr(A) = p ρ − a − λ − 2 μ − σ so that:

det(A) < 0 ⇔ σ > σc, tr(A) < 0 ⇔ a > ac

where σc is given in (9) and ac = p ρ − λ − 2 μ − σ. We also observe that

ac > 0 ⇔ σ < σ̃ = p ρ − λ − 3 μ

and

σ̃ < σc ⇔ − μ < γ k q +
λ (ρ + γ k)

μ

that is always verified. Therefore for σ > σc > σ̃, the threshold quantity ac is negative so
that tr(A) < 0 for every positive value of a. Moreover by straightforward algebra follows

that, for σ > σc, inequality
3

∑
i=1

det(Ai) > det(A)/tr(A) is always verified. We are hence in

the position to state the following theorem:

Theorem 3. Let μ ≤ p ρ. (i) If σ < σc then the campaign-free equilibrium E0 is unstable. (ii) If
σ > σc then the campaign-free equilibrium E0 is locally asymptotically stable.

In the following section, we analyze in more details the nature of the transcritical
bifurcation at σ = σc and its impact on the sustainability of the referral campaign.

4. Sustaining the Campaign: Forward or Backward Scenario?

Within the epidemic framework, backward scenarios have been mainly detected by
the means of specific bifurcation approaches [31] with the aim to establish the nature of the
bifurcation at R0 = 1. Once the backward scenario is detected, the subcritical persistence
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of the disease can be prevented by varying significant parameters in the system or by the
means of error-based methods as the Z-type control approach [32–34].

In this section, we discuss the occurrence of the backward vs the forward phenomenol-
ogy for model (5), by using the method proposed in [35] that provides simple and manage-
able conditions for monitoring both these scenarios.

As shown in the previous section, σ = σc is a transcritical bifurcation threshold.
We observe that all the coefficients in the equilibrium Equation (7) may be regarded as
functions of the parameter σ. Moreover at σ = σc, P0(σc) = 0 so that Equation (7) becomes

P2(σc)b2 + P1(σc)b = 0

and admits the roots b = 0 and b = − P1(σc)
P2(σc)

. The former is related to the campaign-free
equilibrium and the latter corresponds to a positive campaign-standing equilibrium only
if P1(σc) and P2(σc) have opposite signs. Therefore, in order to have a positive campaign-
standing equilibrium, P1(σc) < 0 must hold. By implicit differentiation of Equation (7)
with respect to σ, one obtains:

(2 P2 b + P1)
db
dσ

+
dP2

dσ
b2 +

dP1

dσ
b +

dP0

dσ
= 0.

Now, looking at the equilibrium b = 0, at σ = σc one has:

P1(σc)
db
dσ

(σc) = −dP0

dσ
< 0, (12)

since, recalling (8), it holds
dP0

dσ
= μ > 0. Therefore, in order inequality (12) to be verified,

P1(σc) and
db
dσ

(σc) must have opposite sign. This means that the slope of the bifurcation

curve at b = 0 must have opposite sign with respect to the coefficient P1(σc). Since in our

case a forward scenario at σ = σc is obtained when
db
dσ

(σc) < 0 and a backward scenario

when
db
dσ

(σc) > 0, it hence follows that: (i) if P1(σc) < 0 then a backward bifurcation occurs

at σ = σc; (ii) if P1(σc) > 0, the system displays a forward bifurcation at σ = σc.
For model (5), P1(σc) < 0 is hence a necessary and sufficient condition for the oc-

currence of the backward bifurcation at σ = σc. By (9), the threshold α0 depends on the
parameter σ. Therefore by introducing,

α∗ = α0(σc) =
γ k + ρ

γ k + ρ − μ
α̃, (13)

where

α̃ =
γ k (μ q + λ) + ρ (μ p + λ)

μ p
, (14)

the following result holds:

Theorem 4. Let μ < p ρ. (i) If α < α∗ then system (5) exhibits a forward bifurcation at σ = σc.
(ii) If α > α∗ then system (5) exhibits a backward bifurcation at σ = σc.

Proof. It follows from (8) by direct computations.

Remark 1. It easy to prove by direct computation that the threshold α2 defined in (11) is such that

α2 = α0(σc) = α∗

so that results in Theorem 4 are in perfect agreement with the existence results provided in Theorem 2.
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To validate the results found in Theorem 4, we show the local dynamics in the neigh-
boring of the bifurcation value σ = σc by the means of the bifurcation diagrams in the
(σ, b∗) parameter space, Figure 1.
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Figure 1. Bifurcation diagram in the plane (σ, b∗). The other parameters are μ = 0.05; ρ = 0.25;
λ = 0.02; p = 0.7; q = 0.8; a = 0.5; k = 2; γ = 0.2 so that α∗ = 1.1684 and σc = 0.6850. The solid lines
(-) denote stability; the dashed lines (- -) denote instability. (Left) Forward scenario. The case α < α∗,
α = 0.4 − At σ = σc = 0.6850, system (5) exhibits a forward bifurcation. (Right) Backward scenario.
The case α > α∗, α = 2 − At σ = σc = 0.6850, system (5) exhibits a backward bifurcation. The value
σSN = 0.9105 is the saddle-node bifurcation threshold.

For the numerical investigations, we decide to use the same parameters considered
in [7,10] where a mathematical model was introduced basing on data collected through
an extensive questionnaire-based-survey [9]. That survey recognized the dynamics of
viral marketing propagation as a complicated nonlinear phenomenon that involves several
interactions between the participants and is influenced by several intensive and extensive
parameters. In [7,10], the above conceptual framework was developed through a mathemat-
ical ODE epidemic model that in [7] contains only the essential features of the phenomenon
and in [10] is instead enriched with more realistic behavioral factors. The set of parameters
used in these papers are chosen with the purposes (i) to illustrate the range of possible
dynamics that can be expressed by the model and (ii) to elucidate which parameters and
hence mechanisms can influence the overall dynamics. The perspective in which they
move is a qualitative one and the model we develop in the present paper, enriching [10]
with the self-information mechanism, moves exactly in the same qualitative direction.
Therefore, to better elucidate the role of self-information and for a better comparison with
the dynamics presented in [7,10], in the present study we have intentionally decided to
consider the same set of parameters used there, namely: μ = 0.05; ρ = 0.25; λ = 0.02;
p = 0.7. The parameters for the self-information mechanism are instead chosen so that the
hypothesis of Theorem 4 could be verified. We hence fix q = 0.8, a = 0.5, k = 2, γ = 0.2.

With this choice for the parameters, the assumption μ = 0.05 < (p ρ) = 0.1750 is
verified. Moreover α∗ = 1.1684 and σc = 0.6850.

In Figure 1 (left), the parameters are taken in order to verify condition (i) in Theorem 4
so that a forward scenario is obtained. In this case, α = 0.4 < α∗ = 1.1684: a forward
bifurcation occurs at σ = σc = 0.6850. For σ < σc, the campaign-standing equilibrium E∗ is
the only attractor for the system, being E0 unstable in this range. Differently, for σ > σc,
the campaign-free equilibrium E0 is the only attractor for the system and increasing σ above
the threshold σc is sufficient to stop the campaign. In Figure 1 (right), we choose the param-
eter values so that condition (ii) in Theorem 4 is verified. In this case, α = 2 > α∗ = 1.1684:
a backward bifurcation occurs at σ = σc = 0.6850 and σSN = 0.91058 is the saddle node-
bifurcation value. For σ < σc, the campaign-standing equilibrium E∗ is the only attractor
for the system since E0 is unstable in this range. For σc < σ < σSN , a bistability situa-
tion occurs, with the disease-free equilibrium E0 and the endemic equilibrium E2 as local
attractors. For σ > σSN , the campaign-free equilibrium E0 becomes the only attractor
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for the system. In this case, the value of the parameter σ should be increased above the
saddle-node bifurcation threshold σSN in order to stop the campaign.

The above results well put into evidence that the sustainability of the referral campaign
is linked to the suitable interplay between the two parameters α and σ that respectively
regulate the reciprocal transition between the broadcaster and inert classes. We recall that
α is the relapse rate from the inert to the broadcaster class whereas σ is the dropout rate of
the broadcaster class in favor of the inert class. Therefore, when the impact of the relapse
rate α is below a certain threshold, i.e., α < α∗, then increasing the dropout rate σ above a
certain threshold σc has the effect to stop the campaign. On the contrary, when the impact
of the relapse rate α is much stronger, i.e., α > α∗, then simply increasing the dropout rate
σ above σc is not enough to stop the campaign and the value of σ must exceed an higher
threshold σSN to make it end. This aspect would seem to suggest that a backward scenario
could strengthen the campaign’s chances of survival. However, in the bistability range
σc < σ < σSN , the dynamics of the system is highly dependent on the initial conditions so
that, within the backward scenario, a sudden stop of the campaign could likely occur.

In this latter case, inducing a slight reduction of the dropout rate σ does not allow
to restore the spreading of the campaign. To this aim, it is in fact necessary to drastically
reduce σ below the σc value. This behavior is depicted in Figure 2 and clearly indicates a
hysteretic phenomenology since the functioning and the current state of the system can be
understood in a more detailed manner with reference to its past. In this sense, the effects
on the dynamics persist after the causes that determined them have been removed.
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Figure 2. Graphical representation of an hysteresis cycle on the bifurcation diagram in the plane
(σ, b∗) in the case α > α∗, where a backward scenario is obtained. The other parameters are as in
Figure 1 (right). Here α∗ = 1.1684, σc = 0.6850 and the value σSN = 0.9105 is the saddle-node
bifurcation threshold. The solid lines (-) denote stability; the dashed lines (- -) denote instability.

As a consequence if the backward phenomenology can represent an opportunity, it
nevertheless introduces a risk factor and, for this reason, it must be detected and adequately
managed. This suggests the need for a more accurate characterization of the bistability
range delimited by the transcritical threshold σc and by the saddle-node threshold σSN .
To this aim, we derive the analytical expression of the saddle-node bifurcation threshold
σSN . We first recall that the two campaign-standing equilibria E∗

1 and E∗
2 are such that:

E1 = (u∗
1, b∗1 , i∗1, m∗

1), E2 = (u∗
2, b∗2 , i∗2, m∗

2),

where ui, ii and mi are defined in (6) and bi are the two positive solutions of the algebraic
Equation (7) whose coefficients are defined in (8). More precisely,
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b1/2 = −P1 ∓
√

Δ
2 P2

with Δ defined in (10) and the quantities α0 and σc defined in (9). At σ = σSN , the two
campaign-standing equilibria E∗

1 (unstable) and E∗
2 (stable) coalesce and disappear so that,

for σ > σSN the campaign-free equilibria is the only attractor for the system. The saddle-
node bifurcation of the two campaign-standing equilibria can be detected by requiring that
Δ = 0 so that E∗

1 ≡ E∗
2 . At this regard, it holds:

Δ = 0 ⇔ σ1/2 =
1

(γ k + ρ)

[
α p (γ k + μ + ρ)− (γ k + ρ)(λ + μ)∓ 2

√
Δ∗
]

where
Δ∗ = α p (γ k + ρ) μ p (α − α̃) (15)

with α̃ defined in (14). By direct computation it easy follows that if α > α̃ then σi are real
quantities and that, for α > α∗ > α̃, the inequalities σ1 > σc > 0 hold. Therefore,

σSN = σ1 =
1

(γ k + ρ)

[
α p (γ k + μ + ρ)− (γ k + ρ)(λ + μ)− 2

√
Δ∗
]

is the saddle-node bifurcation threshold and [σc, σSN ] is the bistability range for model (5).
In the next section, we show how these critical thresholds are affected by variations in the
self-information level.

5. Effects of Self-Information on the Bifurcation Thresholds

Since γ and k are the parameters specifically related to the self-information mechanism,
we introduce the information parameter ζ = γ k and consider the different bifurcation
thresholds as function of ζ, i.e.,

α∗(ζ) = ζ + ρ

ζ + ρ − μ

ζ (μ q + λ) + ρ (μ p + λ)

μ p

σc(ζ) =
1
μ
[λ (ζ + ρ − μ) + ζ q μ + μ (p ρ − μ)]

σSN(ζ) =
1

(ζ + ρ)

[
α p (ζ + μ + ρ)− (ζ + ρ)(λ + μ)− 2

√
Δ∗(ζ)

]
(16)

with Δ∗(ζ) as defined in (15). We observe that the saddle-node bifurcation threshold σSN is
a real quantity provided that the information variable ζ is chosen in the range (0, ζ∗), where

ζ∗ = α μ p − ρ (μ p + λ)

μ q + λ
(17)

Moreover, since in the backward scenario α > α∗, the inequality

α >
ρ (μ p + λ)

μ p
,

is always verified and ζ∗ is a positive quantity. We also observe that the transcritical
bifurcation threshold σc is an increasing function of ζ, being

dσc

dζ
=

μ q + λ

μ
.
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Therefore an higher information increases the threshold σc, so that both in the forward
and in the backward regime it becomes larger the range [0, σc] for which the campaign-
standing equilibrium is the only attractor for the system.

Moreover, Figure 3 also indicates that:

• the threshold α∗ increases with increasing the information variable ζ . This
means that an higher information increases the threshold α∗ , favoring the for-
ward regime with respect to the backward scenario. In this sense, information
would act as a stabilizing mechanism;

• within the backward scenario, the saddle-node bifurcation threshold σSN in-
creases with increasing the information variable ζ . This means that an higher
information implies a higher value of σ in order to stop the campaign. However,
the length of the bistability range [σc, σSN ] does not have a monotone trend as
function of the information variable ζ . More precisely, for intermediate values
of ζ , the bistability range decreases whereas it increases when the values of ζ are
too small or too large. This would qualitatively mean that too much or too little
information, although enlarging the chances of survival of the campaign, can
have eventually a destabilizing effect on the system dynamics favoring sudden
collapses in broadcasters that could lead to a sudden stop of the campaign
according to a hysteretic phenomenology.
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Figure 3. Thresholds (16) as function of the information variable ζ. The other parameters are
chosen as in Figure 1. (Top-left) The threshold α∗(ζ) as function of ζ. (Top-right) The saddle-node
bifurcation threshold σSN(ζ) as function of ζ. The threshold σSN is feasible in the range (0, ζ∗],
with ζ∗ = 0.9375 (Bottom) The length of the bistability range, i.e., σSN − σc, within the backward
scenario as function of ζ. The bistability range is increasing for [0, ζ1) and (ζ2, ζ∗) and it decreases
for [ζ1, ζ2]. Here ζ∗ = 0.9375; ζ1 = 0.1135; ζ2 = 0.8861.
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To give a more quantitative measure of the impact of the information parameter ζ
on the bifurcation thresholds (16), we will make use of the sensitivity analysis that is a
useful tool to reveal how a certain parameter can influence the campaign transmission.
The sensitivity of a certain variable with respect to system parameters can be measured
through a sensitivity index that provides a quantitative measure of the relative change in a
variable when a parameter changes. When the variable is a differentiable function of the
parameter, the sensitivity index is defined as follows:

Definition 1. [36] The normalized forward sensitivity index of a variable u, that depends differen-
tiably on a parameter p, is defined as

φu
p =

∂u
∂p

p
u

The normalized forward sensitivity index of a variable with respect to a parameter is
therefore the ratio of the relative change in the variable to the relative change in the parameter.

Figure 4 shows how the sensitivity index of the different thresholds α∗, σc and σSN

varies with varying the information parameter ζ. For both α∗ and σc, the sensitivity index
is a saturating function of ζ, the first increasing more slowly than the latter. The sensitivity
of σSN instead rapidly grows for enough low values and for enough high values of the
information parameter ζ; on the contrary, it grows very slowly for intermediate values of ζ.
In Table 1, we show more quantitatively how variations in the information parameter ζ can
affect the different thresholds (16).
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Figure 4. Sensitivity indices of the different thresholds α∗, σc and σSN as function of the information
variable ζ. The other parameters are chosen as in Figure 1. (Top-left) Plot of the sensitivity φα∗

ζ versus
the information variable ζ; (Top-right) Plot of the sensitivity φσc

ζ versus the information variable ζ;

(Bottom) Plot of the sensitivity φσSN

ζ versus the information variable ζ.
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Table 1. Sensitivity indices of the thresholds α∗, σc and σSN for three different levels of information:
low, intermediate and high. The numerical values of the system parameters used for the computations
are: μ = 0.05; ρ = 0.25; λ = 0.02; p = 0.7; q = 0.8. Here ζ∗ = 0.9375; ζ1 = 0.1135; ζ2 = 0.8861.

Low Information Intermediate Information High Information
0 < ζ < ζ1 ζ1 < ζ < ζ2 ζ2 < ζ < ζ∗

ζ = 0.08 ζ = 0.5 ζ = 0.9
φα∗

ζ = 0.2154 φα∗
ζ = 0.6380 φα∗

ζ = 0.7614
φσc

ζ = 0.38 φσc
ζ = 0.74 φσc

ζ = 0.8404
φ

σSN
ζ = 0.1734 φ

σSN
ζ = 0.3450 φ

σSN
ζ = 0.9713

It is interesting to observe that ζ affects such thresholds differently depending on the
level of information we consider.

In the case of low information, σc is the most affected threshold: in fact, φσc
ζ = 0.38,

which means that increasing (or decreasing) the parameter ζ by 10%, increases (or de-
creases) the transcritical threshold σc by 3.8%. The less affected threshold is instead σSN ,
being φ

σSN
ζ = 0.1734. However, for this case, the sensitivity indices for the three thresh-

olds have numerical values fairly low and quite similar each others. A similar situation,
but with higher values of the sensitivity indices is found for the case of intermediate
levels of information for which the thresholds α∗ and σc are influenced by variations in the
information parameter ζ much more than the saddle-node bifurcation threshold σSN . Also
in this case, σc is the threshold most influenced by variations in the information parameter,
being φσc

ζ = 0.74; the less affected threshold is instead σSN , since φ
σSN
ζ = 0.3450. The case

of high levels of information presents a completely different scenario being now σSN the
most affected threshold with φ

σSN
ζ = 0.97: this means that increasing (or decreasing) the

parameter ζ by 10%, increases (or decreases) the saddle-node bifurcation threshold σSN by
9.7%. In this case, however, also the thresholds α∗ and σc are significantly influenced by
variations in the information parameter ζ.

These results seem to suggest that intermediate levels of information allow to spread
the campaign in more controllable conditions. In fact, they seem to (i) favor a forward-type
regime over a backward type, as it can be observed by the significant increase in the α∗
threshold; (ii) favor the presence of a single campaign-standing type attractor (significant
increase in the threshold σc) with respect to a bistability regime (loose impact on the
threshold σSN). In this sense, intermediate levels of information are surely preferable to low
ones. On the other hand, too high levels of information sensitively impact the saddle-node
threshold, favoring a bistability situation where the chances of the campaign’s survival
increase despite being exposed to the likely emergence of hysteretic dynamics.

The survival of the campaign obviously depends on the number of people who make
it to spread and in the bistability range, when σ tends to σSN , the level of broadcasters at
the campaign-standing equilibrium tends to decrease, as it can be seen from the bifurcation
diagram in Figure 1.

It is therefore interesting to ask whether the level of customer satisfaction linked to the
self-information process can act as a destabilizing factor for the survival of the campaign.
Numerical simulations in Figure 5 (Top) show that, for low or intermediate values of
the self-information parameter ζ, the campaign-standing equilibrium is rather resilient
to variations in the level of the customer satisfaction q. However, increasing the level of
self-information from low to intermediate, the impact of q also increases to the point that,
for high values of ζ, a threshold value q∗ can be found below which the referral campaign
is driven to stop, Figure 5 (Bottom).
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Figure 5. Impact of the customer satisfaction parameter q on the referral campaign in the bistability
region, σ ∈ [σc, σSN ], for different levels of self-information. Initial conditions are chosen in the neigh-
bouring of the campaign-standing equilibrium. The other parameters are as in Figure 1. (Top-left)
Low level of the self-information parameter, i.e., ζ = 0.08 (k = 2; γ = 0.04) and σ = 0.4. (Top-right)
Intermediate level of the self-information parameter, i.e., ζ = 0.5 (k = 2; γ = 0.25) and σ = 0.7.
(Bottom) High level of the self-information parameter, i.e., ζ = 0.9 (k = 2; γ = 0.45) and σ = 0.9.

6. Conclusions

With this study we wanted to show that the concept of backward bifurcation, borrowed
from epidemics, can be fruitfully exploited to shed light on the mechanism underlying
the occurrence of hysteresis in marketing as well as for the strategic planning of adequate
tools for its control.

In this paper, we considered a referral marketing model with self-information and
evaluated how the interplay between a passive information (due to referrals) and an active
information (due to self-information) impacts the sustainability of the viral campaign. We
found that the emergence of a forward or a backward phenomenology is essentially linked
to passive information mechanisms since the occurrence of these scenarios depends on
the suitable interplay between the two parameters that regulate the reciprocal transition
between the broadcaster and inert classes by the means of referrals.

Differently from epidemics, in the viral marketing context, a backward scenario could
strengthen the campaign’s chances of survival. But if it can represent an opportunity from
one side, on the other it introduces a risk factor because of the bistability range where system
dynamics highly depends on the initial conditions. In this range hysteresis-type behaviors
can hence emerge. Moreover, if in epidemics the main purpose is to ‘avoid’ a backward type
scenario, for viral marketing this aim becomes learning to tame and eventually manage
the backward phenomenology. In the present study, this has been shown to be the role of
self-information that, however, needs to be properly calibrated. According to the Latin
sentence ‘in medio stat virtus’, our analysis shows in fact that intermediate levels of self-
information allow the campaign to spread in more controllable conditions by favoring
the more reassuring forward-type regime over the backward one and, in both these cases,
by widening the range of parameters in which the campaign-standing equilibrium is the
only attractor for the system. Too high levels of information can instead broaden the
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region of parameters in which bistability occurs and, although enlarging the chances of
survival of the campaign, can be responsible of sudden collapses in its spread. Just in
this case, the level of customer satisfaction turns out to have a certain weight since a
threshold customer satisfaction value can be found, below which, small fluctuations from
the campaign-standing equilibrium value can lead the campaign to a sudden stop.

Therefore, even if hysteretic dynamics in referral campaigns may likely occur because
intimately linked to the mechanism of referrals, an adequate level of self-information and a
fairly high level of customer-satisfaction, can be two weapons capable to control hysteresis
by transforming a potential risk into an opportunity.

In conclusion, this study represents a qualitative step to better understand how self-
information can impact the sustainability of a referral marketing campaign and, within such
a qualitative dimension, there is no presumption to fit the trend of a specific campaign.
To provide further insight into the topic, two extensions are currently the subject of ongoing
research: (i) giving the model a more quantitative dimension through a validation with
a practical experience and (ii) exploring the possible impact of multilayer or multiplex
networks, that may lead to some hidden patterns of influence and interplay between the
self-information mechanism and the viral spreading of the campaign.
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Abstract: The present work is inspired by the recent developments in laboratory experiments made
on chips, where the culturing of multiple cell species was possible. The model is based on coupled
reaction-diffusion-transport equations with chemotaxis and takes into account the interactions among
cell populations and the possibility of drug administration for drug testing effects. Our effort is
devoted to the development of a simulation tool that is able to reproduce the chemotactic movement
and the interactions between different cell species (immune and cancer cells) living in a microfluidic
chip environment. The main issues faced in this work are the introduction of mass-preserving and
positivity-preserving conditions, involving the balancing of incoming and outgoing fluxes passing
through interfaces between 2D and 1D domains of the chip and the development of mass-preserving
and positivity preserving numerical conditions at the external boundaries and at the interfaces
between 2D and 1D domains.

Keywords: multi-domain network; transmission conditions; finite difference schemes; chemotaxis;
reaction-diffusion models

MSC: 65M06; 35L50; 92B05; 92C17; 92C42

1. Introduction

The aim of the present work is to study both the modelling and numerical approxi-
mation of a chemotaxis-reaction-diffusion mathematical system describing the qualitative
behavior of different cell species living in a confined environment. This work is inspired
by laboratory experiments made on microfluidic chip [1], where some populations cohex-
ist and interact. In recent years, there has been the development of a new approach to
biological studies aimed at reconstructing organs and complex biological processes on a
chip [2]. The fundamental idea is that the comprehension of the sophisticated physiology
of organisms, based on the complex behavior and interaction of cell populations, tissues,
and organs, needs interdisciplinary contributions from biology to mathematics.

Motivated by the laboratory setting of the experiment in microfluidic chips [1–3]—see
also the short description of the experiments reported in Section 2.1.1—we introduce a
model mimicking the interactions between two cell populations—namely, immune and
cancer cells.

The mathematical model, proposed in Section 2.2, is a reaction-diffusion system with
chemotaxis and describes birth and death processes, the migration of immune cells driven
by chemical signals produced by tumor cells, and interactions between different cell species.
We underline that, since the chemical gradients are not measured experimentally, by using
the simulation algorithm based on the mathematical model proposed here, the chemical
concentration gradients in the chip can be obtained by solving the inverse problem of
minimizing the residuals between the measured trajectories and the simulated ones; see

Mathematics 2021, 9, 688. https://doi.org/10.3390/math9060688 https://www.mdpi.com/journal/mathematics
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also the discussion in Section 5 about the future developments of our work. From a
mathematical point of view, we follow the framework of the classical macroscopic models
of chemotaxis; see, for instance, [4], where the evolution of the density of cells is described
by a parabolic equation and the concentration of a chemoattractant can be given by a
parabolic or elliptic equation, depending on the different regimes to be described and on
the authors’ choices. The choice of a continuous model to reproduce an experiment in a
confined environment, with a relatively small number of cells, is motivated by the fact
that we aim at developing a simulation tool which is able to describe the phenomena of
immunosorveillance of cancer in tissues, where billions of cells are present. For this reason,
a macroscopic model is more suitable respect a particle model.

In the chambers, we consider a 2D doubly parabolic model which is a modification
of the Keller–Segel model [4] to take into account the presence of two populations both
producing chemical signal which are interacting each other. We remark that we consider
only the 2D case, since the experimental data do not take into account the height of the
chip. Clearly, in principle, our framework (model and numerical algorithm) could be easily
extended to the third dimension and we remark that, analogously to the 2D-1D case here
considered, mass-preserving and positivity preserving numerical conditions at the external
boundaries and at the interfaces between 3D and channels still hold.

We consider the microchannels connecting the 2D chambers as 1D lines for modelling
and computational reasons, as explained in Section 1.1. In order to model the dynamics
on the microchannels, we choose two different approaches: we can assign a 1D version
of the doubly parabolic model used in the chambers; otherwise, we can assign a model
derived from a 1D-GA model [5], being characterized by the more realistic feature that the
speed of propagation of cells in the channels is finite, which seems the dominant property
at this scale. On the other hand, other models based on hyperbolic/kinetic equations for
the evolution of the density of individuals can be assigned, characterized by a finite speed
of propagation [6–10].

1.1. The Geometry of the Microfluidic Chip and of the Related Computational Domain

The microfluidic chip is represented as a network of channels connecting two boxes (the
microfluidic chambers); see Figure 1 and a schematic picture of the related computational
domain is depicted in Figure 2. Here, we refer to the experiment of two main culture chambers
(a tumor and an immune cell compartment) connected via narrow capillary migration micro-
channels with, respectively, width and length of 12 μm and 500 μm. Moreover, the channels
height is of 10 μm; however, since in the video footage the experiments is recorded at a
fixed height, the third spatial dimension in our framework is neglected. The cross-sectional
dimensions of culture chambers are 1 mm (width) × 100 μm (height).

A simplified schematization of the bounded surface where the experiment is per-
formed is reported in Figure 2. We have two microfluidic chambers of the same size, one
on the left and the other on the right, defined, respectively, as Ωl = [0, Lx]× [0, Ly] and
Ωr := [Lx + L, 2Lx + L] × [0, Ly]. They are connected by microchannels, each of them
schematized as rectangles R = [0, L]× [a, b]. In order to ease the reading, we point out that
in the sequel we approximate the rectangular microchannels as 1D intervals C = [0, L] with
zero thickness for the following reasons:

- modelling reason the width of microchannels (12 μm) is comparable to the size of cells
(for instance, immune cells measure about 8–10 μm of diameter);

- computational reason to reduce the running time of the simulation algorithm, since
otherwise we should consider a 2D meshgrid for each microchannel.

Then, the link between the box on the left and the corridor is schematized as a junction
(node 1L) and analogously the link between the corridor and the box on the right as node
2L. The two junctions are not really a single point, therefore they are parametrized as an
interval for node 1L and node 2L—namely, [a, b] of length σ := b − a.
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We remark that for the sake of simplicity, the numerical treatment is developed for a
simpler geometry composed by 2D chambers connected through a single 1D channel. The
extension to multiple 1D channels is done in Section 3.2.2.

Figure 1. Microfluidic chip environment: two chambers connected by multiple channels. Credits by
Vacchelli et al. [1] edited by AAAS.
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Figure 2. Simplified schematization of the chip geometry depicted in Figure 1.

1.2. Original Contribution of the Present Paper

From the mathematical and numerical viewpoint, here we deal with a challenging
issue arising in the chemotaxis modelling of cell interaction. The problem involves doubly
parabolic models in 2D domains (microfluifidic chambers) that are connected with 1D do-
mains represented by channels, where either a doubly parabolic or a hyperbolic-parabolic
model can be assigned.

The classical doubly parabolic Keller–Segel (KS) model [4] of chemotaxis reads as:{
ut = div(ν∇u − χ(φ)u∇φ)
φt = DΔφ + au − bφ,

(1)

with u the density of individuals in the considered medium, ν the diffusion rate of the
organism according to Fick’s Law, and φ the density of the chemoattractant. The positive
constant D is the diffusion coefficient of the chemoattractant; the positive coefficients a
and b are, respectively, its production and degradation rates; and χ is the chemotactic
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sensitivity, depending on the density of the considered quantities. In the 2D domains given
by the microfluidic chambers, we apply a reaction-diffusion chemotaxis KS-like model
inspired by (1) and described in Section 2.2.1.

In the 1D microfluidic channels, we use the one-dimensional version of the KS-like
model used in the chambers, but we also study the behavior of individuals when a
hyperbolic-parabolic model, characterized by finite speed of propagation, is assigned.
Such a hyperbolic-parabolic model, described in Section 2.2.1, is inspired by the Greeberg–
Alt (GA) model, arising as a simple model for chemotaxis on a line:⎧⎨⎩

∂tu + ∂xv = 0,
∂tv + λ2∂xu = −v + χ(φ)u∂xφ,
∂tφ = D∂xxφ + au − bφ.

(2)

Note that here v is the averaged flux. Let us underline that the flux v in model (2)
corresponds to v = −λ2∇u + χ(φ)u∇φ for the KS system.

We remark that here we do not consider the GA model on the 2D domain, since in
this case the derivation of the monotonicity condition, easily computed in 1D, it is not
straightforward, due to the oscillations brought by 2D wave equation. One possibility to
overcome this problem should be to consider the macroscopic hyperbolic model proposed
by Preziosi in [9,11]. Alternatively, a kinetic 2D model of chemotaxis and its numerical
approximation is studied in [12].

This system was analytically studied on the whole line and on bounded intervals
in [13], while an effective numerical approximation, the Asymptotic High Order (AHO)
scheme, was introduced in [14]—see also [15,16]—and extended on networks with general
boundary conditions in [17,18].

Here, in the numerical treatment for the computation of numerical solutions one has
to take care of what happens at the interface when switching from 2D-doubly parabolic
models to 1D-doubly parabolic or 1D-hyperbolic-parabolic ones and vice versa.

Since we aim at reproducing the numerical solutions of such models, we need to
deal with a multi-domain problem given by the passage from a 2D domain represented
by the chambers of the chip to 1D domains given by the channels. For this reason we
need to develop ad hoc transmission conditions to ensure mass conservation at the 2D-1D
interfaces. From the numerical viewpoint, here we consider numerical boundary conditions
including in the stencil a ghost cell value taken from the neighbouring domain, as we
will show in the numerical Section 3. The approximation of doubly parabolic chemotaxis
models for the 1D-KS model (1) on networks was already considered in [19]. However, in
that case the transmission conditions were between 1D–1D interfaces and on each arc of
the network the same fully parabolic model was considered. We also underline that in such
work, transmission conditions required to impose the continuity of the density of both cells
u and chemoattractant φ, while we only impose the continuity of the fluxes, which seems
to be more realistic when dealing with flux of individuals or molecules.

For the numerical approximation of the GA system (2), we refer to our previous
papers [14] for a single line. In particular, the numerical treatment of the hyperbolic part of
the system is based on the finite difference AHO scheme with the development of mass-
preserving numerical scheme at outer boundaries, while the parabolic part is approximated
by finite difference and Crank–Nicolson scheme.

In [17,18] the GA system was solved on networks, thus making it necessary to de-
velop mass-preserving transmission conditions at inner nodes (interfaces) and suitable
boundary conditions at outer nodes. However, rgw transmission conditions considered
there involved the mass exchange only between 1D–1D interfaces; moreover, on each arc of
the network, the same model was considered. Furthermore, the second-order numerical
approximation of the boundary conditions developed in such papers did not ensure the
posivity preserving property in the case of oscillating functions.

The numerical approximation of permeability Kedem–Katchalsky [20] conditions
describing the conservation of the flux through a node was already considered in [21],
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but we underline that in the mentioned paper the study was done for the approximation
with finite elements methods of linear problems. For reaction-diffusion problems the
approximation of permeability conditions was studied in [22] for finite difference schemes
and in [23] for discontinuous Galerkin methods. The numerical treatment of permeability
conditions for chemotaxis problems was presented for the first time in [24] for the 1D
parabolic–parabolic interface, and a finite difference approximation was developed without
taking into consideration the mass preservation nor the positivity-preservation properties
at the interfaces.

Therefore, to the best of our knowledge the present paper is the first numerical work
where this new technique of switching the size of the domains and type of equations
(parabolic vs. hyperbolic approach) is introduced, in order to develop mass-preserving and
positivity preserving schemes. We point out that in the present paper the approximation
method—based on finite difference schemes—involves the derivation of suitable zero-flux
boundary conditions. The motivation for our framework based on finite difference methods
seems to be a natural choice when dealing with hyperbolic models of transmission.

1.3. Main Contents and Plan of the Paper

In the present paper, a positivity-preserving and mass-preserving numerical discretiza-
tion of Neumann boundary conditions at the corners and at the bottom and top boundaries
of the 2D domain for a 2D-doubly parabolic reaction-diffusion problem are presented.
Moreover, a positivity-preserving and mass-preserving numerical scheme at the interfaces
of the network connecting the 2D chambers with the 1D channels (where the 1D-doubly
parabolic or 1D-hyperbolic-parabolic problem can be assigned) is developed. To summa-
rize the main contents of the present work, the mathematical issues faced in this study are
categorized into two aspects:

• the study of the behavior of two different modelling of the dynamics in the channels:
the parabolic model describing the dynamics inside the chambers was coupled both
with KS-like and GA-like models;

• the numerical approximation of equations defined in a heterogeneous domain, char-
acterized by the switch from 2D domains, represented by microfluidic left and right
chambers, to 1D domains, given by the channels connecting them.

Then, the numerical questions arising in the mentioned issues and here addressed are:

• the study of positivity and mass-preserving external boundary conditions for 2D-
doubly parabolic model (3);

• the introduction of mass-preserving and positivity-preserving permeability conditions
at the interfaces between 2D and 1D parabolic models—see Section 2.3.2;

• the introduction of mass-preserving and positivity-preserving permeability conditions
at the interfaces between the 2D-fully parabolic model and 1D-hyperbolic-parabolic
model—see Section 2.3.3.

The plan of the paper is as follows. In Section 2 we describe the biological framework
that inspired our study and we introduce the mathematical formulation of biologically
inspired models and we introduce the adopted model. Section 3 is devoted to the numerical
techniques used to approximate the problem and in Section 4 some numerical tests showing
the qualitative behavior of cells in the designed environment are presented. Finally, in
Section 5 a discussion on the results and the future developments of our work is presented.

2. Materials and Methods

The present Section is devoted to:

1. the description of the biological framework and the laboratory experiment that in-
spired our work—see Section 2.1;

2. the mathematical methods—see Section 2.2—bringing us to the development of
a simulation algorithm designed for qualitatively reproducing the experimental
observations.
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2.1. Biological Framework

The control of immune cells migration and interaction with tumor cells living inside
the chambers of the microfluidic chip, represent a new and attractive approach for the
clinical management of tumor diseases. Furthermore, in the chip environment also drug
testing can be exploited. Then, the quantitative assessment of immune cell migration ability
to recognize and attack the tumor cells for each patient could provide a new potential
parameter predictive of patient outcomes in the future.

Migrating cells respond to complex chemical stimuli (as a mixture of growth factors,
cytokines, and chemokines), representing a source of chemoattractants. These chemoat-
tractants, through the interaction with their receptors, allow cells to acquire a polarized
morphology and to perform the action of immunosurveillance.

The development of lab-on-chip technologies has made it possible to realize a repro-
ducible tailoring of the cellular microenvironment, thus allowing the continuous mon-
itoring of experiments and the accurate control of experimental parameters. Recently,
the development of microengineering has provided the possibility to realize culturing of
multiple cell types and made it possible to observe cell-cell interactions and to transpose in
vivo studies to a second generation of in vitro smart environments. The main advantages of
this new technological tool are a close control over local experimental conditions and lower
costs with respect to the use of animals in laboratory experiments for efficacy and toxicity
testing. Some results obtained with on-chip experiments are presented in [1,2,25–27].

Regarding the structure of microfluidic devices, they are designed to allow chemical
and physical contacts between tumor cells and non-adherent immune cells (i.e., murine
splenocytes or human peripheral blood mononuclear cells). The microfluidic co-culture
platforms are fabricated in polydimethylsiloxane (PDMS, Silgard 184), a biocompatible
optically transparent silicone elastomer.

2.1.1. Setting of the Laboratory Experiments

Here, we shortly describe the laboratory experiments inspiring our work (see [1]) and
carried out in the microfluidic chip environment; see Figure 1. Two populations, immune
cells of wild type and cancer cells, are initially put into two separate chambers and can
have physical and chemical contact through the microchannels. In more detail, rgw cells
are loaded into the reservoirs as follows: the left chambers are filled with about 2 × 106

human peripheral blood mononuclear cells and the right chambers with about 5 × 104

breast cancer cells, pre-treated or not with doxorubicin hydrochloride, all immersed in
a suitable culture medium. Time-lapse recordings are performed over a period of 72 h
(1 microphotograph every 2 min) by means of a microscope placed directly inside the CO2
incubator for the duration of the recording.

We consider two different scenarios:

• first scenario (treated case): before enabling cells to migrate, tumor cells are previously
treated with a chemoterapy drug. Afterwards, we observe immune cells migrating
towards the left chamber where the tumor remains confined, but expresses the chemi-
cal stimuli attracting immune cells. Mainly, the dynamics observed in this case is the
migration of immune cells from the right to the left in order to attack the tumor cells.

• second scenario (untreated case): tumor cells migrate in the right chamber and prolif-
erate. In this case, the tumor cells do not produce chemoattractant, thus immune cells
move in the environment without recognizing and attacking tumor cells.

The culture medium in both cases is neutral, thus meaning that no exogenous sub-
stances are introduced. Our aim is then to build a simulation algorithm based on the
mathematical model, which is able to reproduce the main features of the observed phe-
nomena in the two scenarios.

2.2. Mathematical Framework

For the development of the mathematical modelling explained in the next section,
we remark that we neglect the third dimension, since we do not have laboratory measure-
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ments of the movement of cells in the vertical direction. For this reason we consider the
microfluidic chambers as 2D objects. Nowadays, the mathematical analysis of biological
phenomena has become an important tool to explore complex processes and to detect
mechanisms that might not be evident to the experimenters. Although a mathematical
model cannot replace a real experiment, it may represent a support tool to explain acquired
biological data and it may allow to gain a deeper understanding of the interactions between
cancer cells and the immune system. More generally, mathematical models can describe a
broad variety of biological phenomena, including cell dynamics and cancer [28–32].

The movement of bacteria under the effect of a chemical substance has been widely
studied in the last few decades, and numerous mathematical models have been proposed.
As shown in [33], chemotaxis is decisive in biological processes. For instance, the formation
of cells aggregations (amoebae, bacteria, etc) occurs during the response of the different
species to the change of the chemical gradients in the environment. Moreover it is possi-
ble to describe this biological phenomenon at different scales: particles models, hybrid
(multiscale) models and macroscopic models.

In the present paper, the population density is assumed to be as a whole, thus macro-
scopic models of partial differential equations are considered. In particular, in order to describe
the dynamics of cells in the 2D chambers we use a KS-like model, while in the microchannels
we compare the behavior between two different modelization: a 1D KS-like model and a 1D
GA-like model. The modelling here applied is described in the next Section 2.2.1.

2.2.1. The Model

Here, we introduce a mathematical model that aims at describing the behavior of two
populations of cells coexisting together: tumoral cells T and immune cells (macrophages)
M. We underline that the setting here considered can be made more complex with the
introduction of a greater number of cell species and with the presence of an exogenous
substance in the environment.

The model consists of a reaction-diffusion system with chemotaxis that it is able to
describe birth and death processes, interactions with chemoattractants, interactions and
competition between different cell species. The microfluidic chip is schematized as a
network of channels connecting two boxes (the microfluidic chambers), then, following the
ideas in [17], ad hoc transmission conditions were introduced to ensure mass conservation.
The parameters of the model, such as the velocity of different cell populations, the turning
rates, and the decay rates, will be calibrated with rgw observed data.

Cancer cells T produce chemical signals, called ϕ, activating the immune response of
M and influencing their behavior. Moreover, we take into account the presence of cytokines
ω (produced by M), acting as a chemical killer of cancer cells. Mainly referring to the KS
model, the model here considered in the 2D chambers reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t T = DTΔT − λT(ω)T,
∂
∂t M = DMΔM − div(χ(ϕ)M∇ϕ),

∂
∂t ϕ = DϕΔϕ + αφT − βϕ ϕ,

∂
∂t ω = DωΔω + αω M − βωω.

(3)

The system above describes the dynamics of the two cell species and the diffusion
of the chemoattractant, and it needs to be complemented with suitable initial conditions
and boundary conditions for the cells and the chemoattractant concentrations, as will be
specified in the following paragraphs.

In particular, bearing in mind the first scenario (treated tumor), the system above
describes the following situation: tumor cells T produce a chemical substance ϕ attracting
immune cells M, that start migrating towards them. In this case, the tumor does not
proliferate, since it is treated by a chemotherapy medicine, thus we do not include this
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feature in the model. Immune cells do not seem to proliferate during the experiment,
thus we neglect this feature in the model. Note that, although here we are neglecting the
proliferation of tumor, a tumor growth is observed experimentally in the second scenario
(untreated tumor). This feature can be easily added to the model by putting a linear or
logistic source term in the equation for the tumor.

Immune cells also produce a chemical substance ω which should be responsible for
tumor killing. Therefore, in the first equation of the system (3), besides the diffusion term
we can find −λT(ω)T, representing the tumor suppression operated by immune cells. We
underline that at the moment we have no information from the biologists about the real
killing rate in the microchip environment induced by ω, but we decided to introduce it in
order to include this phenomenon in the model qualitatively.

In the second equation, in addition to the diffusion term we have the chemotactic term
f = χ(ϕ)∇ϕ due to the presence of the chemical substance ϕ produced by the tumor.

In order to define the action of the cytotoxin ω produced by immune cells (which
determines the death of cancer cells), we introduce the function λT(ω):

λT(ω) =
Sω

γ + ω
, (4)

where S is the maximum secretion rate of the cytotoxin by the immune cells and γ the
equivalent Michaelis constant associated with the production, as described in [33]. A lot of
effort has been devoted to finding a biologically accurate expression for the chemotaxis
function χ(ϕ) representing the chemotactic sensitivity of immune cells; here, we refer the
form suggested in [34] by Lapidis and Schiller:

χ(ϕ) =
k1

(k2 + ϕ)2 , (5)

where k1 represents the cellular drift velocity, while k2 is the receptor dissociation constant,
which says how many molecules are necessary to bind the receptors. Note that we mainly
refer to [33] for the values of the parameters k1, k2, and all the parameters of the model are
reported in Table 1.

Now, in order to describe the dynamics of cells in the microchannels connecting
the two boxes, we introduce the following 1D models for the dynamics, with the label
c indicating the channels. Then, we consider two possible models in the channels: a
diffusive one: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t Tc = DT∂xxTc − λT(ω)Tc,

∂
∂t Mc = DM∂xx Mc − ∂x(Mc fc),

∂
∂t ϕc = Dϕ∂xx ϕc + αϕTc − βϕ ϕc,

∂
∂t ωc = Dω∂xxωc + αω Mc − βωωc,

(6)

50



Mathematics 2021, 9, 688

and a hyperbolic one: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tTc + ∂xvT
c = −λT(ω)Tc,

∂tvT
c + DT∂xTc = −vT

c ,

∂tωc = Dω∂xxωc + αωTc − βcωc,

∂x Mc + ∂tvM
c = 0,

∂tvM
c + DM∂x Mc = Mc fc − vM

c ,

∂t ϕc = Dϕ∂xx ϕc + αϕTc − βϕ ϕc,

(7)

with Tc and Mc, respectively, as the density of tumor and immune cells; fc = χ(ϕc)∂x ϕc
and vT

c and vM
c , respectively, as the average flux of tumor cells Tc and immune cells Mc in

the channels. Note that the 1D-doubly parabolic model (6) is the one-dimensional version
of the system (3), while (7) is the 1D-hyperbolic-parabolic model inspired by GA model [5].
We remark that, for the hyperbolic-parabolic system (7), we also need to assign initial and
boundary conditions for the flux v.

2.2.2. The Simplified Model

To present the numerical scheme, we write a simpler model with respect to (3) but
share the main features of it:{

∂tu = DuΔu − divF + g(x, y, t, u),
∂tφ = DφΔφ + au − bφ,

(8)

with u as the density of individuals, φ as the density of chemoattractant, and with F = u f .
From now on, the two components of the drift term f = χ(φ)∇φ will be indicated as:

f(x, y, t) :=
(

f x(x, y, t)
f y(x, y, t)

)
.

For the mono-dimensional channel, in order to make the explanation of the numerical
approximation easier, we consider simpler models sharing the same characteristics of the
models in (6) and (7), which read as:{

∂tuc = Duc ∂xxu − ∂xFc + g(x, t, u),
∂tφc = Dφc ∂xxφc + acuc − bcφc

(9)

or ⎧⎨⎩
∂tuc + ∂xvc = g(x, t, uc),
∂tvc + λ2

c ∂xuc = Fc − vc,
∂tφc = Dφc ∂xxφc + acuc − bcφc,

(10)

with Fc = uc fc. The systems above have to be complemented with smooth initial conditions
for the unknowns u, φ and also v for system (10); initial data will be specified in Section 3.3.
On the boundary, we consider for all the quantities homogeneous Neumann conditions, so
we assume no-flux boundary conditions.

Monotonicity conditions. We also mention at this point that model (10) requires an
analytical monotonicity criteria; see [35]. For a linear convection term Auc and a linear
source term g = Buc, the sub-characteristic criteria∣∣∣∣ A

λc

∣∣∣∣− B ≤ 1,
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must be satisfied in order for the quantity uc to be non-negative. Otherwise, having a
negative uc would lead to unphysical solutions.

With regard to our former model (7), that would mean we have for the immune cell
density M the monotonicity condition:

k1

(k2 + ϕc)
2 |∂x ϕc| ≤

√
DM. (11)

This needs to be verified in the computational domain in order to ensure non-negative solutions.

Remark 1. We remark that the no-flux conditions boundary conditions used in our simulations
are needed to have the mass-conservation of all the quantities. However, they are not realistic, since
in the laboratory experiment there is an inflow of cells from the outer boundaries. Then, we aim at
extending the no-flux boundary conditions to more general ones.

In the following section, in order to discuss mass-conservation we restrict our study
on a 2D closed rectangular domain named Ωnc (i.e., box without the channels) and on
single lines not connected at the outer boundaries, as indicated by Cnc.

2.3. Outer Boundary and Interface Conditions for the Models with Null Source Term G

From now on, we consider a further simplified version of the models presented above
putting the source term g equal to zero to discuss mass conservation.

2.3.1. Boundary Conditions for the 2d Doubly Parabolic Model (8) with G = 0.

Here, we consider the mass conservation of cell density u for zero-flux conditions at
the outer boundaries of a rectangular closed domain Ωnc for the 2D model (8) with a null
source term.

Indeed, since our model describes the migration of cells by both diffusion and chemoat-
tractant effects, physically speaking the mass of cells must be preserved in the absence of
the creation and destruction of cells.

For this reason, we assume a no-flux condition for the density u and the chemoat-
tractant φ. Since we define the source term f as a product function of �φ, we get the
no-flux conditions:

F(x, y, t)n|∂Ωnc = 0, ���u(x, y, t)n |δΩnc
= 0, (x, y) ∈ ∂Ωnc, (12)

These guarantee mass conservation.

2.3.2. Interface between 2D-1D Models in (8) and (9)

We remark that, for simplicity, the following description focuses on the left part of the
domain—i.e., Ωl and its connection with a single microchannel represented by the interval
[0, L]. However, the numerical treatment holds analogously on the right side of the domain
and also to multiple channels.

In the 2D left box Ωl , the position of node 1L is at x = Ly, y ∈ [a, b] and for the 1D
domain, represented by a given number of channels C, node 1L is placed at x = 0 (left
endpoint of the channel); see Figure 2.

In order to ensure the conservation of the total mass when the mass-exchange occurs,
we introduce suitable transmission conditions at the interface between 2D and 1D domains.
Then, we consider the simplified models (9) or (10) for 1D channels, with g = 0.

In particular, we have to prescribe the flux conservation at the 2D-1D interfaces, since
we cannot lose or gain any cells during the passage through a node.

The conservation condition for u reads as:

d
dt

∫
Ωl

u(x, y, t)dΩl +
d
dt

∫ L

0
uc(x, t)dx = 0,
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and it rewrites as:

0 =
∮

∂Ωl

(Du���u(x, y, t)− F(x, y, t))ndS

+(Duc ∂xuc − Fc(x, t))|0L
by using the divergence theorem in the first integral. With our analytical boundary condi-
tions, the integral vanishes, except at the boundary where the node is positioned.

We remark that attention has to be paid to n being the outer normal of the domain.
Thanks to the boundary conditions (12), we get the condition:

∫ b

a
(Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t))dy = Duc ∂xuc(0, t)− Fc(0, t). (13)

Note that in this case, the evaluation of the integrand at the right endpoint L is
discarded, since we are only considering the junction connecting Ωl with the left endpoint
x = 0 of the microchannel (see Figure 2).

Now, we impose Kedem–Katchalsky (KK) [20] conditions describing the conservation
of the flux through a node (see also [21] for the numerical treatment of these conditions). In
particular, at the interface between the left chamber and the channels, we have (on the left
of node 1L in Figure 2):

Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b] (14)

On the right of node 1L, we have:

Duc ∂xuc(0, t)− Fc(0, t) = Kuc(0, t)(b − a)−
∫ b

a
u(Lx, y, t)dy. (15)

Thanks to conditions (14) and (15), we are guaranteed to have the flux conservation
(13), and we will use such conditions to obtain numerical boundary conditions for the
boundary values at the nodes on both sides, as shown in Section 3 and in Section 3.1.2.

2.3.3. Interface between 2D-1D Models in (8)–(10)

In this section, we describe the combination of 2D parabolic-1D hyperbolic model in
order to describe the dynamics with a hyperbolic model in the channels. Further care has
to be given in order to keep some important properties which ensure the consistency and
non-negativity of numerical solutions when connecting both models.

Now, the transmission conditions for the switch from Ωl to C = [0, L] are derived in
this case. For the mass conservation of u, we impose the condition:

0 =
d
dt

∫
Ωl

u(x, y, t)dΩl +
d
dt

∫ L

0
uc(x, t)dx

=
∫

Ωl

(Du�u(x, y, t)− divF(x, y, t))dΩl +
∫ L

0
−∂xv(x, t)dx

=⇒
∮

∂Ωl

(Du���u(x, y, t)− F(x, y, t)n)dS + v(0, t) = 0.

Note that in the above formula, we have v(L, t) = 0 because we are looking at left
interface (node 1L). Then, we finally get:

∫ b1

a1

(Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t))dy = −v(0, t). (16)

Now, we impose the KK-condition at the interface:

Du∂xu(Lx, y, t)− u(Lx, y, t) f x(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b]

53



Mathematics 2021, 9, 688

Then, (16) reads as:

v(0, t) = −K(b − a)uc(0, t) + K
∫ b

a
u(Lx, y, t)dy. (17)

3. Numerical Approximation

In this section, we describe the numerical approximation of the adopted models:
2D-doubly parabolic, 1D-doubly parabolicm and 1D-hyperbolic-parabolic. We define
equispaced xi := i�x, yj := j�y, and tn := n�t with �x, �y, �t > 0, and i = 0, . . . , Nx +
1, j = 0, . . . , Ny + 1; for channel [0, L], we discretize it as xi = i�x, with i = 0, . . . , N. For a
more structured presentation, we introduce the operators:

δ2
xun

i,j := un
i+1,j − 2un

i,j + un
i−1,j, δ2

yun
i,j := un

i,j+1 − 2un
i,j + un

i,j−1,
δ0

xun
i,j := un

i+1,j − un
i−1,j, δ0

yun
i,j := un

i,j+1 − un
i,j−1,

δ1
xun

i,j := un
i+1,j − un

i,j, δ1
yun

i,j := un
i,j+1 − un

i,j.

Remark 2. Note that special attention has to be paid also to the stiffness induced by the source
term g(x, y, t, u). To overcome this issue, implicit methods can be used, such as the Crank–Nicolson
method, which is associated with a Δt that is small enough.

Mass-preserving and (numerically)-positivity-preserving approximations will be de-
veloped in the present section. In the following, we will neglect the label c to make the
reading easier and we will make distinctions only when necessary.

3.1. The Parabolic-Parabolic Case

Here, we introduce a numerical scheme for the doubly parabolic systems (8) and (9)
for g = 0.

For the discretization of equations in a 2D system (8) in the interior points of the
domain—i.e., for i = 1, . . . , Nx, j = 1, . . . , Ny, we define a finite difference discretization
both for u and φ:

un+1
i,j = un

i,j + Du
�t
2

[
δ2

x(un
i,j+un+1

i,j )

�x2 +
δ2

y(un
i,j+un+1

i,j )

�y2

]
−�t(δ0

xFx,n
i,j + δ0

y Fy,n
i,j ),

(18)

φn+1
i,j = φn

i,j + Dφ
�t
2

[
δ2

x

(
φn

i,j+φn+1
i,j

)
�x2 +

δ2
y

(
φn

i,j+φn+1
i,j

)
�y2

]
+�t

2 a(un
i,j + un+1

i,j )− �t
2 b(φn

i,j + φn+1
i,j ).

(19)

Note that Fx,n
i = χ(φn

i,j)u
n
i,jδ

0
xφn

i,j with δ0
xφn

i,j a centered second order approximation of φx.
For a 1D system (9), in the interior points of the channel C we apply the Crank–

Nicolson scheme, as above:

uc,n+1
i = uc,n

i + Duc
Δt
2

δ2
x

(
uc,n

i +uc,n+1
i

)
�x2 − Δtδ0

xFn
c,i,

(20)

φc,n+1
i = φc,n

i + Dφc
�t
2

δ2
x

(
φc,n

i +φc,n+1
i

)
�x2

+�t
2 ac(uc,n

i + uc,n+1
i )− �t

2 bc(φ
c,n
i + φc,n+1

i ).
(21)

Remark 3. We remark that here, for simplicity, upwinding terms needed to avoid meshgrid restrictions
caused by a large Péclet number—see, for instance [36]—are not included in the schemes (18) and (20).
In this case, assuming a small Δx and Δy will be enough to avoid oscillations.

The upwinding be added in the implemented scheme described in Section 3.3.
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Stability condition. By using the Von-Neumann stability analysis on the linearized
problem, we derive the following condition for the Crank–Nicolson schemes above, [37]:

Du
�t
�x2 ≤ 1 for 1D, Du

�t
�x2 + Du

�t
�y2 ≤ 1 for 2D. (22)

In the following, we present the discretization of the boundary and transmission
conditions to complete the numerical schemes.

3.1.1. Discretization of the Outer Boundary Conditions for the Doubly Parabolic Problem

Since a qualitative characteristic of the model is the preservation of total mass for
zero-flux boundary conditions, the first step is to ensure the mass preservation at each
time step in a closed 1D line Cnc and, analogously, in a closed 2D chamber, namely Ωnc.
To this aim, we have to choose discrete boundary conditions that both are consistent with
the analytical boundary conditions and preserve the mass in the numerical method. We
remark that we present the computations without source term g, and we will add it in the
following to complete the equations.

Boundary conditions for the density of individuals u in 1D model (9).
Here, we consider Neumann boundary conditions ∂u

∂x (x, t) = 0. If we discretized it
with a (standard) forward finite difference scheme:

∂xu(0) =
uc,n

1 − uc,n
0

Δx
, (23)

the mass will not be preserved over time, as shown in the numerical Example 1. Therefore,
in order to have mass preservation, we use the central finite difference approximation with
a ghost cell:

∂xu(0) =
uc,n

1 − uc,n
−1

2Δx
. (24)

At the outer boundaries at the first (x0 = 0) and last (xN+1 = L) endpoint of the
channels, we assign the numerical schemes:

uc,n+1
0 = uc,n

0 + Duc

�t
�x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− �t

�x
(Fn

c,1 + Fn
c,0) (25)

and
uc,n+1

N+1 = uc,n
N+1 − Duc

�t
�x2 δ1

x

(
uc,n

N + uc,n+1
N

)
+

�t
�x

(Fn
c,N + Fn

c,N+1), (26)

with Fn
c,0 = 0 in (25) and Fn

c,N+1 = 0 in (26), since we are imposing zero flux at the
boundaries. The boundary conditions above are mass-preserving by construction, as stated
in the following proposition.

Proposition 1. The 1D numerical scheme at the internal points introduced above, namely:

uc,n+1
i = uc,n

i + Duc

�t
2�x2 δ2

x(u
c,n
i + uc,n+1

i )− �t
2�x

δ0
xFn

c,i, (27)

endowed with boundary conditions (25) and (26), is mass-preserving by construction, since it is
obtained by imposing In+1 − In = 0.

Proof. The mass conservation over time on the closed domain Ωnc reads as:

I(t) =
∫

Ωnc
u(t, x, y)dΩnc =

∫
Ωnc

u(0, x, y)dΩnc = I(0). (28)
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Now, applying a quadrature rule for the numerical integration:

In ≈
∫

Ωnc
u(t, x, y)dΩnc. (29)

We need to ensure that In+1 = In.
For the numerical integration, different quadrature formulas can be used; in particular,

we applied closed Newton–Cotes formulas to take into account the values at the boundaries.
By using the trapezoidal rule with an integration error of O(�x2) and imposing the
equality In+1 − In = 0 in the 1D case, one obtains:

�x

(
uc,n+1

0
2

− uc,n
0
2

+
N

∑
i=1

(
uc,n+1

i − uc,n
i

)
+

uc,n+1
N+1
2

− uc,n
N+1
2

)
= 0.

Using the numerical scheme (20) for uc,n+1
i in (30) for i = 1, . . . , N we have:

�x
(

uc,n+1
0 −uc,n

0
2 +Duc�t

2�x2 ∑N
i=1 δ2

x

(
uc,n

i + uc,n+1
i

)
− �t

2�x

N

∑
i=1

δ0
xFn

c,i +
uc,n+1

N+1 − uc,n
N+1

2

)
= 0.

Now, using the definition of δ0
xFn

c,i in the sum, the above formula becomes:

uc,n+1
0 − uc,n

0 − Duc
�t
�x2

(
uc,n

1 + uc,n+1
1 − (uc,n

0 + uc,n+1
0 )

)
+ �t

�x

(
Fn

c,0 + Fn
c,1

)
+uc,n+1

N+1 − uc,n
N+1 − Duc

�t
�x2

(
uc,n

N + uc,n+1
N − (uc,n

N+1 + uc,n+1
N+1 )

)
−�t

�x

(
Fn

c,N + Fn
c,N+1

)
= 0.

We can now compute the values for both un+1
0 and un+1

N+1 so that the term equals zero.
By collecting values from nearby stencils together (otherwise we obtain an error of O(�x),
which can be verified by Taylor expansion), at the outer boundaries of 1D domain we obtain
the schemes (25) and (26). Note that in the formula above, by imposing homogeneous
Neumann boundary conditions we have f n

0 = 0 and f n
N+1 = 0.

We also remark that besides imposing the stability condition (22), Δx has to be small
enough in order to ensure the positivity of the scheme for taking into account the possibility
of having a negative term brought by f n

1 or f n
N in (25) and (26), respectively.

Remark 4. Although here we are not proving that, the scheme (27) is in practice second order
in the space up to the boundaries, since it can be equivalently obtained using the second-order
approximation of the first derivative including a ghost cell reported in (24).

We underline that for f �= 0, even using formula (24), the approach with the discrete
integral equation is necessary for ensuring the mass preservation. Furthermore, by using a
different numerical integration scheme, we can achieve different mass-preserving boundary
conditions of a higher order.

Boundary conditions for the density of individuals u in 2D model (8).
Let us assume there are no-flux conditions at the boundaries. Then, in this case we

consider the 2D closed domain Ωnc.
Using the mass-preserving property argument, we compute boundary conditions

for the corners and the top and bottom boundaries of Ωnc. By applying them with the
numerical method (18) into In+1 − In = 0, we obtain the expression:

�t�x
4

(
−4�t

Nx

∑
i=1

Ny

∑
j=1

(
δ0

xFx
i,j + δ0

y Fy
i,j

))
= 0,
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since the terms in u cancel. By plugging in it the expression of the central in rgw space
second-order finite difference scheme δ0

x f x,n
j for div(f), we obtain:

1
�y

Nx

∑
i=1

(
Fy,n

i,Ny+1 + Fy,n
i,Ny

− Fy,n
i,1 − Fy,n

i,0

)
+ 1

�x

Ny

∑
j=1

(
Fx,n

Nx+1,j + Fx,n
Nx ,j − Fx,n

1,j − Fx,n
0,j

)
= 0.

Now, we can distribute the remaining values to the boundaries in the same way
as above for the 1D-parabolic case. Therefore, we obtain the following mass-preserving
boundary conditions for the corners:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
0,0 = un

0,0 + Du
�t

2�x2 δ1
x

(
un

0,0 + un+1
0,0

)
+ Du

�t
2�y2 δ1

y

(
un

0,0 + un+1
0,0

)
,

un+1
Nx+1,0 = un

Nx+1,0 − Du
�t

2�x2 δ1
x

(
un

Nx ,0 + un+1
Nx ,0

)
+Du

�t
2�y2 δ1

y

(
un

Nx+1,0 + un+1
Nx+1,0

)
,

un+1
0,Ny+1 = un

0,Ny+1 + Du
�t

2�x2 δ1
x

(
un

0,Ny+1 + un+1
0,Ny+1

)
−Du

�t
2�y2 δ1

y

(
un

0,Ny
+ un+1

0,Ny

)
,

un+1
Nx+1,Ny+1 = un

Nx+1,Ny+1 − Du
�t

2�x2 δ1
x

(
un

Nx ,Ny+1 + un+1
Nx ,Ny+1

)
−Du

�t
2�y2 δ1

y

(
un

Nx+1,Ny
+ un+1

Nx+1,Ny

)
.

(30)

For the edges of the box Ωnc, i = 1, . . . , Nx and j = 1, . . . , Ny, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
i,0 = un

i,0 + Du
�t

2�x2 δ2
x

(
un

i,0 + un+1
i,0

)
+ Du

�t
�y2 δ1

y

(
un

i,0 + un+1
i,0

)
−�t

�y Fy,n
i,1 ,

un+1
i,Ny+1 = un

i,Ny+1 + Du
�t

2�x2 δ2
x

(
un

i,Ny+1 + un+1
i,Ny+1

)
−Du

�t
�y2 δ1

y

(
un

i,Ny
+ un+1

i,Ny

)
+ �t

�y Fy,n
i,Ny

,

un+1
0,j = un

0,j + Du
�t
�x2 δ1

x

(
un

0,j + un+1
0,j

)
+ Du

�t
2�y2 δ2

y

(
un

0,j + un+1
0,j

)
−�t

�x Fx,n
1,j ,

un+1
Nx+1,j = un

Nx+1,j − Du
�t
�x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)
+Du

�t
2�y2 δ2

y

(
un

Nx+1,j + un+1
Nx+1,j

)
+ �t

�x Fy,n
i,Ny

.

(31)

We underline that in the above formulas the terms Fx,n and Fy,n on the edges of the
domain cancel because of the homogeneous Neumann boundary condition on φx and φy.

Boundary conditions for the density of chemoattractant φ in 1D model (9).
For the computation of the conditions at the outer boundaries for the chemoattractant

φc in the 1D-doubly parabolic model we proceed as above, but neglect the source term
acuc − bcφc to obtain boundary conditions that are mass-preserving.

Proceeding as above, we achieve the following mass-preserving boundary conditions
for the chemoattractant:⎧⎨⎩ φc,n+1

0 = φc,n
0 + Dφc

�t
�x2

(
δ1

xφc,n
0 + δ1

xφc,n+1
0

)
φc,n+1

N+1 = φc,n
N+1 − Dφc

�t
�x2

(
δ1

xφc,n
N + δ1

xφc,n+1
N

) (32)
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This, under the CFL condition (22), is second-order accurate and positivity-preserving
up to the boundaries. The parabolic equation in the interior points is solved using an
implicit-explicit method:

φc,n+1
i = φc,n

i + Dφc

�t
2�x2 δ2

x

(
φc,n

i + φc,n+1
i

)
. (33)

Boundary conditions for the density of chemoattractant φ in 2D model (8).
Reasoning as above, by applying the numerical method (19) we obtain the following

boundary condition for the chemoattractant at the corners:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1
0,0 = φn

0,0 + Dφ
�t
�x2 δ1

x(φ
n
0,0 + φn+1

0,0 ) + 2Dφ
�t
�y2 δ1

y(φ
n
0,0 + φn+1

0,0 )

φn+1
Nx+1,0 = φn

Nx+1,0 − Dφ
�t
�x2 δ1

x(φ
n
Nx+1,0 + φn+1

Nx+1,0)

+Dφ
�t
�y2 δ1

y(φ
n
Nx+1,0 + φn

Nx+1,0)

φn+1
Nx+1,Ny+1 = φn

Nx+1,Ny+1 − Dφ
�t
�x2 δ1

x(φ
n
Nx ,Ny+1 + φn+1

Nx ,Ny+1)

−Dφ
�t
�y2 δ1

x(φ
n
Nx+1,Ny+1 + φn

Nx+1,Ny
)

φn+1
0,Ny+1 = φn

0,0 + Dφ
�t
�x2 δ1

x(φ
n
1,Ny+1 + φn+1

1,Ny+1)

−Dφ
�t
�y2 δ1

y(φ
n
0,Ny

+ φn+1
0,Ny

)

(34)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1
i,0 = φn

i,0 + Dφ
�t
�x2 δ2

x(φ
n
i,0 + φn+1

i,0 ) + 2Dφ
�t
�y2 δ1

y(φ
n
i,0 + φn+1

i,0 )

φn+1
i,Ny+1 = φn

i,Ny+1 + Dφ
�t
�x2 δ2

x(φ
n
i,Ny+1 + φn+1

i,Ny+1)

−2Dφ
�t
�y2 δ1

y(φ
n
i,Ny

+ φn+1
i,Ny

)

φn+1
0,j = φn

0,j + Dφ
�t
�y2 δ2

y(φ
n
0,j + φn+1

0,j ) + 2Dφ
�t
�x2 δ1

x(φ
n
0,j + φn+1

0,j )

φn+1
Nx+1,j = φn

Nx+1,j + Dφ
�t
�y2 δ2

y(φ
n
Nx+1,j + φn+1

Nx+1,j).

−2Dφ
�t
�x2 δ1

x(φ
n
Nx ,j + φn+1

Nx ,j )

(35)

We now have a complete numerical method to solve the system (8) on Ωnc and the 1D
version of it (9) on Cnc.

Let us now turn to the complete domain depicted in Figure 2 in order to develop
mass-preserving transmission conditions at the nodes of the network. We remark that for
the sake of clarity, for the development of the numerical transmission conditions here we
consider just the junction—indicated as node 1L—connecting the left box Ωl and a single
channel parametrized as an interval C = [a, b].

3.1.2. Discretization of the Transmission Conditions for the 2D-1D Doubly Parabolic Case

The choice of suitable transmission conditions is crucial, since it should reflect the
qualitative attributes of the analytical model.

Here, we use ghost values (24) in order to obtain the numerical boundary conditions,
since in such a way mass-preserving and positivity-preserving properties are ensured.

By using the central approximation formula for div f in the condition (14) on the left
of node 1L, we have:

Du∂xu(Lx, y, t)− Fx(Lx, y, t) = K(uc(0, t)− u(Lx, y, t)) for y ∈ [a, b].
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Then we have:

Du
un

Nx+2,j−un
Nx ,j

2�x = K
(

uc,n
0 − un

Nx+1,j

)
+ Fx,n

Nx+1,j

and we get:

un
Nx+2,j = un

Nx ,j + K 2�x
D

(
uc,n

0 − un
Nx+1,j

)
+ 2�x

Du
Fx,n

Nx+1,j (36)

for j = ja, . . . , jb.
Moreover, using the central approximation for ∂xuc in (15),
we finally get the formula:

uc,n
−1 = uc,n

1 − K
2�x
Duc

(b − a)uc,n
0 +

2�x
Duc

Δy
jb

∑
j=ja

K(un
Nx+1,j + un+1

Nx+1,j)−
2�x
Duc

Fn
c,0. (37)

We now use the Ansatz to apply the ghost values into the 1D (27) and 2D (18) numerical
schemes without specific chemotactic approximation, and use the discrete integral equation
to determine the chemotactic term discretization.

Since we need to conserve the mass in each domain, but also in both connected ones,
the expanded discrete integral equation is needed to compute the total mass over both
domains.

Plugging the ghost values (36) and (37), respectively, into the numerical schemes (18)
and (27), we get the conditions at the interface (node 1L):

un+1
Nx+1,j = un

Nx+1,j − Du
�t
�x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)
+ 2K �t

�x

(
uc,n

0 − un
Nx+1,j

)
+Du

�t
2�y2 δ2

y

(
un

Nx+1,j + un+1
Nx+1,j

)
+2 �t

�x Fx,n
Nx+1,j −�tδ0

xFx,n
Nx+1,j −�tδ0

y Fy,n
Nx+1,

(38)

and
uc,n+1

0 = uc,n
0 + Duc

�t
�x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− 2K �t

�x (b − a)uc,n
0

+2K�t�y
�x

jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)
−2 �t

�x Fn
c,0 − �t

2Δx δ0
xFn

c,0.

(39)

In particular, the conservation of the discrete total mass reads as:

In+1
1D + In+1

2D − In
1D − In

2D = 0, (40)

Now, applying the conditions (38) and (39) with the other boundary conditions (31)
and (25), we get:

�x( − K �t
�x (b − a)uc,n

0 + K�t�y
�x

jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)
−�t

�x Fn
c,0 − �t

2 δ0
xFn

c,0 +
�t

2�x

(
Fn

c,0 + Fn
c,1

))
+ �x�y

4 ( 2
jb

∑
j=ja

(
2K

�t
�x

(
uc,n

0 − un
Nx+1,j

)
+ 2

�t
�x

Fx,n
Nx+1,j −�tδ0

xFx,n
Nx+1,j

−�tδ0
y Fy,n

Nx+1,j

)
− 2�t

�x

jb1

∑
j=ja1

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− 2�t

�y

jb

∑
j=ja

(
Fy,n

Nx+1,j + Fy,n
Nx ,j

))
= 0,

We can then obtain the following transmission conditions:
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uc,n+1
0 = uc,n

0 + Duc

�t
�x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− �t

�x
(Fn

c,1 + Fn
c,0)︸ ︷︷ ︸

same as for BC without transmission condition

−2K �t
�x (b − a)uc,n

0 + 2K �t
�x

jb

∑
j=ja

un
Nx+1,j + un+1

Nx+1,j,

(41)

un+1
Nx+1,j = un

Nx+1,j − Du
�t
�x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)
+Du

�t
2�y2 δ2

y

(
un

Nx+1,j + un+1
Nx+1,j

)
+ �t

�x

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− �t

2�y

(
Fy,n

Nx+1,j+1 − Fy,n
Nx+1,j−1

)
+ 2K

�t
�x

(
uc,n

0 − un
Nx+1,j

)
︸ ︷︷ ︸

additional term for transmission condition,

(42)

for j = ja, . . . , jb.
Proceeding analogously as above, this approach leads to mass-preserving and positivity-

preserving transmission conditions for the chemoattractant φ as well. In particular, we
have at the first and last endpoint, respectively:

φc,n+1
0 = φc,n

0 + Dφc
�t
�x2

(
δ1

xφc,n
0 + δ1

xφc,n+1
0

)
+�tacuc,n

0 −�tbcφc,n
0

−2K �t
�x (b − a)φc,n

0 + 2K �t
�x

∫ b

a
φ(Lx, y, tn)dy

and

φn+1
Nx+1,j = φn

Nx+1,j + Dφ
�t
�y2 δ2

y(φ
n
Nx+1,j + φn+1

Nx+1,j)

−2Dφ
�t
�x2 δ1

x(φ
n
Nx ,j + φn+1

Nx ,j )

+a�tun
Nx+1,j − b�tφn

Nx+1,j + 2K �t
�x

(
φc,n

0 − φn
Nx+1,j

)
.

(43)

We have finally developed a complete numerical scheme to treat doubly parabolic
partial differential equations systems in two domains, 1D and 2D, connected through a
node, which ensures by construction the mass conservation as the original PDE. Numeri-
cally, the scheme also ensures the positivity preserving property under the monotonicity
conditions discussed in Section 3.3.1.

3.2. The Hyperbolic-Parabolic Case

The second-order AHO scheme on a line was introduced in [14] for the 1D hyperbolic
system (2). Here, considering the presence of the source term g on the right hand side of
the equation for the density of cells, the AHO scheme of second order reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uc,n+1
i = uc,n

i + λ �t
2�x δ2

xuc,n
i −

( �t
2�x − �t

4λ

)
δ0

xvc,n
i + �t

4λ δ0
xFn

c,i

+�t
4
(

gn
i−1 + 2gn

i + gn
i+1

)
,

vc,n+1
i = vc,n

i − λ2 �t
2�x δ0

xuc,n
i +

(
λ�t
2�x − �t

4

)
δ2

xvc,n
i + �t

4 δ2
xFn

c,i

+λ�t
4
(

gn
i−1 − gn

i+1
)
,

(44)

with mass-preserving boundary conditions (including the additional source term g) at the
external boundaries.

We remark that for the hyperbolic-parabolic model not only mass must be preserved
as the in the fully parabolic model, but also the flux v needs to converge towards the steady
state v = 0. Since here we have the 1D domain connected at both the endpoints, we do not
need to use numerical boundary conditions for the outer boundaries. However, for the
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details and the description of the AHO numerical scheme at the outer boundaries, see [14].
For this reason we use the so-called AHO (Asymptotic Higher Order) schemes (see [18] for
the study of AHO scheme at interfaces including mass-preserving transmission conditions)
with source term g, for which the approximation of the stationary solutions is up to the
third order of accuracy and converges towards a numerical solution with v = 0, while
preserving the mass.

3.2.1. Discretization of Transmission Conditions for the 2D-Doubly Parabolic and
1D-Hyperbolic-Parabolic Case

The first equation is the same as for the interface between the 2D-doubly parabolic
and 1D-doubly parabolic case. Hence, we derive the same transmission condition reported
in (42) for un+1

Nx+1,j for j = ja, . . . , jb.
For the flux, the transmission condition (17) gives us

vc,n+1
0 = −K(b − a)uc,n+1

0 + K�y
jb

∑
j=ja

(
un

Nx+1,j + un+1
Nx+1,j

)
, (45)

This can be computed explicitly with the numerically computed values of uc,n+1
0 and un+1

Nx+1,j.
Then, imposing the mass conservation:

In+1
2D + In+1

2D − In
1D − In

1D = 0

we get:

�x
2

[
uc,n+1

0 − uc,n
0 + λ �t

�x

(
uc,n+1

0 − uc,n+1
1

)
−
( �t
�x − �t

2λ

)(
−vc,n+1

0 − vc,n+1
1

)]
+�x�t

4λ

(
Fn+1

c,0 + Fn+1
c,1

)
+�x�y

4

[
4

jb

∑
j=ja

�tK
�x

(
uc,n+1

0 + uc,n
0 − un+1

Nx+1,j − un
Nx+1,j

)]
= 0

We thus finally obtain the mass-preserving transmission condition, where we finally
add the source term g, as:

uc,n+1
0 = uc,n

0 + λ �t
�x δ1

xuc,n+1
0 −

( �t
�x − �t

2λ

)(
vc,n+1

0 + vc,n+1
1

)
−K �t

�x�y
jb

∑
j=ja

(
uc,n+1

0 + uc,n
0 − un+1

Nx+1,j − un
Nx+1,j

)
−�t

2λ

(
Fn+1

c,0 + Fn+1
c,1

)
+ �t

2

(
gn+1

0 + gn+1
1

)
.

(46)

Proposition 2. The complete numerical scheme derived for the 2D-doubly parabolic-1D-hyperbolic-
parabolic model is mass-preserving—by construction—across the transmission conditions in absence
of source terms.

Remark 5. Note that the chemoattractant equation is the same as for the 1D-doubly parabolic and
2D-doubly parabolic case. Hence, the numerical schemes (33) and (19) with boundary conditions
(32) and (43) can be used.

3.2.2. Multiple Channels

In the previous paragraphs, we connected the two-dimensional domain Ωl with a
single one-dimensional channel C at (Lx, y) ∈ Ωl with y ∈ [a1, b1], and ja1 and jb1 , the
positions of the endpoints of the corridor on the numerical grid. Of course, this can be
extended to more channels.

Let Cm, with m = 1, . . . ,M be M corridors, connected to the two-dimensional domain
Ωl at (Lx, ym) with ym ∈ [am, bm] and a1 > 0, bm < am+1, for m = 1, . . . ,M− 1, and
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bM < Ly to avoid intersections of the corridors, with equal width k�y, k ∈ N.

3.3. Implemented Algorithm.

Before presenting the numerical tests in the next Section 4, we adapt the approximation
scheme for the density u, also including the source term g, implemented to solve the
problem in the 2D-1D domain. As underlined before, it is necessary to use implicit schemes
to consider the presence of stiff source terms. For this reason, for the approximation of the
time derivatives we use the Crank–Nicolson (CN) method on the diffusion and source term,
which is a second-order implicit method and the explicit central method for the convection
term. Moreover, since CN is only A-stable but not L-stable [38], we also need to choose a
Δt that is small enough to avoid spurious oscillations of the solution during transience.

Because of the explicit term, we have numerical restrictions on the mesh grid and
time step. Furthermore, as discussed previously, we introduce artificial viscosity to avoid
oscillations due to not suitable mesh grid size in dominant convection regime, which is
often the case in chemotaxis models. Finally, the implicit-explicit numerical method used
to compute the solutions for the density u in (8) inside the 2D domain Ωl is:

un+1
i,j = un

i,j + Du
�t
2

[
δ2

x(un
i,j+un+1

i,j )

�x2 +
δ2

y(un
i,j+un+1

i,j )

�y2

]
−�t

4

[
δ0

x Fx,n
i,j

�x +
δ0

y Fy,n
i,j

�y

]
+ �t

2

(
gn

i,j + gn+1
i,j

)
−�t

[ δ2
xθn

i,j

2�x
+

δ2
yθn

i,j

2�y

]
︸ ︷︷ ︸

artificial viscosity

,

(47)

with: θn
i,j := χ(ϕn

i,k)u
n
i,j|∇ϕn

i,j| for i = 1, . . . , Nx, j = 1, . . . , Ny. As can be seen, the function
θ used for the artificial viscosity is almost identical to f , with the exception of using the
absolute value of ∇ϕ. By using this, we increase artificial viscosity only where the gradient
of the chemoattractant increases. This reduces the restriction on the meshgrid due to the
condition induced by the cell Péclet number, [36]. The numerical transmission condition
on the left of node 1L (i = Nx + 1, j = ja, . . . , jb) is:

un+1
Nx+1,j = un

Nx+1,j − Du
�t
�x2 δ1

x(un
Nx ,j + un+1

Nx ,j)

+Du
�t

2�y2 δ2
y

(
un

Nx+1,j + un+1
Nx+1,j

)
+ �t

�x

(
Fx,n

Nx+1,j + Fx,n
Nx ,j

)
− �t

�y

(
Fy,n

Nx+1,j+1 − Fy,n
Nx+1,j−1

)
+�t

2

(
gn

Nx+1,j + gn+1
Nx+1,j

)
−�t

(
δ1

xθn
Nx ,j

�x +
δ2

yθn
Nx+1,j

2�y

)

+

(additional term for transmission condition)

K
�t
�x

(
uc,n

0 − un
Nx+1,j + uc,n+1

0 − un+1
Nx+1,j

)
︸ ︷︷ ︸ .

(48)

The role of permeability coefficient K in the positivity of (48) is discussed in Section 3.3.1.
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For the external boundaries (the edges of the chamber Ωl except at the junctions
j = ja, . . . , jb), we use:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
i,0 = un

i,0 + Du
�t

2�x2 δ2
x

(
un

i,0 + un+1
i,0

)
+ Du

�t
�y2 δ1

y

(
un

i,0 + un+1
i,0

)
− �t

2�x δ0
xFx,n

i,0 − �t
�y

(
Fy,n

i,0 + Fy,n
i,1

)
+�t

2

(
gn

i,0 + gn+1
i,0

)
−�t

(
δ2

xθn
i,0

2�x +
δ1

yθn
i,0

�y

)
, i = 1, . . . , Nx,

un+1
i,Ny+1 = un

i,Ny+1 + Du
�t

2�x2 δ2
x

(
un

i,Ny+1 + un+1
i,Ny+1

)
−Du

�t
�y2 δ1

y

(
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i,Ny
+ un+1

i,Ny

)
− �t

2�x δ0
xFx,n

i,Ny+1 +
�t
�y

(
Fy,n

i,Ny
+ Fy,n

i,Ny+1

)
+�t

2

(
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i,Ny+1 + gn+1
i,Ny+1

)
−�t

(
δ2

xθn
i,Ny+1

2�x +
δ1

yθn
i,Ny

�y

)
, i = 1, . . . , Nx,

un+1
0,j = un

0,j + Du
�t
�x2 δ1

x

(
un

0,j + un+1
0,j

)
+ Du

�t
2�y2 δ2

y

(
un

0,j + un+1
0,j

)
−�t

�x

(
Fx,n

0,j + Fx,n
1,j

)
− �t

2�y δ0
y Fy,n

0,j

+�t
2

(
gn

0,j + gn+1
0,j

)
−�t

(
δ1

xθn
0,j

�x +
δ2

yθn
0,j

2�y

)
, j = 1, . . . , Ny,

un+1
Nx+1,j = un

Nx+1,j − Du
�t
�x2 δ1

x

(
un

Nx ,j + un+1
Nx ,j

)
+D �t

2�y2 δ2
y

(
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)
− �t

2�x δ0
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�t
�x

(
Fy,n

i,Ny
+ Fy,n
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)
+�t

2

(
gn

Nx+1,j + gn+1
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)
−�t
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Nx ,j
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δ2
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j �= ja, . . . , jb.

(49)

For the corners, we use the following boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
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0,0 + Du
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(50)
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Similarly, for the chemoattractant φ, we have the implicit-explicit scheme in the interior
points of the 2D domain:

φn+1
i,j = φn

i,j + Dφ
�t
2

[
δ2

x

(
φn

i,j+φn+1
i,j

)
�x2 +

δ2
y

(
φn

i,j+φn+1
i,j

)
�y2

]
�t
2 (a(un

i,j + un+1
i,j )− �t

2 (b(φn
i,j + φn+1

i,j )

(51)

At the boundaries and the corners of the numerical schemes for φ, we use, respectively,
conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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−Dφ
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y(φ
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(52)

For the borders, we use:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1
i,0 = φn

i,0 + Dφ
�t
�x2 δ2

x(φ
n
i,0 + φn+1

i,0 ) + 2Dφ
�t
�y2 δ1

y(φ
n
i,0 + φn+1

i,0 )

+a�tun
i,0 − b�tφn

i,0,
φn+1

i,Ny+1 = φn
i,Ny+1 + Dφ
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y(φ
n
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0,j ) + 2Dφ
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x(φ
n
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0,j − b�tφn

0,j,
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Nx+1,j = φn
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y(φ
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x(φ
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Nx+1,j − b�tφn

Nx+1,j.

(53)

Note that for i = Nx + 1 the last formula in (53) is applied for j = 1, . . . , Ny, j �=
ja, . . . , jb.

Remark 6. If we consider a two-dimensional domain Ωr connected to the right endpoint of the
one-dimensional corridor C, the complete numerical scheme for the left domain Ωl described above
can be considered.

The main difference is that the transmission conditions at the interface between the box and the
channel (the left for the box Ωl and the right for the corridor) are reversed to the left for the corridor
and the right for the box Ωr. In the numerical scheme, the change only affects the channel C, where
we have transmission conditions also for uc,n

N+1 (resp. vc,n
N+1). The same boundary condition can be

used without transmission conditions, with only the additional term derived from the KK-condition
and it must be added as well for uc,n

0 (resp. vc,n
0 ).

For the computation of solutions on the one-dimensional channel C, we have two
different approximations depending on the choice of the model we assign to it. If we solve
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the doubly parabolic problem (9), the approximation scheme used is the Crank–Nicolson
scheme, as above:

uc,n+1
i = un

i + Duc
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2

[
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x
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)
,

(54)

with the transmission condition on the left of node 1L (i = 0) given by:
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Fn
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2
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gn

0 + gn+1
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)
.

(55)

If, instead, we need to solve the hyperbolic-parabolic problem (7), an implicit version
of the second-order AHO scheme is applied—see the scheme reported in (44)—in order to
ensure the stability of numerical solutions in the channels.

The scheme (44) is endowed with transmission conditions (45) and (46).

3.3.1. Stability at Interfaces

Note that, in order to ensure the positivity of the quantities in the above formulas
deriving from the KK conditions—i.e., (48) for the 2D domain and (55) or (45) for the 1D
domain—we also need to take care of the ratio between the KK coefficient K and the space
discretization steps. In particular, for (48) and (45), one needs to ensure that K �t

�x and,

respectively, K �t
�x�y is not too big in order to damp possible high oscillations produced

by the term in parentheses. Similarly, in (55) we need to check that K �t
�x (b − a) is small in

order to prevent the growth of the negative term.
Moreover, as previously discussed, we need to check that the numerical monotonicity

condition is satisfied:

k1(
k2 + ϕn

i,j

)2 |∂n
x,i,j ϕ

n
i,j| ≤

√
DM (56)

in the computational domain in order to ensure non-negative solutions.
Now, we consider the interface between the 2D and 1D domains. If we assume g = 0

and f = χ(φ)∇φ, the first equation in the 2D parabolic system, (8), rewrites as:

∂tu = D�u − div(u · f ). (57)

The transmission condition (48) reads as:
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K
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0 − vn

Nx+1,j

)
+
(

uc,n+1
0 − un+1

Nx+1,j

))
︸ ︷︷ ︸

KK-transmission term

.

(58)
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Then, the transmission condition (55) for g = 0 and f = χ(φ)φx now reads as:

uc,n+1
0 = uc,n

0 + Duc
�t
�x2 δ1

x

(
uc,n

0 + uc,n+1
0

)
− �t

�x
(
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0 f n
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1 f n
1
)
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(
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1 | f n
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0 | f n
0 |
)

+
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∑
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(
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Nx+1,j + un+1
Nx+1,j

)
− (b − a)

(
un

0 + un+1
0

))
︸ ︷︷ ︸

KK-transmission term

(59)

for j = ja, . . . jb. For the transmission condition (58), we see that monotonicity is preserved
when:

1 − Du
�t
�x2 − Du

�t
�y2 +

�t
�x f x,n

Nx+1,j − �t
�x | f x,n

Nx+1,j| − �t
�y | f y,n

Ny+1,j| − �t
�x K > 0, (60)

which gives us the stability condition for the left side of the interface.
For the right side of the interface, if we assign the doubly parabolic 1D system (9), we

have the stability condition:

1 − Duc
�t
�x2 + λ f n

c,0 − �t
�x | f n

0 | − �t
�x K(b − a). (61)

We underline that (61) is not only influenced by the KK-constant K but also by the
channel width σ := (b − a), which must be taken care of accordingly.

Analogously, we conduct the derivation of stability conditions for the transmission
conditions in the case where we assign the 2D parabolic model (57) on the left part of the
interface and the hyperbolic system (10) on the right. For the sake of clarity, we rewrite
the hyperbolic part of the system (10) for the density flux of individuals when we assume
g = 0: {

∂tuc + ∂xvc = 0,
∂tvc + λ2

c ∂xuc = Fc.
(62)

The KK-transmission explicit version of conditions (46) and (45) in this case read as:
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(63)
In order to establish the monotonicity condition, as in [39], we need to diagonalize the

boundary conditions above into the diagonal variables wn+1
0 , zn+1

0 , wn+1
N+1, zn+1

N+1 with the
relation u = w + z and v = λ(z − w).

We have:
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.
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If we set ρ := λ−(b−a)K
λ+(b−a)K ,ςn+1 := + K
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(
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Now, by applying the monotonicity condition we get the following inequality:

(1 + ρ)− 2λ �t
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�x K(b − a)(1 + ρ)− �t

2λ Fn
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(64)

For the implicit AHO, the condition above reads as:

�t ≤ 1 + ρ

K (b−a)(1+ρ)
�x +

Fn
c,0

2λ

.

In Figure 3, the time step restriction (64) is depicted for a qualitative understanding
of the effect of the Kedem–Katchalsky constant K and of the channel width σ on the
time step �t. As expected, the time step �t must be chosen smaller when either K or σ
increases. Furthermore for K = 0 we recover the time step restriction of the AHO2-scheme
�t ≤ 4�x

�x+4λ = 2 · 10−3. Since the values of K are typically of similar magnitude to the
diffusion coefficients, the additional stability restrictions caused by the hyperbolic part of
the transmission conditions are minimal.

Finally, we also point out that the time step restriction for the transmission condition
for the one-dimensional parabolic Equation (61) is much more severe than for the one-
dimensional hyperbolic (64), which can also be seen qualitatively in the steepness of
Figures 3 and 4.

(a) (b)

Figure 3. Time step restriction (64) �t for the hyperbolic transmission condition with �x = 0.01, �y = 0.1 and λ = 5 for
different K and channel widths (b − a) for the transmission between the two-dimensional parabolic Equation (57) with the
one-dimensional hyperbolic Equation (62) with f = 0.
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(a) (b)

Figure 4. Time step restriction (61) �t for the one-dimensional parabolic transmission condition with �x = 0.01, �y = 0.1
and D = 5 for different K and channel width σ = b − a, f = 0. As expected, the time step �t must be chosen smaller when
either K or the channel width σ increases.

Comparing all time step restrictions (61) and (64) with each other, it is evident that
the restriction for the two-dimensional parabolic transmission condition dominates the
full model.

For the sake of completeness, we underline that at each time step a non-linear equation
system must be solved, for which Newton–Krylov subspace methods [40] can be used,
which take advantage of the mostly sparse structure of the Jacobian matrix.

4. Numerical Tests and Results

We start this section with a preliminary test on mass-preserving properties at the
boundaries. Indeed, in absence of source terms, the masses of cells and chemical substances
are preserved. Then, in order to perform a numerical verification of this property, we
consider the numerical approximation at the interface between 1D-1D models in the next
numerical example.

Example 1. In Figure 5, a comparison between the central mass-preserving (24) and standard
finite difference (23) boundary conditions is depicted, for the 1D-doubly parabolic case on both
sides of the interface (on the left) and for the 1D-doubly parabolic-1D-hyperbolic-parabolic interface
(on the right). From this 1D numerical example, the necessity of developing modified boundary
conditions which are consistent and preserve the mass correctly is evident. We also underline that
for the discretization of the Neumann condition, the forward scheme is first-order accurate, while
the central scheme is second-order accurate; for more details, see [41].

From now on, this section is devoted to the presentation of the numerical tests and
the parameters of the problem are reported in Table 1. Our aim is to show the ability of
the simulation algorithm based on the model (3)–(7) to reproduce the qualitative behavior
of the two population sharing the same habitat as observed in the videos of laboratory
experiments, [1,2,25].

We remark that we decided to perform numerical simulations of the chip geometry by
assigning the 1D-hyperbolic-parabolic model on channels, since it seems more realistic.
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Table 1. Parameters of the problem.

Parameter Description Units Value Ref.

DM Diffusivity of cells μm2/s 9 × 102 [33]
DT Diffusivity of T -scenario 2 μm2/s 56 × 101 empirical
DT Diffusivity of T -scenario 1 μm2/s 5.6 × 101 [33]
Dϕ, Dω Diffusivity of chemoattractants μm2/s 2 × 102 [33]
αϕ growth rate of ϕ in scenario 2 s−1/cell 0 empirical
αϕ growth rate of ϕ for scenario 1 s−1/cell 0.5 × 10−1 [42]
βϕ consumption rate of ϕ s−1 10−4 [42]
αω growth rate of ω for scenario 1 s−1/cell 10−1 [42]
αω growth rate of ω for scenario 2 s−1/cell 0 empirical
βω consumption rate of ω s−1 10−4 [42]
k1 cellular drift velocity mol cm2s−1 3.9 × 10−9 [33]
k2 receptor dissociation constant mol 5 × 10−6 [33]
S maximum secretion rate of the chemicals g/μm3 1.9676 × 10−11 [33]
γ equivalent Michaelis constant cells/μm3 10−4 [33]
L length of the corridor μm 500 datum
Lx horizontal size of the box μm 100 datum
Ly vertical size of the box μm 1000 datum
K Kedem–Katchalsky constant - 500 empirical
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Figure 5. (left) evolution of total mass for 1D-1D-doubly parabolic model with standard vs. mass-preserving boundary
conditions. (right) evolution of total mass for 1D-1D-hyperbolic-parabolic model with standard vs. mass-preserving
boundary conditions.

Example 2. Before we numerically simulate the laboratory experiment with the algorithm, we
conduct a simple numerical test in order to prove its accuracy. We assumed the following setting:
a left squared chamber Ωl with one corridor positioned in the middle and only one cell family
with initial distribution u(x, y, 0) = 5e−

1
2 ((x−0.5)2+(y−0.5)2). Since we do not have any analytical

solution for this problem, we choose Δt and Δx = Δy, which are small enough to obtain reasonable
error estimations. In this case, we use dt = 10−4 and Δx = Δy = 5 × 10−4 for the approximation
ue at time t = 100 and calculate the error as the quantity ‖ue − uapprox‖ in L1-norm.

In order to confirm the order of our scheme, we use a log-log-plot with constant and small
enough Δt (resp. Δx) and decreasing Δx (resp. Δt). As shown in Figures 6 and 7, the time order
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and space order are equal to line with slope 2 in the log-log plot, which corresponds to our scheme of
order 2 in time and space.

10-2 10-1 100

dt

10-6

10-5

10-4

10-3

10-2

er
ro

r

constant dx=1.0e-3

Crank-Nicolson
second order

Figure 6. Log-log plot of the error—namely, the quantity ‖ue − uapprox‖ in L1-norm as a function of
the space step, with fixed Δt = 10−3 and decreasing Δx = 0.5, 0.1, 0.05, 0.001 at time t = 100. We
depict in blue the obtained error and in red a line with slope 2 for comparison.
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Figure 7. Log-log plot of the error, namely the quantity ‖ue − uapprox‖ in L1-norm as a function of the
time step, with fixed Δx = 10−3 and decreasing Δt = 0.5, 0.1, 0.05, 0.001 at time t = 100. We depict in
blue the obtained error and in red a line with slope 2 for comparison.

Now, we describe the simulation of the chip environment. All the simulations were
performed in MATLAB c©. The computational time for a simulation on the complete
geometry until time t = 50,000 took about 400 s on an Intel(R) Core(TM) i7-3630 QM CPU
2.4 GHz. The computational domain is schematized in Figure 2 with the two chambers and
5 corridors Cm := [0, L], m = 1, . . . , 5 with the same width = 12 μm and equispaced from
each other. The numerical method implemented is listed in Section 3.3; for the 1D channels,
the AHO2-scheme (of second order) is implemented, since there we are considering the
hyperbolic-parabolic model. The discretization grid has time step size �t = 100 s and
space size �x = 2.5 μm,�y = 25 μm.

For the examples below, we assume the following initial condition (time t = 0) for the
tumor cells distribution on the chip for (x, y) ∈ Ωl :

T(x, y, 0) = 5e−10−4(x2+(y−500)2) + 5e−10−4(x2+(y−5)2) + 5e−10−4(x2+(y−1000)2), (65)
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Whereas, in the corridors and the right chamber, no tumor cells are present.
For the immune cells distribution on the chip for (x, y) ∈ Ωr, we assign:

M(x, y, 0) = 5, for x, y ∈ Ωr, (66)

to mean that macrophages are disposed in the right chamber, whereas no immune cells are
present in the left chamber nor in the corridors at the beginning.

For the chemoattractants, we set a constantly null initial density for ω and ϕ in both
the chambers and also in the channels.

Example 3. First scenario: treated case. For the following numerical simulation, we replicate
the laboratory experiment of the first scenario (treated case) described in Section 2.1; see also [1].
All the parameters are reported in Table 1.

The results are depicted in the following Figures 8 and 9.

Figure 8. Treated case. Initial distribution for the model (3)–(7) at time t = 0.

In Figures 8 and 9, we can see the density of the tumor cells T and macrophages M for different
times t = 0, t = 10000s, and t = 50,000 s. Note that at time t = 0 tumor cells are present in the
left chamber only and immune cells are present in the right chamber only.

Since tumor cells are previously treated by a chemoterapy drug, they slowly diffuse around and
stay confined in the left chamber Ωl during all the simulation time; in the meanwhile they produce
chemoattractant ϕ attracting immune cells. Immune cells M, instead, diffuse around in Ωr, cross the
channels, and after a certain time they enter the left chamber Ωl while creating chemoattractant ω.

This is due to the fact that the chemoattractant ϕ produced by cancer cells travels through
channels and induces a migration of the immune cells M towards the tumor cells T, causing a
higher migration towards the center of the left chamber where the initial distribution of tumor cells
was closest to the chambers, as we observe from the laboratory experiment.

At the final time t = 50,000 s, we can see that the quantity of tumor cells is decreasing under
the action of immune cells producing chemokine ω.
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Figure 9. Treated case. Evolution of the model (3)–(7) at time t = 10,000 s (top) and at time t = 50,000 s
(bottom).

Example 4. Second scenario: untreated case. In this numerical test, we consider the second
scenario where the tumor is not treated with any medicine. Therefore, in this case we assume a
higher diffusion coefficient for the tumor, but the initial conditions are the same as those used above.
The results are depicted in the following Figure 10.

In Figure 10, we can see the density of the tumor cells T and macrophages M for times
t = 10,000 s and t = 50,000 s. Note that at time t = 0 tumor cells are present in the left chamber
only and immune cells are present in the right chamber only.

Since, in the laboratory experiment, untreated tumor cells diffuse around, cross the channels,
and enter the right chamber Ωr after some time, we try to reproduce such behavior by using a
diffusion coefficient DT of a order of magnitude higher respect to the one used in the first scenario.
Moreover, in this case the tumor cells do not produce chemoattractant ϕ; for this reason, here we set
αφ = 0. Immune cells M diffuse around in Ωr and do not cross the channels, since the chemical
stimulus is not secreted by T cells. Moreover, the production of the chemical substance w is neglected
in this case, thus tumor cells are not killed.
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We only mention that we tested the 1D-doubly parabolic model on channels and
compared it with the hyperbolic-parabolic model used in the previous examples. By using
the same initial data as for the other examples, we notice that the doubly parabolic model
seems to have a similar pattern as for the hyperbolic-parabolic model depicted above, but
the scale of the quantities differs a lot between these models.

In particular, for the doubly parabolic model the concentration of the tumor cells T is
two or three order of magnitude higher. This is due to the much slower movement of the
immune cells through the channels. This also explains the much higher concentration of
the chemoattractant φ because of the much higher concentration of T compared to in the
other models.

Figure 10. Untreated case. Evolution of the model (3)–(7) at time t = 10,000 s (top) and at time
t = 50,000 s (bottom).

In the following Figure 11, we represent the density of tumor cells and immune cells
as particles, by randomly placing them according to their density. The higher the density at
a given point, the more cells will be distributed randomly around that area. If the density
is lower than a chosen threshold in a certain point, no cells will be represented around it.
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(a) Visualization for time t = 0

(b) Visualization for time t = 5

(c) Visualization for time t = 50

Figure 11. Visualization of immune cells (blue dots) and tumor cells (red squares) for times t = 0,
t = 5, and t = 50 using the density of each quantity and representing them as cells.

5. Conclusions and Future Perspectives

The principal feature of the present work has been the development of a simulation
tool to describe cell movements and interactions inside a microfluidic chip environment.
Our study focused on both the modelling and the numerical point of view. Indeed,
schematizing the chip geometry as two 2D boxes connected by a network of 1D channels,
the main issues were:

• the introduction of mass-preserving conditions involving the balancing of incoming
and outgoing fluxes passing through interfaces between 2D and 1D domains;

• the development of mass-preserving numerical schemes at the boundaries of the 2D
domain and the mass-preserving transmission conditions at the 2D–1D interfaces.

Furthermore, from the modelling point of view, we studied the dynamics in the channels
in the case of a doubly parabolic model and a hyperbolic-parabolic model. Since we obtained
comparable asymptotic states, we decided to apply the hyperbolic-parabolic model in order to
obtain a finite speed of propagation in the channels, which seems to be more realistic. In this
framework, bearing in mind the laboratory experiments on a chip described in Section 2.1, it
was possible to simulate the chip environment with two species of living cell moving in it.
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Moreover, we remark that we can simulate more complicated situations where more than two
cell species are present.

As a further development of the present study, we will work on the calibration of the
model against experimental data obtained from cell tracking in a microfluidic chip [1,2,25].
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Abstract: The environment affects population dynamics through multiple drivers. Here we explore
a simplified version of such influence in a three-species food chain, making use of the Hastings–
Powell model. This represents an idealized resource–consumer–predator chain, or equivalently, a
vegetation–host–parasitoid system. By stochastically perturbing the value of some parameters in
this dynamical system, we observe dramatic modifications in the system behavior. In particular,
we show the emergence of on–off intermittency, i.e., an irregular alternation between stable phases
and sudden bursts in population size, which hints towards a possible conceptual description of
population outbursts grounded into an environment-driven mechanism.

Keywords: on–off intermittency; dynamical systems; theoretical ecology; stochastic forcing; hastings-
powell model; food chain

1. Introduction

When Batchelor and Townsend [1] observed a peculiar irregularity in a turbulent
fluid, namely the alternation between sudden bursts of motion and a milder, non-turbulent
activity, they used the word intermittency to describe it. Since then, the same term has been
used to describe several types of switching behavior between different dynamical regimes.
Here, we are especially interested in the phenomenon called on–off intermittency [2].

On-off intermittency has been observed in real systems, such as electronic circuits [3],
earthquakes [4], solar cycles [5], electrodynamics of liquid crystals [6], as well as theo-
retically studied through numerical approaches [2,7] with specific focus on discrete-time
population dynamics models (i.e., maps) [8–10].

The goal of this work is to expand these studies to the case of a stochastically driven
system of coupled ordinary differential equations (ODEs). To this end, we include the
random variability of suitable model parameters to simulate environmental stochasticity
in a system representing the population dynamics of three different species. In the au-
tonomous case, a three-dimensional ODE system is the minimum requirement to allow
chaotic dynamics owing to the Poincaré–Bendixson theorem [11].

Our choice here is the well-known Hastings–Powell model [12,13], a system that
describes the evolution of three species, anonymously called x, y, z, which represent
primary producers (resource), consumers (or host) and predators (or parasitoids). We
stochastically perturb some of the system parameters, which measure species interactions
or carrying capacity, showing that on–off intermittent behaviour can emerge. This feature
could qualitatively explain the onset of outbreaks (also called irruptions) in the population
size of some of the ecosystem components [14,15].

Section 2 describes the properties of on–off intermittency, summarizing results from
previous studies that inspired this work. Section 3 introduces the Hastings–Powell model,
describes its parameters and explains the numerical approach that is adopted. In Section 4,
we illustrate the occurrence of on–off intermittency when one introduces environmentally
driven—and stochastically simulated—parameters. Finally, Section 5 summarizes our
results and outlines some possible future developments.
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2. On-Off Intermittency

On-off intermittency is characterized by the alternation between regular phases, which
duration can span a rather wide range of orders of magnitude, and burst phases, where a
sudden instability throws the system into (possibly) chaotic behavior. This kind of inter-
mittency can appear in a dynamical system that has an invariant manifold (in the simplest
case, a fixed point) whose stability properties depend on an external control parameter but
whose phase-space position is only weakly dependent upon the same parameter.

When such control parameter has an irregular temporal variation, either stochastic or
chaotic, the manifold alternates between stable and unstable conditions. In order to realize
on–off intermittency, a system must keep its dynamics in the proximity of the manifold,
which in the stable phases must be attractive enough to allow for long periods during which
the system resides in the vicinity of the manifold. Lingering near this temporarily stable
manifold, the system undergoes protracted regular phases, when suddenly the volatility
of the control parameter induces the instability of the manifold and causes the system to
burst away from it, leading to values which are quite different from its typical statistics.

In past years, on–off intermittency has raised some interest in the scientific community.
After its basics were scouted by the work of Platt et al. [2], Heagy et al. [7] gave a math-
ematical sounding demonstration of the power law underlying the duration of laminar
phases for maps with the specific form yn+1 = zn f (yn) (with the variable zn coming from
a random or a chaotic process), then Toniolo et al. [8] further deepened this latter aspect,
inspecting the occurrence of on–off intermittency in a stochastically driven logistic map.
Due to the possibility of adopting this concept to qualitatively explain ecological outbreaks,
in 2010 Metta et al. [9] and Moon [10] investigated Toniolo’s framework in the context of
coupled logistic equations. While the former focused on kurtosis as an index to identify
on–off intermittency, the latter put the spotlight on the stability of the coupled system,
employing the largest Lyapunov Exponent to quantify the chaotic dynamics occurring
with different coupling strengths of adjacent logistic systems. Here, we continue the explo-
ration of on–off intermittency in the context of ecosystem dynamics and study its presence
and characteristics in a system of coupled ordinary differential equations representing a
three-layer food chain.

3. Hastings–Powell Model

Alan Hastings and Thomas Powell introduced a three-dimensional dynamical sys-
tem [12] in order to illustrate chaotic behavior in a food web involving three trophic levels.
They employed the type 2 functional response (i.e., a Michaelis–Menten functional form)
shown in the 1975 Murdoch and Oaten’s paper [16] to couple the different trophic levels of
the system. The basic equations of the Hastings–Powell model are:

dX
dT

= R0X
(

1 − X
K0

)
− C1

A1X
B1 + X

Y (1)

dY
dT

=
A1X

B1 + X
Y − A2Y

B2 + Y
Z − D1Y (2)

dZ
dT

= C2
A2Y

B2 + Y
Z − D2Z (3)

where X, Y, Z represent the biomass of three species on three different trophic levels and T
is time. Throughout the three equations, subscripts 0, 1, 2 indicate parameters referring to,
respectively, X, Y, Z. R0 and K0 are, respectively, the growth rate and the carrying capacity
of the species X. The constants A1, A2, B1, B2 characterize the functional responses among
the species, representing the saturation of the response; specifically, the Bs are the prey
populations that correspond to half the maximum value of the predation rate per unit prey.
C−1

1 , C2 are the conversion rates from resource to consumer and from prey to predator,
respectively, while, finally, D1, D2 are constant death rates.
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A suitable nondimensionalization leads to redefine the variables of the system:

x =
X
K0

y =
C1Y
K0

z =
C1Z
C2K0

t = R0T

(4)

Consequently, the nondimensional parameters are:

a1 =
K0 A1

R0B1
b1 =

K0

B1
d1 =

D1

R0

a2 =
C2 A2K0

C1R0B2
b2 =

K0

C1B2
d2 =

D2

R0

(5)

Thus, the final equations of Hastings–Powell model are:

dx
dt

= x(1 − x)− a1x
b1x + 1

y (6)

dy
dt

=
a1x

b1x + 1
y − a2y

b2y + 1
z − d1y (7)

dz
dt

=
a2y

b2y + 1
z − d2z (8)

Hastings and Powell chose the model parameters to be, in their words, “biologically
reasonable”. For example, the parameter values associated with the consumer (y) are larger
than those for the predator/parasitoid (z), so that x and y interact on a faster time scale
with respect to y and z. We defer to the original work of Hastings and Powell for further
discussions on parameter values.

Note that Equation (8) is conceptually different from Equations (6) and (7): indeed,
it is possible to factorize z on the right hand side, leading to dz

dt =
(

a2y
b2y+1 − d2

)
z. A

separation of variables allows to retrieve the exact solution z(t) = z(0) exp
(

a2y
b2y+1 − d2

)
,

which could replace the differential equation in the numerical simulation. This peculiarity
makes Equation (8) quite different from the other two equations and, therefore, we expect
it to react differently to stochastic forcing.

In Appendix A we provide a concise analysis of the fixed points in the Hastings–
Powell model.

Stochastic Parameters and Numerical Simulations

To simulate how the environment affects the evolution of the three-species food
chain in the Hasting-Powell model, we allow some of the model parameters to become
random numbers. In particular, we allow either a1 or K0 in Equations (5)–(8) to vary
stochastically with a uniform distribution between 0 and α. The computation of the
stochastic term is performed at every time step of the numerical simulation, feeding the
same term throughout all the steps needed by the Runge–Kutta 4 scheme employed. The
random number at each time step is independent of the previous value, that is we force the
system with white noise.

The different cases are run for 108 time units, after a spin-up time of 106 time units
to eliminate the initial transient. Initial conditions for x0, y0 are randomly and uniformly
chosen between 0 and 1 while the initial value for z0 is randomly and uniformly chosen
between 4 and 5. This choice for z0 is related to the convenience of starting as close as
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possible to the system attractor, thus reducing the spin-up time. Laminar phases are defined
as x > 1 − 0.001 or y, z < 0.001—i.e., a distance of 10−3 from the stable fixed point.

4. Results

4.1. Intensity of Grazing

The parameter a1 measures the intensity of grazing by the consumer (y) on the resource
(x) in the coupling term between the equations for x and y in Equations (6) and (7). As a
first test, we replace a1 with the random number ã1, uniformly distributed between 0 and
α. In this way, the time-averaged value of ã1 becomes ā1 = α/2. Therefore, the coupling
between x and y becomes:

ã1x
b1x + 1

y (9)

Here we use α = 3.5, which gives ā1 = 1.75. For the other parameters we adopt the
same values as in the original paper of Hastings and Powell, namely:

b1 = 3 d1 = 0.4 a2 = 0.1 b2 = 2 d2 = 0.01 (10)

Figure 1 shows the time series of the three trophic levels (x, y and z) and a running
mean of the instantaneous value of ã1. The time series of the resource x and of the
herbivorous y visually illustrate the occurrence of on–off intermittency, with the alternation
of long laminar phases and irregularly spaced bursts. The laminar phases of x are centered
on x = 1, corresponding to a fixed point of the system, and the bursts are towards lower
values when the herbivorous density suddenly increases. The z signal, instead, corresponds
to a smoothed version of the intermittent signals and it is slightly delayed with respect to
the herbivorous dynamics, as expected from the form of the equations.

Figure 1. Case α = 3.5 for stochastic a1. Time series of x (Panel a), y (Panel b), z (Panel c) and of the
running mean of ã1 computed on a window with width τ = 200—the dotted line is the mean value
of ã1 (Panel d).

As mentioned above, the simplest case of on–off intermittency appears when the
stability of a fixed point of the system depends on an external parameter that varies
irregularly in time, thus determining an alternation between stability and instability of the
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fixed point. To motivate our choice of α = 3.5, in Figure 2 we show the orbit diagram for y
in the range 0 ≤ a1 ≤ 5 (the orbit diagram for x is conceptually similar). In order to find on–
off intermittency, we need to span a parameter range covering the interval between stability
and chaos. The chosen value of α suits this well, forcing the instantaneous value of a1 to
vary between 0 and 3.5. From Figure 1, one sees an approximate correspondence between
intermittent bursts and periods when the running average of ã1 exceeds its average value
which, in this case, approximately corresponds to the stability limit of the fixed point.

Figure 2. Orbit diagram depicting the attractors of y as a function of a1. Other parameter values as
in the original Hastings–Powell model.

The first distinctive feature of on–off intermittent time series is the shape of the
probability distribution of the off-phase durations—i.e., the number of time steps in which
the system endures off (laminar) behaviour. It has been shown that for a simplified type of
discrete maps [7,8], for on–off intermittency the distribution of laminar phase duration, D,
follows a power law, D− 3

2 . Figure 3 shows that, also for this continuous on–off intermittent
system, the x and y signals display the same approximate power-law distribution of off
phases, at least in a limited range of off-phase durations.

Another characteristics of the intermittent signals is the broad distribution of the
amplitudes. Figure 4 shows the distribution of maxima for on–off intermittency and
for standard chaotic behavior with a fixed value a1 = 5. An approximate power-law
distribution of the maxima is evident for the intermittent dynamics.

81



Mathematics 2021, 9, 1641

Figure 3. Duration of the off (laminar) phases of the x (dashed) and y (solid) components with
a stochastic a1 parameter in the Hastings–Powell model. The dotted line indicates a dependence
proportional to D− 3

2 .

Figure 4. Probability distribution of the maxima of 1 − x (Panel a), y (Panel b), z (Panel c), in case of
non-intermittent dynamics (solid line) and for on–off intermittent behavior (dotted line).

Conceptually, inserting the stochastic term as done in Equation (9) is tantamount to
randomly forcing A1 in Equations (1) and (2). Thus, the results presented in this section
indicate that the environmental fluctuations (represented by the stochastic term), randomly
influencing the rate of successful consumption by y of the resource x, can cause on–off
intermittency in both compartments.

4.2. Carrying Capacity K0

Another interesting option is to allow the environment to stochastically affect the
system carrying capacity, K0. Even though a1 and K0 are mathematically related, their
ecological meaning is different: the former is related to the interaction between x and y
and the latter only to the maximum value of x in the absence of consumers. Therefore, they
deserve separate analyses from an ecological standpoint. Looking at Equation (5), we infer
that to this end we must multiply a1, b1, a2 and b2 in Equations (6)–(8) by the same value
of a random number ρ, uniformly distributed in the interval 0 ≤ ρ ≤ α. The parameters
chosen for this Section are the same described in Equation (10), with a1 = 2. Following the
rationale that yielded Equation (9), the couplings in Equations (6)–(8) become:
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ã1x
b̃1x + 1

y (11)

ã2y
b̃2y + 1

z (12)

Choosing different values for α leads to different and peculiar behaviours.
From α = 0 to α ≈ 1.3 the system undergoes a long lasting stability at x = 1, y = 0,

z = 0. For α = 1.4 we observe the occurrence of on–off intermittency for x and y, while
after the transient the z species becomes extinct, that is, the predator (parasitoid) cannot
control the consumer (host).

Figure 5 shows the time series of x and y, along with the probability distributions of
the maxima and the moving average of the value of the random number ρ controlling K0.
As in the case of stochastic variability in a1, the intermittency of the time series is matched
by the fluctuations of the running mean of K0, with low values of the latter corresponding
to laminar phases of the time series.

Figure 6 shows the probability distribution of the laminar phase durations, which
matches a power law with D− 3

2 .

Figure 5. Stochastic K0 with α = 1.4. Time series of x (Panel a), y (Panel b) and of the running mean
of the random variable ρ controlling K0, computed on a window with width τ = 2000—the dotted
line is the mean value of ρ (Panel d). The probability distributions of the maxima of 1 − x and y are
shown in (Panel c).
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Figure 6. Laminar phase duration of the x (dashed) and y (solid) variables for stochastic variability
of the carrying capacity K0 in the case α = 1.4. The dotted line is proportional to D− 3

2 .

For α = 1.5, x and y show chaotic dynamics, but the most intriguing phenomenon is
related to the apparent on–off intermittency of z, as shown in Figure 7. A close inspection
of the laminar phase durations, however shows that extended laminar periods are quite
likely to occur, thus the curve is less steep than D− 3

2 .

Figure 7. (Left panel) Time series of z in the case α = 1.5; (Right panel) Laminar phase durations of the predator/parasitoid
z (solid) for stochastic K0 with α = 1.5. The dashed line is proportional to D− 3

2 .

Finally, we report that at larger values of α—here we employ α = 2.1—non-intermittent,
chaotic dynamics for z is paired with approximately on–off intermittent behavior for x
and y. Figure 8 shows a time series of y along with the laminar phase durations, which
approximately follows the simple power law (even though less robustly than in Figure 6).

The implications of these results are intriguing. If the environment induces a random
variability of the carrying capacity K0, allowing it to temporarily reach large enough values,
on–off intermittency can emerge quite easily in both x and y—that is, in the primary
producers and their consumers. By further increasing α, that is, the amplitude of the
random variability of K0, a peculiar intermittency in the predator (parasitoid) z develops.
This implies that sudden bursts in a population could be induced far from the trophic level
that is directly affected by the environmental fluctuations. For even larger values of the
fluctuations in K0 (α = 2.1), the resource and the consumer again undergo approximate

84



Mathematics 2021, 9, 1641

on–off behavior, while the predator behaves chaotically. Clearly, the complexity of the
system behavior is huge, and a deeper exploration of the different dynamics and of their
ecological implications is deferred to future works.

Figure 8. (Left panel) Time series of y in case α = 2.1; (Right panel) Laminar phase durations of the x (dashed) and y (solid)
variables for stochastic K0 with α = 2.1. The dotted line is proportional to D− 3

2 .

5. Discussion and Conclusions

This paper conceptually extends the works of Platt et al. [2], Heagy et al. [7], To-
niolo et al. [8] and Metta et al. [9] and it focuses on the emergence of on–off intermittency in
idealized food chains. In our view, such dynamical behavior can be taken as a conceptual
description of species outbreak events in different levels of the food chain.

To explore this issue, we used the Hastings–Powell model, a well-known system that
allowed us to inspect a simple three-species food chain: resource, consumer and predator
(or else, vegetation, pest host species and parasitoid). Environmental forcing was supposed
to act on the resource dynamics, and it was represented as an imposed random variation in
some of the controlling parameters.

When the stochastic variability is inserted into the parameter controlling the intensity
of resource consumption (i.e., y on x, Section 4.1), on–off intermittency easily arises in both
these variables, while the predator z displays a smoother dynamics.

Stochastic variability of the carrying capacity (Section 4.2) leads to intriguing results;
indeed, increasing the range of random variations to higher values sequentially generates
different behaviours:

• For low maximum values of the carrying capacity, we observe only a stable fixed point
for x, y and z;

• Above a threshold of the maximum value of the carrying capacity, we observe on–off
intermittency in x and y, while z goes extinct;

• For larger ranges of random variations, chaotic dynamics for x and y and intermittent
behavior in z;

• For still larger fluctuations, we observe weak on–off intermittency in x and y and
chaotic behavior of z.

Ecologically, this suggests that a low carrying capacity for x implies that the species
directly feeding on it (y) can endure but on average it does not supply enough biomass
for z to survive. A slightly larger value of K0 allows for z to “jump start”, while a higher
average value of the carrying capacity is enough to fully support the predator species,
bringing back on–off intermittency in the dynamics of x and y. Of course, this is just an
euristic representation that requires further exploration.

Several points remain open to investigation, such as:

• Would a deterministic, chaotic system representing the environment dynamics, in
place of the stochastic process adopted here, allow for a more thoroughly mathematical
analysis of the problem?

85



Mathematics 2021, 9, 1641

• How would spatial extension, with coupling across different location of the same
species, affect our results?

• How would on–off intermittency manifest itself (if it does) in a food web rather than a
simple food chain?

• Can we find intermittency when using real-world datasets or controlled laboratory
experiments in microcosms?

Such questions are, in our opinion, relevant to better understand bursting phenomena
in ecology and will be a subject of future research, after the first demonstration of the
possibility of on–off intermittent behavior in model food chains that was illustrated here.
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Appendix A. Fixed Points in Hastings–Powell Model

A thorough analysis of the fixed points of the models is beyond the scope of this paper.
Nevertheless, it is useful to briefly recap them, in order to give some perspective on the
results obtained, especially on the population values typically attained during the laminar
phases. Checking the fixed points in the system leads to four different results:

• (0, 0, 0) Computing the Jacobian and substituting these values leads to the eigenvalues
1, −d1, −d2. Note that the ecologically-relevant case has d1, d2 > 0, so this fixed point
is a saddle. If we numerically perturb the system along the x direction (e.g., adding a
small perturbation to x = 0), the system falls into the (1, 0, 0) fixed point (see below)
while, perturbing it along other directions, the null state is attractive.

• (1, 0, 0) The three eigenvalues are −1, a1
(b1+1) − d1, −d2. −1 and −d2 are always

negative, but the second eigenvalue depends on the values of the parameters a1, b1.
With the values used in the paper, the eigenvalue is positive and the system is therefore
repulsive along one direction (it can be numerically checked perturbing y = 0). If
a1 < 1.6, then the fixed point becomes stable.

• From Equation (8), we obtain y∗ = d2
a2−d2b2

; inserting it in Equation (6) leads to two
(rather cumbersome) different solutions for x∗ and, consequently, two solutions for z∗
from Equation (7). With the parameter values adopted in this work, one solution for
x∗ is negative and therefore not acceptable. The other solution is positive and, for the
first case in Section 4.1 (with a1 = 5, as in Hastings–Powell’s paper), the fixed point is
x∗ ∼ 0.819, y∗ ∼ 0.125, z∗ ∼ 9.808 (numerically verified).
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Abstract: The article investigates the inverse problem for a complete, inhomogeneous, higher-order
Sobolev type equation, together with the Cauchy and overdetermination conditions. This problem
was reduced to two equivalent problems in the aggregate: regular and singular. For these problems,
the theory of polynomially bounded operator pencils is used. The unknown coefficient of the original
equation is restored using the method of successive approximations. The main result of this work is a
theorem on the unique solvability of the original problem. This study continues and generalizes the
authors’ previous research in this area. All the obtained results can be applied to the mathematical
modeling of various processes and phenomena that fit the problem under study.

Keywords: Sobolev type equation; inverse problem; high-order equation; method of successive
approximations; polynomial boundedness of operator pencils

1. Introduction

Let U ,F ,Y be Banach spaces, operators A, B0, B1, ..., Bn−1 ∈ L(U ;F ), i.e., linear and
continuous operators defined on U and acting to F , ker A �= {0}, C ∈ L(U ;Y), given
functions χ : [0, T] → L(Y ;F ), f : [0, T] → F , Ψ : [0, T] → Y . Consider the following
problem with t ∈ [0, T]

Av(n)(t) = Bn−1v(n−1)(t) + ... + B1v′(t) + B0v(t) + q(t)χ(t) + f (t), (1)

v(0) = v0, v′(0) = v1, ..., v(n−1)(0) = vn−1, (2)

Cv(t) = Ψ(t). (3)

The problem of finding a pair of functions v(t) ∈ Cn([0, T];U ) (n times continuously
diferentiable) and q(t) ∈ C1([0, T];Y) (continuously diferentiable) from relations (1)–(3) is
called an inverse problem. At present, the authors have obtained the result when studying
the inverse problem, but only in the case of the second-order, Sobolev type equation [1].

The degeneracy of the operator A allows us to classify Equation (1) as a Sobolev type
equation. Additionally, one can see that this equation is complete, since all the components
v(t), v′(t), ..., v(n)(t) are present. In addition, the Cauchy condition (2) is posed. The
overdetermination condition (3) arises due to the need to restore the parameter q(t) of
the equation.

The study of Sobolev type equations was carried out repeatedly [1–12]. There are
articles devoted to both the first [2–4], the second [1,5,6], the third [7], and the higher [8–10]
order. In [2], sufficient conditions for the existence of positive solutions to the Showalter–
Sidorov and the Cauchy problem for an abstract linear equation of this type were presented.
The linear representatives of Sobolev type equations, such as the Barenblatt–Zheltov–
Kochina equation and the Hoff equation are studied in [3]. The paper [7] contains a
condition for the existence of a weak, local, timely solution to the Cauchy problem for a
model Sobolev type equation. In the study of the direct problem for a higher-order, Sobolev
type equation, the phase space method was used [10]. Papers [11,12] are among the first
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investigations of Sobolev type equations, and the recent works devoted to applications of
Sobolev type equations to real-life models are as follows: [13,14].

The works [1,5,15–24] were devoted to the consideration of inverse problems. In [15],
the process of unsteady flow of a viscous incompressible fluid in a pipe with a permeable
wall was considered. The dependence on the choice of the boundary of the rectangular
region and the unique solvability of the inverse problem were investigated in [16]. The
uniqueness criterion for the Lavrent’ev–Bitsadze equation is established in [17]. The
correctness in Sobolev spaces of the problem of determining the function of sources in the
heat and mass transfer Navier–Stokes system was proved [18]. The problem was finding
the area where the vector of boundary displacements and forces is given in parametric
form [19]. In [20], the inverse boundary value problem for the heat equation was studied,
and the error of the obtained approximate solution was estimated.

The article consists of four sections. The second section combines the necessary,
previously obtained, results of the theory of polynomially A-bounded of operator pencils
formulated in the form of definitions, theorems and lemmas. Section «Results» has three
subsections. The first one presents the result of applying the splitting theorem; thus, the
original problem is divided into two equivalent problems in the aggregate: regular and
singular. In the second subsection, we study the unique solvability of the regular problem
by reducing it to an equivalent problem of the first order and achieving the necessary
smoothness for the required function q using the method of successive approximations.
The third subsection generalizes the result of studying the singular problem obtained
earlier in the work [9], thus obtaining the theorem on the existence and uniqueness of the
solution to the problem (1)–(3). In the last section, the significance of the obtained results is
given in both the development of the studied theory and their practical application.

2. Preliminary Information

To find a pair of functions v(t) and q(t), we use the results obtained in the research into
higher-order, Sobolev type equations [8]. Thus, we will apply the theory of polynomially
A-bounded operator pencils. Denote by �B the pencil of operators B0, B1, ..., Bn−1.

Definition 1. The sets

ρA(�B) = {μ ∈ C : (μn A − μn−1Bn−1 − ... − μB1 − B0)
−1 ∈ L(F ;U )}

and σA(�B) = C̄\ρA(�B) will be called the A-resolvent set and the A-spectrum of the pencil �B,
respectively.

Definition 2. The operator-function complex variable

RA
μ (�B) = (μn A − μn−1Bn−1 − ... − μB1 − B0)

−1

with domain ρA(�B) will be called the A-resolvent of the pencil �B.

Definition 3. Let the pencil �B be polynomially A-bounded if

∃a ∈ R+ ∀μ ∈ C (|μ| > a) ⇒
(

RA
μ (�B) ∈ L(F ;U )

)
.

Let the pencil �B be polynomially A-bounded. Introduce an important condition∫
γ

μkRA
μ (�B)dμ ≡ O, k = 0, 1, ..., n − 2, (4)

where γ = {μ ∈ C : |μ| = r > a}.
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Lemma 1. Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled. Then,
the operators

P =
1

2πi

∫
γ

RA
μ (�B)μ

n−1 Adμ ∈ L(U ),

Q =
1

2πi

∫
γ

μn−1 ARA
μ (�B)dμ ∈ L(F )

are projectors.

Put U 0 = ker P, F 0 = ker Q, U 1 = im P, F 1 = im Q. From the previous Lemma
it follows that U = U 0 ⊕ U 1, F = F 0 ⊕ F1. Let Ak(Bk

l ) denote the restriction of the
operator A(Bl) onto U k, k = 0, 1; l = 0, 1, ..., n − 1.

Theorem 1. Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled. Then, the
actions of the operators split:

1. Ak ∈ L(U k;F k), k = 0, 1;
2. Bk

l ∈ L(U k;F k), k = 0, 1; l = 0, 1, ..., n − 1;
3. There exists an operator (A1)−1 ∈ L(F 1;U 1);
4. There exists an operator (B0

0)
−1 ∈ L(F 0;U 0).

Definition 4. Define the family of operators {K1
q , K2

q , ..., Kn
q } as follows

K1
1 = H0, K2

1 = −H1, ..., Kn
1 = −Hn−1,

K1
q+1 = Kn

q H0, K2
q+1 = K1

q − Kn
q H1, ..., Kn

q+1 = Kn−1
q − Kn

q Hn−1; q = 1, 2, ...,

where H0 = (B0
0)

−1 A0, H1 = (B0
0)

−1B0
1, ..., Hn−1 = (B0

0)
−1B0

n−1.

Definition 5. The point ∞ is called

1. Removable singular point of the A-resolvent of pencil �B, if K1
1 ≡ O, K2

1 ≡ O, ..., Kn
1 ≡ O;

2. A pole of order p ∈ N of the A-resolvent of pencil �B, if ∃ p such, that K1
p �≡ O,

K2
p �≡ O, ..., Kn

p �≡ O, but K1
p+1 ≡ O, K2

p+1 ≡ O, ..., Kn
p+1 ≡ O;

3. An essentially singular point of the A-resolvent of the pencil �B, if Kn
p �≡ O for any p ∈ N.

3. Results

3.1. Reduction of the Initial Inverse Problem

Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled, then
v(t) can be represented as v(t) = Pv(t) + (I − P)v(t) = u(t) + ω(t). Suppose that
U 0 ⊂ ker C. Then, by virtue of Theorem 1 and Lemma 1 problem (1)–(3) is equiv-
alent to the problem of finding the functions u ∈ Cn([0, T];U 1), ω ∈ Cn([0, T];U 0),
q ∈ C1([0, T];Y) from the relations

u(n)(t) = Sn−1u(n−1)(t) + ... + S1u′(t) + S0u(t) + q(t)(A1)−1Qχ(t) + (A1)−1Q f (t), (5)

u(0) = u0, u′(0) = u1, ..., u(n−1)(0) = un−1, (6)

Cu(t) = Ψ(t) ≡ Cv(t), (7)

H0ω(n)(t) = Hn−1ω(n−1)(t) + ... + H2ω′′(t) + H1ω′(t) + ω(t)+

+ q(t)(B0
0)

−1(I − Q)χ(t) + (B0
0)

−1(I − Q) f (t),
(8)

ω(0) = ω0, ω′(0) = ω1, ..., ω(n−1)(0) = ωn−1, (9)
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where
S0 = (A1)−1B1

0, S1 = (A1)−1B1
1, ..., Sn−1 = (A1)−1B1

n−1,

u0 = Pv0, u1 = Pv1, ..., un−1 = Pvn−1,

ω0 = (I − P)v0, ω1 = (I − P)v1, ..., ωn−1 = (I − P)vn−1, t ∈ [0, T].

The inverse problem (5)–(7) is called regular, and problem (8), (9) is called singular.

3.2. Solution of the Regular Inverse Problem

Rewrite problem (5)–(7) in the notation [25]. Let X = U 1, operators S0, S1, ...,
Sn−1 ∈ C l(X ), C ∈ L(X ,Y), operator-function Φ : [0, T] → L(Y ;X ), functions
h : [0, T] → X , Ψ : [0, T] → Y

u(n)(t) = Sn−1u(n−1)(t) + ... + S1u′(t) + S0u(t) + q(t)Φ(t) + h(t), t ∈ [0, T], (10)

u(0) = u0, u′(0) = u1, ..., u(n−1)(0) = un−1, (11)

Cu(t) = Ψ(t). (12)

Theorem 2. Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled; moreover,
C ∈ L(X ;Y), Φ ∈ C1([0, T];L(Y ;X )), h ∈ C1([0, T];X ), Ψ ∈ Cn+1([0, T];Y), for any
t ∈ [0, T] the operator CΦ(t) be invertible and (CΦ)−1 ∈ C1([0, T];L(Y)). If the compatibility
condition Cun−1 = Ψn−1(0) is satisfied, then the solution to the inverse problem (10)–(12) exists
and is unique in the class of functions q ∈ C1([0, T];Y), u ∈ Cn([0, T];X ).

Proof of Theorem 2. Reduce problem (10)–(12) to the problem for the first-order equation

z′(t) = Az(t) + q(t)Q(t) + H(t), t ∈ [0, T], (13)

z(0) = z0, (14)

Bz(t) = Ψ̄(t), (15)

where z(t) =

⎛⎜⎜⎜⎝
u(t)

...
u(n−2)(t)
u(n−1)(t)

⎞⎟⎟⎟⎠, A =

⎛⎜⎜⎜⎝
0 I . . . 0
...

...
. . .

...
0 0 . . . I
S0 S1 . . . Sn−1

⎞⎟⎟⎟⎠, Q(t) =

⎛⎜⎜⎜⎝
0
...
0

Φ(t)

⎞⎟⎟⎟⎠,

H(t) =

⎛⎜⎜⎜⎝
0
...
0

h(t)

⎞⎟⎟⎟⎠, z(0) =

⎛⎜⎜⎜⎝
u(0)

...
u(n−2)(0)
u(n−1)(0)

⎞⎟⎟⎟⎠, z0 =

⎛⎜⎜⎜⎝
u0
...

un−2
un−1

⎞⎟⎟⎟⎠, B =
(

0 . . . 0 C
)
,

Ψ̄(t) =

⎛⎜⎜⎜⎝
0
...
0

Ψ(n−1)(t)

⎞⎟⎟⎟⎠.

Put R(t) = −(CΦ(t))−1. Therefore, all the conditions of Theorem 6.2.3 from [25], are
fulfilled, and the function q(t) satisfies the integral equation

q(t) = q0(t) + R(t)

(
CS0

t∫
0

V1,n(t − s)q(s)Φ(s)ds+

+CS1

t∫
0

V2,n(t − s)q(s)Φ(s)ds + ... + CSn−1

t∫
0

Vn,n(t − s)q(s)Φ(s)ds

)
,

(16)
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where

q0(t) = −R(t)

(
Ψ(n)(t)− CS0V1,1(t)u0 − CS1V2,1(t)u0 − ... − CSn−1Vn,1(t)u0−

−CS0V1,2(t)u1 − CS1V2,2(t)u1 − ... − CSn−1Vn,2(t)u1 − ...−
−CS0V1,n(t)un−1 − CS1V2,n(t)un−1 − ... − CSn−1Vn,n(t)un−1−

−CS0

t∫
0

V1,n(t − s)h(s)ds − CS1

t∫
0

V2,n(t − s)h(s)ds−

−... − CSn−1

t∫
0

Vn,n(t − s)h(s)ds − Ch(t)

)
.

Thus, there exists a unique solution q ∈ C1([0, T];Y), z ∈ C1([0, T];X n) to the inverse
problem (13)–(15). And we obtain that the solution to the regular inverse problem (10)–(12)
exists and is unique, with q ∈ C1([0, T];Y), u ∈ Cn([0, T];X ).

In order to obtain a solution to a singular problem, we need a greater smoothness of
the function q from the solution of a regular problem than class C1([0, T];Y). Next, we
need the following Lemma from [1].

Lemma 2. Let l ∈ N, V ∈ Cl−1([0, T];L(X )), g ∈ Cl([0, T];X ). Then⎛⎝ t∫
0

V(t − s)g(s)ds

⎞⎠(l)

=
l−1

∑
k=0

V(l−k−1)(t)g(k)(0) +
t∫

0

V(t − s)g(l)(s)ds.

The following theorem provides sufficient conditions for the existence of a more
smooth (as p ∈ N) solution q ∈ Cp+n([0, T],Y) of a regular problem.

Theorem 3. Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled,
p ∈ N0; moreover, C ∈ L(X ;Y), Φ ∈ Cp+n([0, T];L(Y ;X )), h ∈ Cp+n([0, T];X ),
Ψ ∈ Cp+2n([0, T];Y), for any t ∈ [0, T] operator CΦ(t) be invertible, with
(CΦ)−1 ∈ Cp+n([0, T];L(Y)) and the compatibility condition Cun−1 = Ψ(n−1)(0) be satisfied
for some un−1 ∈ U 1. Then there exists and a unique solution of (10)–(12) and q ∈ Cp+n([0, T];Y).

Proof of Theorem 3. Write the propagators of the homogeneous Equation (10) in a matrix,
denoting the resolving group of homogeneous Equation (13)

V(t) =

⎛⎜⎜⎜⎜⎜⎝
V1,1(t) V1,2(t) . . . V1,n−1(t) V1,n(t)
V2,1(t) V2,2(t) . . . V2,n−1(t) V2,n(t)

...
...

. . .
...

...
Vn−1,1(t) Vn−1,2(t) . . . Vn−1,n−1(t) Vn−1,n(t)

Vn,1(t) Vn,2(t) . . . Vn,n−1(t) Vn,n(t)

⎞⎟⎟⎟⎟⎟⎠ =
1

2πi

∫
γ

RA
μ (�B)×

×

⎛⎜⎜⎜⎜⎜⎝
μn−1 A − μn−2Bn−1 − ... − B1 μn−2 A − μn−3Bn−1 − ... − B2 . . .

B0 μn−1 A − μn−2Bn−1 − ... − μB2 . . .
...

...
. . .

μn−3B0 μn−3B1 + μn−4B0 . . .
μn−2B0 μn−2B1 + μn−3B0 . . .
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. . . μA − Bn−1 I

. . . μ2 A − μBn−1 μI
. . .

...
...

. . . μn−1 A − μn−2Bn−1 μn−2I

. . . μn−2Bn−2 + μn−3Bn−3 + ... + B0 μn−1I

⎞⎟⎟⎟⎟⎟⎠eμtdμ,

where I is the identity operator. Earlier, in the proof of Theorem 2, it was established that
the function q(t) satisfies the integral Equation (16). Take the natural number l ≤ p + n.
Assuming that q ∈ Cl([0, T];Y) by Lemma 2, we obtain the equality

q(l)(t) = q(l)0 (t) +
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)(qΦ)(m)(0)+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q(l−k−m)(s)Φ(m)(s)ds+

+
l−1

∑
k=0

Ck
l R(k)(t)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (t)(qΦ)(m)(0)+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS1

t∫
0

V2,n(t − s)q(l−k−m)(s)Φ(m)(s)ds + ...+

+
l−1

∑
k=0

Ck
l R(k)(t)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (t)(qΦ)(m)(0)+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CSn−1

t∫
0

Vn,n(t − s)q(l−k−m)(s)Φ(m)(s)ds,

where Ck
l = l!

k!(l−k)! , Ck,m
l = l!

k!m!(l−k−m)! and

q(l)0 (t) = −
l

∑
k=0

Ck
l R(k)(t)

(
Ψ(l−k+n)(t)−

−CS0V(l−k)
1,1 (t)u0 − CS1V(l−k)

2,1 (t)u0 − ... − CSn−1V(l−k)
n,1 (t)u0−

−CS0V(l−k)
1,2 (t)u1 − CS1V(l−k)

2,2 (t)u1 − ... − CSn−1V(l−k)
n,2 (t)u1 − ...−

−CS0V(l−k)
1,n (t)un−1 − CS1V(l−k)

2,n (t)un−1 − ... − CSn−1V(l−k)
n,n (t)un−1−

−CS0

t∫
0

V1,n(t − s)h(l−k)(s)ds − CS1

t∫
0

V2,n(t − s)h(l−k)(s)ds − ...−

−CSn−1

t∫
0

Vn,n(t − s)h(l−k)(s)ds − Ch(l−k)(t)

)
+

+
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)h(m)(0)+

+
l−1

∑
k=0

Ck
l R(k)(t)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (t)h(m)(0) + ...+
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+
l−1

∑
k=0

Ck
l R(k)(t)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (t)h(m)(0)

exists from the conditions of this theorem for l = 0, 1, ..., p + n.
Show that q ∈ Cp+n([0, T],Y); for this purpose, denote r0 = q0(0), and for

l = 1, 2, ..., p + n, determine the following values

rl = q(l)0 (0) +
l−1

∑
k=0

Ck
l R(k)(0)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (0)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l−1

∑
k=0

Ck
l R(k)(0)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (0)

m

∑
j=0

Cj
mrm−jΦ(j)(0) + ...+

+
l−1

∑
k=0

Ck
l R(k)(0)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (0)

m

∑
j=0

Cj
mrm−jΦ(j)(0).

Consider the system of integral equations

q̃0(t) = q0(t) + R(t)
(

CS0

t∫
0

V1,n(t − s)q̃0(s)Φ(s)ds+

+CS1

t∫
0

V2,n(t − s)q̃0(s)Φ(s)ds + ... + CSn−1

t∫
0

Vn,n(t − s)q̃0(s)Φ(s)ds
)

,

q̃l(t) = q(l)0 (t) +
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l−1

∑
k=0

Ck
l R(k)(t)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0) + ...+

+
l−1

∑
k=0

Ck
l R(k)(t)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m(s)Φ(m)(s)ds+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS1

t∫
0

V2,n(t − s)q̃l−k−m(s)Φ(m)(s)ds + ...+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CSn−1

t∫
0

Vn,n(t − s)q̃l−k−m(s)Φ(m)(s)ds,

l = 1, 2, ..., p + n. (17)

Reduce (17) to the Volterra equation of the second kind

g(t) = g0(t) +
t∫

0

K(t, s)g(s)ds
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on the space (C([0, T];Y))p+n+1 with a matrix operator function K(t, s), given on the
triangle Δ = {(t, s) ∈ R2 : 0 ≤ t ≤ T, 0 ≤ s ≤ t}. By virtue of the continuity of all data of
system (17), this has a unique solution

(q̃0, q̃1, ..., q̃p+n) ∈ (C([0, T];Y))p+n+1.

This solution will be the limit of the sequence of approximations

q̃0,i(t) = q0(t) + R(t)
(

CS0

t∫
0

V1,n(t − s)q̃0,i−1(s)Φ(s)ds+

+CS1

t∫
0

V2,n(t − s)q̃0,i−1(s)Φ(s)ds + ... + CSn−1

t∫
0

Vn,n(t − s)q̃0,i−1(s)Φ(s)ds
)

,

q̃l,i(t) = q(l)0 (t) +
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l−1

∑
k=0

Ck
l R(k)(t)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0) + ...+

+
l−1

∑
k=0

Ck
l R(k)(t)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m,i−1(s)Φ(m)(s)ds+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS1

t∫
0

V2,n(t − s)q̃l−k−m,i−1(s)Φ(m)(s)ds + ...+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CSn−1

t∫
0

Vn,n(t − s)q̃l−k−m,i−1(s)Φ(m)(s)ds,

l = 1, 2, ..., p + n; i ∈ N, (18)

which for i → ∞ on the interval [0, T] converge uniformly to the functions q̃l ,
l = 0, 1, ..., p + n. Set the initial approximation q̃l,0 ≡ 0; l = 0, 1, ..., p + n, then
q̃l+1,0 = q̃′l,0; l = 0, 1, ..., p + n − 1. In addition, from (18), it follows that

q̃l,i(0) = rl ; l = 0, 1, ..., p + n; i ∈ N. (19)

Assume that for all τ = 1, 2, ..., i the equalities q̃l+1,τ(t) = q̃′l,τ(t), l = 0, 1, ..., p + n − 1
are true. Then, using Lemma 2 and equalities (18), we obtain

d
dt

(
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m,i(s)Φ(m)(s)ds

)
=

=
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k+1)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m,i(s)Φ(m)(s)ds+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0V1,n(t)q̃l−k−m,i(0)Φ

(m)(0)+
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+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m,i(s)Φ(m+1)(s)ds+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds =

=
l+1

∑
k=1

l−k+1

∑
m=0

Ck−1,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds+

+
l

∑
k=0

Ck
l R(k)(t)CS0V1,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0)+

+
l

∑
k=0

l−k+1

∑
m=1

Ck,m−1
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds+

+
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds. (20)

Denote by

ak,m = R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds, l = 2, 3, ..., p + n.

Taking into account the equalities

Ck
l + Ck−1

l = Ck
l+1, Ck,m

l + Ck−1,m
l + Ck,m−1

l = Ck,m
l+1

we obtain

l

∑
k=0

l−k

∑
m=0

Ck,m
l ak,m +

l+1

∑
k=1

l−k+1

∑
m=0

Ck−1,m
l ak,m +

l

∑
k=0

l−k+1

∑
m=1

Ck,m−1
l ak,m =

=

(
l

∑
k=1

l−k

∑
m=1

Ck,m
l ak,m +

l

∑
k=1

Ck,0
l ak,0 +

l

∑
m=0

C0,m
l a0,m

)
+

+

(
l

∑
k=1

l−k

∑
m=1

Ck−1,m
l ak,m +

l

∑
k=1

Ck−1,0
l ak,0 +

l

∑
k=1

Ck−1,l−k+1
l ak,l−k+1 + Cl,0

l al+1,0

)
+

+

(
l

∑
k=1

l−k

∑
m=1

Ck,m−1
l ak,m +

l+1

∑
m=1

C0,m−1
l a0,m +

l

∑
k=1

Ck,l−k
l ak,l−k+1

)
=

=
l

∑
k=1

l−k

∑
m=1

Ck,m
l+1ak,m +

l

∑
k=1

Ck,0
l+1ak,0 +

l

∑
m=1

C0,m
l+1a0,m +

l

∑
k=1

Ck,0
l+1ak,l−k+1+

+ C0,0
l a0,0 + C0,l

l a0,l+1 + Cl,0
l al+1,0 =

l+1

∑
k=0

l−k+1

∑
m=0

Ck,m
l+1ak,m. (21)

For l = 0, 1 fullment of (21) can be checked directly.
From (20) and (21), it follows that

d
dt

(
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m,i(s)Φ(m)(s)ds

)
=
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=
l+1

∑
k=0

l−k+1

∑
m=0

Ck,m
l+1R(k)(t)CS0

t∫
0

V1,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds+

+
l

∑
k=0

Ck
l R(k)(t)CS0V1,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (22)

Similarly, we obtain the result for the subsequent integral element from (18)

d
dt

(
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CS1

t∫
0

V2,n(t − s)q̃l−k−m,i(s)Φ(m)(s)ds

)
=

=
l+1

∑
k=0

l−k+1

∑
m=0

Ck,m
l+1R(k)(t)CS1

t∫
0

V2,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds+

+
l

∑
k=0

Ck
l R(k)(t)CS1V2,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (23)

Continuing the procedure for all subsequent integral elements (18), we present the
result for the last

d
dt

(
l

∑
k=0

l−k

∑
m=0

Ck,m
l R(k)(t)CSn−1

t∫
0

Vn,n(t − s)q̃l−k−m,i(s)Φ(m)(s)ds

)
=

=
l+1

∑
k=0

l−k+1

∑
m=0

Ck,m
l+1R(k)(t)CSn−1

t∫
0

Vn,n(t − s)q̃l−k−m+1,i(s)Φ(m)(s)ds+

+
l

∑
k=0

Ck
l R(k)(t)CSn−1Vn,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (24)

Changing the summation indices and re-grading the sums, we obtain

d
dt

(
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)

)
=

=
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l−1

∑
k=0

Ck
l R(k+1)(t)CS0

l−k−1

∑
m=0

V(l−k−m−1)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0) =

=
l−1

∑
k=0

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l

∑
k=1

Ck−1
l R(k)(t)CS0

l−k

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0) =

=

(
l−1

∑
k=1

Ck
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+C0
l R(t)CS0

l−1

∑
m=0

V(l−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)

)
+
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+

(
l−1

∑
k=1

Ck−1
l R(k)(t)CS0

l−k−1

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)+

+
l−1

∑
k=1

Ck−1
l R(k)(t)CS0V1,n(t)

l−k

∑
j=0

Cl
l−krl−k−jΦ

(j)(0)+

+Cl−1
l R(l)(t)CS0V1,n(t)C0

0r0Φ(0)

)
=

=
l

∑
k=0

Ck
l+1R(k)(t)CS0

l−k

∑
m=0

V(l−k−m)
1,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)−

−
l

∑
k=0

Ck
l R(k)(t)CS0V1,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (25)

Similarly, we obtain the result for the next non-integral element from (18)

d
dt

(
l−1

∑
k=0

Ck
l R(k)(t)CS1

l−k−1

∑
m=0

V(l−k−m−1)
2,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)

)
=

=
l

∑
k=0

Ck
l+1R(k)(t)CS1

l−k

∑
m=0

V(l−k−m)
2,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)−

−
l

∑
k=0

Ck
l R(k)(t)CS1V2,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (26)

Continuing the procedure for all subsequent non-integral elements (18), we present
the result for the last

d
dt

(
l−1

∑
k=0

Ck
l R(k)(t)CSn−1

l−k−1

∑
m=0

V(l−k−m−1)
n,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)

)
=

=
l

∑
k=0

Ck
l+1R(k)(t)CSn−1

l−k

∑
m=0

V(l−k−m)
n,n (t)

m

∑
j=0

Cj
mrm−jΦ(j)(0)−

−
l

∑
k=0

Ck
l R(k)(t)CSn−1Vn,n(t)

l−k

∑
m=0

Cm
l−krl−k−mΦ(m)(0). (27)

Differentiating (18), and also using (22)–(27), we obtain the equalities q̃′l,i+1 = q̃l+1,i+1;
l = 0, 1, ..., p + n − 1. Thus, the sequence q̃0,i converges as i → ∞ to the function q̃0
uniformly on the interval [0, T], and the sequence q̃′0,i = q̃1,i converges as i → ∞ to the
function q̃1 uniformly on the segment [0, T]. Therefore, the function q̃0 is continuously
differentiable and q̃′0 = q̃1. The equalities of q̃′l = q̃l+1; l = 1, 2, ..., p + n − 1, are proved
in the same way, which implies that q̃0 ≡ q ∈ Cp+n([0, T];Y) and, therefore, q(l) = q̃l ;
l = 1, 2, ..., p + n.

3.3. Solvability of the Original Inverse Problem

Theorem 4. Let the pencil �B be polynomially A-bounded and condition (4) be fulfilled; moreover,
the ∞ be a pole of order p ∈ N0 of the A-resolvent of the pencil �B, operator C ∈ L(U ;Y),
U 0 ⊂ ker C, χ ∈ Cp+n([0, T];L(Y ;F )), f ∈ Cp+n([0, T];F ), Ψ ∈ Cp+2n([0, T];Y), for any
t ∈ [0, T] operator C(A1)−1Qχ be invertible, with (C(A1)−1Qχ)

−1 ∈ Cp+n([0, T];L(Y)), the
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condition Cun−1 = Ψ(n−1)(0) be satisfied at some initial value un−1 ∈ U 1, and the initial values
wk = (I − P)vk ∈ U 0 satisfy

wk = −
p

∑
j=0

Kn
j (B0

0)
−1 dj+k

dtj+k

[
(I − Q)(q(0)χ(0) + f (0))

]
, k = 0, 1, ..., n − 1.

Then, there exists a unique solution (v, q) of inverse problem (1)–(3), where q ∈ Cp+n([0, T];Y),
v = u + w, whence u ∈ Cn([0, T];U 1) is the solution of (5)–(7), and the function
w ∈ Cn([0, T];U 0) is a solution of (8) and (9) given by

w(t) = −
p

∑
j=0

Kn
j (B0

0)
−1 dj

dtj

[
(I − Q)(q(t)χ(t) + f (t))

]
. (28)

Proof of Theorem 4. The conditions of Theorems 2 and 3 are satisfied, and, therefore, there
exists a unique solution (q, u) to problem (5)–(7), where q ∈ Cp+n([0, T];Y),
u ∈ Cn([0, T];U 1).

Using the result of [9] and the required smoothness of the function q, we obtain that
there exists a unique solution w ∈ Cn([0, T];U 0) to (8), (9), given by (28).

4. Discussion

The results obtained in the article can be applied to various mathematical models,
such as a model of oscillation of a rotating viscous fluid using the viscosity coefficient, a
model of gravitational-gyroscopic and internal waves, and a model of sound waves in
smectics, since these mathematical models can be reduced to the Sobolev type equations
of higher order. One of the most typical examples of the application of the Sobolev type
equations theory is the Boussinesq–Love model [5]:

(λ − Δ)vtt = α(Δ − λ′)vt + β(Δ − λ′′)v + q f , (29)

with initial conditions
v(x, 0) = v0(x), vt(x, 0) = v1(x),

boundary condition
v(x, t)|∂Ω = 0

and overdetermination condition∫
Ω

v(x, t)K(x)dx = Φ(t), (30)

where v0(x), v1(x), K(x), Φ(t) are given functions, v(x, t) is a searched function and Ω ⊂ Rn

is a bounded domain with a boundary ∂Ω of class C∞. Equation (29) describes longitudinal
vibrations in a thin elastic rod, taking into account the inertia and external load. The coeffi-
cients λ, α, λ′, β, λ′′ characterize the properties of the rod material and relate such quantities
as Young’s modulus, Poisson’s ratio, material density and radius of gyration relative to
the center of gravity, in addition, the function f sets a known part of the external load (if
known). The integral overdetermination condition (30) arises at the moment when, in addi-
tion to finding the function v, it is necessary to restore the component of the external load
q. In addition, it is planned to use the obtained results for the development of numerical
methods, to find approximate solutions to some of the previously presented models.
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Abstract: In this article, we prove some new oscillation theorems for fourth-order differential equa-
tions. New oscillation results are established that complement related contributions to the subject.
We use the Riccati technique and the integral averaging technique to prove our results. As proof of
the effectiveness of the new criteria, we offer more than one practical example.
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1. Introduction

In this manuscript, we are concerned with the asymptotic behavior of solutions to
fourth-order differential equations:(

m(z)Ψr1

(
ς′′′(z)

))′
+ ω̃(z)Ψr2(δ(α(z))) = 0, (1)

where Ψri [s] = |s|ri−1s, i = 1, 2, ς(z) = δ(z) + ỹ(z)δ(α̃(z)), m, ỹ, ω̃ ∈ C[z0, ∞), m(z) > 0,
m′(z) ≥ 0, ω̃(z) > 0, 0 ≤ ỹ(z) < ỹ0 < ∞, α̃, α ∈ C[z0, ∞), α̃(z) ≤ z, limz→∞ α̃(z) =
limz→∞ α(z) = ∞; and r1 and r2 are quotients of odd positive integers, under the assump-
tion of the following: ∫ ∞

z0

1
m1/r1(s)

ds = ∞. (2)

The theory of the oscillation of delay of differential equations is a fertile study area
and has attracted the attention of many authors recently. This is due to the existence of
many important applications of this theory in neural networks, biology, social sciences,
engineering, etc.; see [1,2].

A study of the behavior of solutions to higher order differential equations yields much
fewer results than for the least order equations although they are of the utmost importance
in a lot of applications, especially neutral delay differential equations.

Currently, there are studies on the oscillation results of differential equations, so many
of these studies have been devoted to study the oscillation of different classes of differential
equations by using different techniques in order to establish sufficient conditions to ensure
the oscillatory behavior of the solutions of (1), see [3–5].

Mathematics 2021, 9, 1659. https://doi.org/10.3390/math9141659 https://www.mdpi.com/journal/mathematics

103



Mathematics 2021, 9, 1659

The motivation for studying this article is complemented by the results reported
in [6,7]; therefore, we discuss their findings and results below.

Xing et al. [6] presented criteria for oscillation of the equation as follows:(
m(z)

(
ς(n−1)(z)

)r1
)′

+ ω̃(z)δr1(α(z)) = 0,

under the conditions(
α−1(z)

)′ ≥ α0 > 0, α̃′(z) ≥ α̃0 > 0, α̃−1(α(z)) < z

and

lim inf
z→∞

∫ z

α̃−1(α(z))

̂̃ω(s)
m(s)

(
sn−1

)r1
ds >

(
1
α0

+
ỹr1

0
α0α̃0

)
>

((n − 1)!)r1

e
,

where 0 ≤ ỹ(z) < ỹ0 < ∞ and ̂̃ω(z) := min
{

ω̃
(
α−1(z)

)
, ω̃

(
α−1(α̃(z))

)}
. Moreover,

the authors used the comparison method to obtain oscillation conditions for this equation.
Bazighifan et al. [7] presented oscillation results for the following fourth-order equa-

tion: (
m(z)

(
ς′′′(z)

)r1
)′

+ ω̃(z)δr1(α(z)) = 0,

under the conditions ∫ ∞

z0

1
m1/r1(s)

ds < ∞

using the Riccati technique.
Zhang et al. [8] established oscillation criteria for the following equation:(

m(z)
(

ς(n−1)(z)
)r1

)′
+ ω̃(z) f (δ(α(z)))ds = 0

and under the condition

∫ ∞

z0

(
kρ(z)E(z)− 1

4λ

(
ρ′(z)
ρ(z)

)2

η(z)

)
ds = ∞.

Chatzarakis et al. [9], by using the Riccati technique, established asymptotic behavior
for the following neutral equation:(

m(z)
(
ς′′′(z)

)r1
)′

+
∫ b

a
ω̃(z, s) f (δ(α(z, s)))ds = 0.

The authors in [6,7] used the comparison technique that differs from the one we
used in this article. Their approach is based on using these mentioned methods to reduce
Equation (1) into a first-order equation, while in our article, we discuss the oscillatory
properties of differential equations with a middle term and with a canonical operator of the
neutral-type, and we employ a different approach based on using the integral averaging
technique and the Riccati technique to reduce the main equation into a first-order inequality
to obtain more effective oscillatory properties.

The purpose of this article is to establish new oscillation criteria for (1). The methods
used in this paper simplify and extend some of the known results that are reported in the
literature [6,7]. The authors in [6,7] used a comparison technique that differs from the one
we used in this article.

2. Oscillation Criteria

We next present the lemmas needed for the proof of the original results:
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Lemma 1 ([10]). If δ(i)(z) > 0, i = 0, 1, . . . , n, and δ(n+1)(z) < 0, then the following holds:

n!
δ(z)
zn ≥ (n − 1)!

δ′(z)
zn−1 .

Lemma 2 ([11]). Let δ ∈ Cn([z0, ∞), (0, ∞)). Assume that δ(n)(z) is of fixed sign and not
identically zero on [z0, ∞) and that there exists a z1 ≥ z0 such that δ(n−1)(z)δ(n)(z) ≤ 0 for all
z ≥ z1. If limz→∞ δ(z) �= 0, then for every μ ∈ (0, 1) there exists zμ ≥ z1 such that the following
holds:

δ(z) ≥ μ

(n − 1)!
zn−1

∣∣∣δ(n−1)(z)
∣∣∣ for z ≥ zμ.

Lemma 3 ([12]). Let a ≥ 0; then, the following holds:

Xδ − Yδ(a+1)/a ≤ aa(a + 1)−(a+1)Y−aXa+1,

where Y > 0 and X are constants.

Lemma 4 ([13]). Assume that δ(z) is an eventually positive solution of Equation (1). Then,

Case (N1) : ς(z) > 0, ς′(z) > 0, ς′′(z) > 0, ς′′′(z) > 0,
Case (N2) : ς(z) > 0, ς′(z) > 0, ς′′(z) < 0, ς′′′(z) > 0.

Here are the notations used for our study:

E1(z) = β(z)ω̃(z)(1 − ỹ0)
r2 Ar2−r1

1

(
α(z)

z

)3r2

,

Φ(z) = (1 − ỹ0)
r2/r1 h(z)Ar2/r1−1

2 (z)
∫ ∞

z

(
1

m(u)

∫ ∞

u
ω̃(s)

αr2(s)
sr2

ds
)1/r1

du

and

Θ(z) = r1μ1
z2

2m1/r1(z)β1/r1(z)
.

Lemma 5. Let δ(z) is an eventually positive solution of Equation (1), then(
m(z)

(
ς′′′(z)

)r1
)′ ≤ −G(z)

(
ς′′′(α(z))

)r2 , (3)

where
G(z) = ω̃(z)(1 − ỹ0)

r2
(μ

6
(α(z))3

)r2
.

Proof. Let δ(z) is an eventually positive solution of Equation (1). From definition of
ς(z) = δ(z) + ỹ(z)δ(α̃(z)), we obtain the following:

δ(z) ≥ ς(z)− ỹ0δ(α̃(z))
≥ ς(z)− ỹ0ς(α̃(z))
≥ (1 − ỹ0)ς(z),

which with (1), results in the following:(
m(z)

(
ς′′′(z)

)r1
)′

+ ω̃(z)(1 − ỹ0)
r2 ςr2(α(z)) ≤ 0. (4)

Using Lemma 2, we see the following:

ς(z) ≥ μ

6
z3ς′′′(z). (5)
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Combining (4) and (5), we find the following:(
m(z)

(
ς′′′(z)

)r1
)′

+ ω̃(z)(1 − ỹ0)
r2
(μ

6
(α(z))3

)r2(
ς′′′(α(z))

)r2 ≤ 0.

Thus, (3) holds. This completes the proof.

Lemma 6. Let δ(z) is an eventually positive solution of Equation (1) and

B′(z) ≤ β′(z)
β(z)

B(z)− E1(z)− r1μ1
z2

2m1/r1(z)β1/r1(z)
B

r1+1
r1 (z), if ς satisfies (N1) (6)

and

A′(z) ≤ −Φ(z) +
h′(z)
h(z)

A(z)− 1
h(z)

A2(z), if ς satisfies (N2), (7)

where

B(z) := β(z)
m(z)(ς′′′(z))r1

ςr1(z)
> 0 (8)

and

A(z) := h(z)
ς′(z)
ς(z)

, z ≥ z1. (9)

Proof. Let δ(z) is an eventually positive solution of Equation (1). Let (N1) holds. From (8)
and (4), we find the following:

B′(z) ≤ β′(z)
β(z)

B(z)− β(z)ω̃(z)(1 − ỹ0)
r2 ςr2(α(z))

ςr1(z)
− r1β(z)

m(z)(ς′′′(z))r1

ςr1+1(z)
ς′(z). (10)

Using Lemma 1, we find

ς(z) ≥ z
3

ς′(z)

and hence,
ς(α(z))

ς(z)
≥ α3(z)

z3 . (11)

It follows from Lemma 2 that

ς′(z) ≥ μ1

2
z2ς′′′(z), (12)

for all μ1 ∈ (0, 1) and every sufficiently large z. Thus, by (10)–(12), we obtain the following:

B′(z) ≤ β′(z)
β(z)

B(z)− β(z)ω̃(z)(1 − ỹ0)
r2 ςr2−r1(z)

(
α(z)

z

)3r2

−r1μ1
z2

2m1/r1(z)β1/r1(z)
B

r1+1
r1 (z).

Since ς′(z) > 0, there exist z2 ≥ z1 and A1 > 0 such that the following holds:

ς(z) > A1. (13)

Thus, we obtain the following:

B′(z) ≤ β′(z)
β(z)

B(z)− β(z)ω̃(z)(1 − ỹ0)
r2 Ar2−r1

(
α(z)

z

)3r2

−r1μ1
z2

2m1/r1(z)β1/r1(z)
B

r1+1
r1 (z),
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which yields the following:

B′(z) ≤ β′(z)
β(z)

B(z)− E1(z)− r1μ1
z2

2m1/r1(z)β1/r1(z)
B

r1+1
r1 (z).

Thus, (6) holds.
Let (N2) hold. Integrating (4) from z to u, we find the following:

m(u)
(
ς′′′(u)

)r1 − m(z)
(
ς′′′(z)

)r1 ≤ −
∫ u

z
ω̃(s)(1 − ỹ0)

r2 ςr2(α(s))ds. (14)

From Lemma 1, we obtain the following:

ς(z) ≥ zς′(z)

and hence,

ς(α(z)) ≥ α(z)
z

ς(z). (15)

For (14), letting u → ∞ and using (15), we obtain the following:

m(z)
(
ς′′′(z)

)r1 ≥ (1 − ỹ0)
r2 ςr2(z)

∫ ∞

z
ω̃(s)

αr2(s)
sr2

ds. (16)

Integrating (16) from z to ∞, we find the following:

ς′′(z) ≤ −(1 − ỹ0)
r2/r1 ςr2/r1(z)

∫ ∞

z

(
1

m(u)

∫ ∞

u
ω̃(s)

αr2(s)
sr2

ds
)1/r1

du, (17)

From the definition of A(z), we see that A(z) > 0 for z ≥ z1, and using (13) and (17),
we find the following:

A′(z) =
h′(z)
h(z)

A(z) + h(z)
ς′′(z)
ς(z)

− h(z)
(

ς′(z)
ς(z)

)2

≤ h′(z)
h(z)

A(z)− 1
h(z)

A2(z)

−(1 − ỹ0)
r2/r1 h(z)ςr2/r1−1(z)

∫ ∞

z

(
1

m(u)

∫ ∞

u
ω̃(s)

αr2(s)
sr2

ds
)1/r1

du.

Since ς′(z) > 0, there exist z2 ≥ z1 and A2 > 0 such that the following holds:

ς(z) > A2.

Thus, we obtain the following:

A′(z) ≤ −Φ(z) +
h′(z)
h(z)

A(z)− 1
h(z)

A2(z),

Thus, (7) holds. Proof of the theorem is completed.

Definition 1. Let

D = {(z, s) ∈ R2 : z ≥ s ≥ z0} and D0 = {(z, s) ∈ R2 : z > s ≥ z0}.

The function Gi ∈ C(D,R) fulfills the following conditions:

(i) Gi(z, s) = 0 for z ≥ z0, Gi(z, s) > 0, (z, s) ∈ D0;
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(ii) The functions h, υ ∈ C1([z0, ∞), (0, ∞)) and gi ∈ C(D0,R) such that

∂

∂s
G1(z, s) +

β′(s)
β(s)

G(z, s) = g1(z, s)Gr1/(r1+1)
1 (z, s) (18)

and
∂

∂s
G2(z, s) +

h′(s)
h(s)

G2(z, s) = g2(z, s)
√

G2(z, s). (19)

Now, we present some Philos-type oscillation criteria for (1).

Theorem 1. Let (24) hold. If β, h ∈ C1([z0, ∞),R) such that

lim sup
z→∞

1
G(z, z1)

∫ z

z1

G(z, s)E1(s)−
gr1+1

1 (z, s)Gr1
1 (z, s)

(r1 + 1)r1+1
2r1 m(s)β(s)
(μ1s2)

r1
ds = ∞ (20)

for all μ2 ∈ (0, 1), and

lim sup
z→∞

1
G2(z, z1)

∫ z

z1

(
G2(z, s)Φ(s)− h(s)g2

2(z, s)
4

)
ds = ∞, (21)

then (1) is oscillatory.

Proof. Let δ be a non-oscillatory solution of (1) , we see that δ > 0. Assume that (N1)
holds. Multiplying (6) by G(z, s) and integrating the resulting inequality from z1 to z, we
obtain the following:∫ z

z1

G(z, s)E1(s)ds ≤ B(z1)G(z, z1) +
∫ z

z1

(
∂

∂s
G(z, s) +

β′(s)
β(s)

G(z, s)
)

B(s)ds

−
∫ z

z1

Θ(s)G(z, s)B
r1+1

r1 (s)ds.

From (18), we obtain the following:∫ z

z1

G(z, s)E1(s)ds ≤ B(z1)G(z, z1) +
∫ z

z1

g1(z, s)Gr1/(r1+1)
1 (z, s)B(s)ds

−
∫ z

z1

Θ(s)G(z, s)B
r1+1

r1 (s)ds. (22)

Using Lemma 3 with V = Θ(s)G(z, s), U = g1(z, s)Gr1/(r1+1)
1 (z, s) and δ = B(s),

we obtain the following:

g1(z, s)Gr1/(r1+1)
1 (z, s)B(s)− Θ(s)G(z, s)B

r1+1
r1 (s)

≤ gr1+1
1 (z, s)Gr1

1 (z, s)

(r1 + 1)r1+1
2r1 m(z)β(z)
(μ1z2)

r1
,

which, with (22) gives the following:

1
G(z, z1)

∫ z

z1

(
G(z, s)E1(s)−

gr1+1
1 (z, s)Gr1

1 (z, s)

(r1 + 1)r1+1
2r1 m(s)β(s)
(μ1s2)

r1

)
ds ≤ B(z1),

which contradicts (20).
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Assume that (N2) holds. Multiplying (7) by G2(z, s) and integrating the resulting
inequality from z1 to z, we find the following:∫ z

z1

G2(z, s)Φ(s)ds ≤ A(z1)G2(z, z1)

+
∫ z

z1

(
∂

∂s
G2(z, s) +

h′(s)
h(s)

G2(z, s)
)

A(s)ds

−
∫ z

z1

1
h(s)

G2(z, s)A2(s)ds.

Thus,∫ z

z1

G2(z, s)Φ(s)ds ≤ A(z1)G2(z, z1) +
∫ z

z1

g2(z, s)
√

G2(z, s)A(s)ds

−
∫ z

z1

1
h(s)

G2(z, s)A2(s)ds

≤ A(z1)G2(z, z1) +
∫ z

z1

h(s)g2
2(z, s)
4

ds

and so
1

G2(z, z1)

∫ z

z1

(
G2(z, s)Φ(s)− h(s)g2

2(z, s)
4

)
ds ≤ A(z1),

which contradicts (21). Proof of the theorem is completed.

Corollary 1. Let (24) hold. If β, h ∈ C1([z0, ∞),R) such that

∫ ∞

z0

(
E1(s)− 2r1

(r1 + 1)r1+1
m(s)(β′(s))r1+1

μr1
1 s2r1 βr1(s)

)
ds = ∞ (23)

and ∫ ∞

z0

(
Φ(s)− (h′(s))2

4h(s)

)
ds = ∞, (24)

for some μ1 ∈ (0, 1) and every A1, A2 > 0, then (1) is oscillatory.

3. Example

This section presents some interesting examples to examine the applicability of theo-
retical outcomes.

Example 1. Consider the following equation:(
δ +

1
2

δ

(
1
3

z
))(4)

+
ω̃0

z4 δ

(
1
2

z
)
= 0, z ≥ 1, ω̃0 > 0. (25)

Let r1 = r2 = 1, m(z) = 1, ỹ(z) = 1/2, α̃(z) = z/3, α(z) = z/2 and ω̃(z) = ω̃0/z4.
Hence, it is easy to see that ∫ ∞

z0

1
m1/r1(s)

ds = ∞, E1(z) =
ω̃0

16s

and
Φ(z) :=

ω̃0

24
.
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If we put β(s) := z3 and h(z) := z2, then we find the following:

∫ ∞

z0

(
E1(s)− 2r1

(r1 + 1)r1+1
m(s)(β′(s))r1+1

μr1
1 s2r1 βr1(s)

)
ds

=
∫ ∞

z0

(
ω̃0

16s
− 9

2μ1s

)
ds

and ∫ ∞

z0

(
Φ(s)− (h′(s))2

4h(s)

)
ds

=
∫ ∞

z0

(
ω̃0

24
− 1

)
ds.

Thus,
ω̃0 > 72 (26)

and
ω̃0 > 24. (27)

From Corollary 1, Equation (25) is oscillatory if ω̃0 > 72.

Example 2. Consider the following equation:(
z(δ + ỹ0δ(γz))′′′

)′
+

ω̃0

z3 δ(ηz) = 0, z ≥ 1, (28)

where ỹ0 ∈ [0, 1), γ, η ∈ (0, 1) and ω̃0 > 0. Let r1 = r2 = 1, m(z) = z, ỹ(z) = ỹ0, α̃(z) = γz,
α(z) = ηz and ω̃(z) = ω̃0/z3. Hence, if we set β(s) := z2 and h(z) := z, then we get

E1(z) =
ω̃0(1 − ỹ0)η

3

z
, Φ(z) =

ω̃0(1 − ỹ0)η

4z
.

Thus, (23) and (24) become the following:

∫ ∞

z0

(
E1(s)− 2r1

(r1 + 1)r1+1
m(s)(β′(s))r1+1

μr1
1 s2r1 βr1(s)

)
ds

=
∫ ∞

z0

(
ω̃0(1 − ỹ0)η

3

s
− 2

μ1s

)
ds

and ∫ ∞

z0

(
Φ(s)− (h′(s))2

4h(s)

)
ds

=
∫ ∞

z0

(
ω̃0(1 − ỹ0)η

4s
− 1

4s

)
ds.

So,

ω̃0 >
2

(1 − ỹ0)η3 (29)

and
ω̃0 >

1
(1 − ỹ0)η

.

From Corollary 1, Equation (28) is oscillatory if (29) holds.
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4. Conclusions

In this work, we prove some new oscillation theorems for (1). New oscillation results
are established that complement related contributions to the subject. We used the Riccati
technique and integral averages technique to obtain some new results to the oscillation
of Equation (1) under the condition

∫ ∞
z0

1
m1/r1 (s)

ds = ∞. In future work, we will study this

type of equation under the following condition:∫ ∞

z0

1
m1/r1(s)

ds < ∞,

We also introduce some important oscillation criteria of differential equations of the
fourth-order and under the following:

ς(z) = δ(z) + ỹ(z)
j

∑
i=1

δi(α̃(z)).
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Abstract: Optimal control problems arise in many applications and need suitable numerical methods
to obtain a solution. The indirect methods are an interesting class of methods based on the Pontrya-
gin’s minimum principle that generates Hamiltonian Boundary Value Problems (BVPs). In this paper,
we review some general-purpose codes for the solution of BVPs and we show their efficiency in
solving some challenging optimal control problems.

Keywords: optimal control; indirect methods; boundary value problems

1. Introduction

Many optimal control problems arise from an interest in observing the dynamic
behavior of a state variable described by a dynamic equation, namely by a differential
equation, in several areas of applications such as biology, chemistry, economy, physics,
and engineering. For example, we can consider the development of a specific species
of animals in an ecological preserve, the dynamical behavior of a chemical process, the
evolution of the selling trend of a company, or the simulation of high-performance racing
vehicles. The dynamical behavior of this kind of problems is influenced by the choice of
control variables, as it might be incorporating the presence of predators in the ecological
preserve, moreover, both state and control variables must fulfil constraints, and minimize
or maximize an objective function.

Numerical methods solving optimal control problems were considered starting from
the 1950s, when Bellman introduced the dynamic programming [1], that requires solving
a partial differential equation, called the Hamiltonian-Jacobi-Bellman equation. Through
time the numerical approaches can be mainly divided into two classes: direct methods and
indirect methods [2,3]. Perhaps the first class of direct methods is the most widely applied,
it transforms the problem into a nonlinear optimization problem or nonlinear programming
problem, essentially this class is focused on the use of optimization techniques. The second
class of the indirect methods transforms the original optimal control problem into a two-
point boundary value problem, highlighting particular attention to numerical methods
solving differential equation systems. The last strategy is often considered disadvantageous
for figuring out challenging optimal control problem.

As against this last opinion, this work aims to review many of the available general-
purpose codes solving boundary value problems, able to figure out optimal control prob-
lems arising from adopting an indirect approach. The review is also devoted to some
numerical strategies that are useful and sometime necessary to numerically solve the
problem, such as continuation techniques associated with suitable penalty functions.

The most used solver for indirect methods has been the shooting method, based on
guessing the value of the unknown boundary condition at one end of the interval, so that
an initial value problem is solved to obtain the solution at the other end of the interval that
is already known. Although the shooting method is simple to apply, it is not particularly
advantageous to use when the boundary value problem is ill conditioned or stiff, and
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purposely when the optimal control problem is hypersensitive [4]. To overcome this matter
the multiple shooting method is considered, specifically the time interval is partitioned in
more subintervals and the shooting method is applied over each of these intervals. Another
class of methods widely used, since it is the most robust and fast converging, is the class of
collocation methods, where piecewise polynomials are used to parametrize the state and
control variables. Finally, the solution is computed solving a nonlinear system by means of
root finding techniques.

In the literature there exist different general-purpose open-source codes solving bound-
ary value problems that are highly suitable in solving stiff and singular perturbations prob-
lems. Many of them have been implemented in Fortran, which has been for many years the
preferred language for scientific computing. Some effort has been however accomplished
to make them also available in problem-solving environments such as Matlab or R. The
first bvp codes, as colsys/colnew [5,6], twpbvp [7] , twpbvpl [8], acdc and colmod [9],
coldae [10], mirkdc [11] and BVP_M-2 [12,13] have been written in Fortran/Fortran90. A
collection of the last releases of many of the cited Fortran codes, together with the driver
that allows a common input definition, and a list of numerical examples arising in several
applications are available in the web site Test set for BVP solvers [14,15].

The Matlab environment allows the use of two functions, named bvp4c [16] and
bvp5c [17], for solving BVPs. Other interesting codes that are usable in Matlab are
bvptwp [18], TOM [19], HOFiD_bvp [20] and bvpSuite2.0 [21], based on the code sbvp [22]
for the solution of singular problems. The code bvpSuite2.0 could be used also for singu-
lar BVPs and differential algebraic problems of index 1. For the R community is instead
available the package called bvpSolve that allows the running in R of many of the avail-
able Fortran codes [4,23]. In Python the package scipy.integrate includes the function
solve_bvp [24], a routine based on BVP_M-2 and similar to the bvp4c Matlab code. All of
them solve two-point boundary value problems, this means that applied to a second order
boundary value problems, they transform the original problem into a system of first-order
differential equations with boundary conditions, except for the collocation codes colsys,
colnew, colmod, coldae, bvpSuite, and the high-order finite difference code HOFiD_bvp,
since each of them can be applied directly to higher order problems.

Our aim is to apply some of the cited codes for figuring out boundary value problems
coming up using indirect methods to optimal control problems. Meanwhile, we will
highlight some matters that can arise in handling bvp solvers, such as the choice of an
initial mesh, or the use of a continuation technique for nonlinear problems. To this aim we
show by some test problems how the proper use of these techniques and a good choice of
the input parameters can allow us to obtain a solution in more efficient way than we could
achieve using default parameters. Since the aim of this paper is not to make a comparison
between the selected codes, we do not show the execution time, but we point out how the
choice of a code depends on the problem.

We use as platform to run the experiment the Matlab environment and we consider
the codes available in the Matlab distribution, bvptwp and TOM. We do not present the
results for the collocation code bvpSuite2.0 because it does not give in output the same
information of the other codes and it does not allow using a numerical Jacobian. For
R-users all the examples could be solved using all the codes available in the bvpSolve

package. Since bvpSolve run the Fortran codes by means of an interface, the results are the
same obtained by the original Fortran codes.

The paper shows a list of a few interesting problems, for other applications of the
same codes, here considered, to more involved optimal control problems, we refer the
reader to [25–28]. Moreover, we highlight that it is not our aim to compare direct and
indirect methods, but only to show the efficiency of indirect methods that often are not
taken into consideration because users do not know the potentiality of general-purpose
codes for BVPs.

The paper is organized as follows: in Section 2 we briefly introduce the indirect
methods; in Section 3 we review codes for solving boundary value problems (BVPs) that
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are illustrated and classified through different programming environments, in particular
Fortran codes are allocated in Section 3.1, Matlab codes in Section 3.2 and R codes in
Section 3.3. Finally, in Sections 4–8 interesting optimal control problems are solved using
indirect methods and the BVPs related. In Section 9 we give some conclusions, highlighting
the potentiality of the BVP codes considered.

2. Optimal Control Problems: Indirect Methods

Given a non-empty compact time interval [t0, t f ] ⊂ R, with t0 < t f , an optimal control
problem is defined as

minimize ϕ(t f , x f ) +
∫ t f

t0

L(t, x, u) dt,

x′ = f (t, x, u),

b(x(t0), x(t f )) = 0, (1)

u ∈ U ,

where ϕ and L are sufficiently smooth functions involved in the minimization of the
objective function, x(t) ∈ Rn is the state variable of the dynamical system, u(t) ∈ U ⊂ Rm

is the control variable and U the set of admissible controls, f is a regular function and
b(x(t0), x(t f )) = 0 are the general boundary conditions. Furthermore, Problem (1) might
be subject to a path constraint that can be expressed by a mixed control-state constraint
c(t, x, u) ≤ 0 or a pure state constraint s(t, x) ≤ 0 .

There exist two main approaches solving optimal control problems (1), direct methods
and indirect methods [2,29]. Direct methods suitably discretize an infinite-dimensional
optimal control problem, giving back a finite-dimensional optimization problem that can
be solved using appropriate nonlinear programming methods, such as sequential quadratic
programming. This approach results robust and efficient if applied to several problems,
besides not requiring a strong knowledge in optimal control theory, it becomes highly
advantageous to use.

On the other hand, indirect methods are instead related to the Pontryagin’s minimum
principle [29], a necessary condition for optimality that transforms the original Problem (1)
into a two-point boundary value problem for state and adjoint Lagrange multiplier func-
tions, defined as

x′ = f (t, x, u),

λλλ′ = −Hx(t, x, u, λ),

b(x(t0), x(t f )) = 0, (2)

bx(t0)
(x(t0), x(t f ))ω = λλλ(t0),

bx(t f )
(x(t0), x(t f ))ω = −ϕx(t f , x f )−λλλ(t f ),

where H(t, x, u, λ) = L(t, x, u) +λλλ · f (t, x, u) is the Hamiltonian function and the optimal
control u∗(t) is obtained by a local optimization of the Hamiltonian, namely
u∗(t) = arg min

u∈U
H(t, x, u, λ). Pro this approach there is the possibility to compute an

accurate numerical solution; however, against we find some drawbacks, such as the neces-
sity to have a good initial guess for the solution of the generated nonlinear boundary value
problem. Now, to overcome this matter we focus on the application of some well-known
two-point boundary value codes that are considered extremely efficient and robust to solve
the BVP (2).

3. Codes for BVPs

Boundary value problems arise in many fields of application, so in the last 40 years
a great effort has been done to develop efficient methods solving this kind of problems.
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Among them many are methods applied to two-point boundary value problems, i.e., to sys-
tems of first-order ordinary differential equations with boundary conditions, others can be
applied directly to second or high-order boundary value problems without any transforma-
tion of the original problem. Moreover, these codes are available in different programming
environment, so in the following we will give information about their characteristics.

3.1. Fortran Codes

The code colsys was written by U. Ascher, R. Matteij and R. Russell [5] and it is based
on method of spline collocation at Gaussian points and solves mixed-order systems of
multipoint BVPs, high-order equations, problems with non-separated boundary conditions
and problems with singularity. The code computes the solution on a sequence of meshes
that are refined using the equidistribution of error to satisfy the required input tolerance.
The error estimate is obtained roughly at each step halving the mesh. The components
of the collocation solution are expressed by B-spline basis, which are evaluated by the de
Boor’s algorithms. Indeed, the damped Newton’s method of quasilinearization is used for
solving the nonlinear problems.

The code colnew [6,30] is the descendant of colsys and, contrary to this last, it uses a
Runge–Kutta monomial representation for the piecewise polynomial solution, instead of
B-spline basis. This change returns a code faster than the native version colsys.

The codes twpbvp,twpbvpl and acdc were written by J. R. Cash and his collaborators.
The code twpbvp [7], differently from colsys, uses mono-implicit Runge–Kutta formulae
and a deferred correction method for solving two-point boundary value problems. The
mono-implicit Runge–Kutta formulae are implemented applying the deferred correction
procedure, which allows discovery of the solution of a high-order method using only low
order schemes. The code guarantees to construct a mesh refinement that is very suitable
for singular perturbation problems.

The code twpbvpl, differently from twpbvp, is based on three Lobatto Runge–Kutta
formulae of order 4, 6, 8, which are implemented using a suitable deferred correction
scheme, solved with a damped Newton iteration scheme. The code is devoted in solving
efficiently nonlinear stiff two-point boundary value problems.

The code acdc [9] has been developed from twpbvpl including an automatic continu-
ation strategy, implemented to suitably solve linear and nonlinear singular perturbation
problems characterized from a small parameter ε. The parameter ε often brings about
stiffness in the problem, so that for a nonlinear problem a good initial solution is required
to reach the convergence of the Newton method. The continuation strategy arises to over-
come these matters, specifically it consists of selecting an initial perturbation parameter ε0,
chosen to compute a solution of a problem not particularly stiff, usually for ε0 ≈ 1, and
satisfying a certain exit tolerance tol. The idea is to obtain an initial rough profile of the
solution of the problem for a desired perturbation parameter ε. Then, chosen an integer Nε

the interval [ε0, ε] is discretized in Nε subintervals, so that

ε0 > ε1 > · · · > · · · > εNε−1 > εNε .

Now, Nε + 1 boundary value problems satisfying an exit tolerance tol are iteratively
computed, so that the solution of the problem obtained at iteration i = 0, . . . , Nε − 1, for εi
on a mesh πi, is the initial solution of the next problem with perturbation parameter εi+1.
A crucial point of this strategy is the selection of the initial parameter ε0 and the value of
discretizazion Nε, both depend on the problem. In codes such as acdc ε0 is set equal to
0.5 by default; however the suggestion is to consider ε0 as a value not extremely small
allowing the obtaining of an accurate solution of the problem for that value of perturbation;
The code acdc chooses the sequences of parameters and the total number of continuation
steps automatically. It is however possible to implement a continuation strategy for the
other codes, in this case for Nε it would be convenient to start with a small integer and
then double or increment it, if the procedure does not converge.
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The code colmod [9] is a modified version of the code colsys using the same continu-
ation strategy adopted in acdc.

The codes twpbvpc, twpbvplc and acdcc [14] are the modified version of the codes
twpbvp, twpbvpl and acdc that implement a mesh selection strategy based on the estima-
tion of the local error and of two conditioning parameters [31]. This hybrid mesh strategy
has first been used in the Matlab code TOM, described in the next section.

The code mirkdc written by W. Enright and P. Muir [11] uses MIRK method and
controls the defect, also BVP_M-2 written by J.J. Boisvert, P. Muir and R. Spiteri [12] is based
on MIRK methods, but this last controls both the defect and/or the global error, giving,
moreover, information about the conditioning constant.

Detailed information about all the numerical schemes and techniques related to the
Fortran codes in this subsection can be found in [32] where a review of global methods for
solving BVPs is presented.

3.2. Matlab Codes

The BVP codes available officially in the Matlab environment are bvp4c [33] and
bvp5c [34]. The code bvp4c [16] is based on a collocation method with a C1 piecewise
cubic polynomial, or equivalently on an implicit Runge–Kutta formula with a continuous
extension, namely the collocation method is equivalent to a three-stages Lobatto IIIa
implicit Runge–Kutta formula. This code implements a method of order four and solves a
large class of BVP, such as equations with non-separated boundary conditions, singular
problems, Sturm–Liouville problems. An advantage of this code is being able to compute
numerical partial derivatives and use a vectorized finite difference Jacobian. Differently
from the other codes the error estimation and the mesh selection are based on the residual
estimation. We recall that if S(x) approximates the solution y(x), then the residual control
in the differential equation y′(x) = f (x, y(x)) is given by r(x) = |S′(x)− f (x, S(x))|.

The code bvp5c is based on the four-stages Lobatto IIIa formula, giving a method
of order five. Contrarily to bvp4c, bvp5c controls the residual and the true approximate
error. It is clear that if the BVP is well-conditioned a small residual implies a small true
error, but this is not satisfied if the BVP is ill-conditioned, hence the strategy to control the
residual and the true error is more efficient than the one applied in bvp4c.

The next two codes TOM and HOFiD_bvp belong to the class of Boundary Value Meth-
ods [35], especially suitable for solving BVPs.

The code TOM [19], based on the TOP Order Methods and the BS method of order four,
six, eight and ten distinguishes for the use of conditioning in the mesh selection strategy.
In [36] the authors analyzed how the conditioning and the stiffness of a problem depend
on the estimation of the following conditioning parameters:

κ conditioning constant with respect to all type of perturbation, computed using the
maximum norm;

κ1 conditioning constant with respect to a perturbation of the boundary conditions,
computed using the maximum norm;

κ2 conditioning constant with respect to a perturbation of the differential problem, com-
puted using the maximum norm;

γ1 conditioning constant with respect to a perturbation of the boundary conditions,
computed using the one norm;

σ the stiffness ratio.

Specifically, the problem is: well-conditioned if κ, κ1, γ1 and σ are of moderate size;
stiff if σ � 1; ill-conditioned if κ � 1 and γ � 1; ill posed if κ2 > κ1. A complete
description of the parameters and the algorithms used to compute their approximation
is presented in [37]. The hybrid mesh selection algorithm controls the approximation
of conditioning parameters and chooses the mesh points to have an estimation of those
discrete quantities close to the continuous ones. Meanwhile, the code controls that the error
of the solution computed is less than a prescribed tolerance. The error approximation is
computed using a deferred correction technique with a higher order method, moreover a
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quasi-linearization technique is implemented to solve nonlinear problem. The release of
May 2021, which has been used for the numerical tests in this paper, has the possibility to
choose two different mesh selections, one suitable for regular problem and the other one
for stiff or singular perturbation problems.

The code HOFiD_bvp [20] is based on high-order finite difference schemes (HOFiD) of
order four, six, eight and ten, and an upwind method. Each derivative in the high-order
boundary value problem is approximated directly by these schemes, hence it is not required
any transformation of the problem in a system of first-order differential equations. The
error estimation is computed applying the deferred correction technique to two consecutive
order methods. The mesh selection is based on the error equidistribution. For nonlinear
problems, the code uses a continuation strategy, as explained previously, and also combines
an order variation strategy, this means that a solution of the problem obtained with a lower
order and tolerance can be considered to be initial solution to run the code with higher
order and tolerance. The strategy adopted returns a code suitable to solve high-order
boundary value problems that can be singularly perturbed, singular, with discontinuous
terms and multipoint. Other versions of the code solve singular second order initial value
problems [38], Sturm–Liouville problems [39] and multi-parameters spectral problems [40].

An interesting code for solving high-order BVPs is the bvpSuite2.0 package, based
on collocation methods. The collocation points could be chosen by the users among
Gauss, Lobatto, uniform or user defined points. The code solves implicit BVPs, eigenvalue
problems, differential algebraic problems of index 1 and it is particularly suited for singular
problems. BvpSuite2.0 [21] is the evolution of two previous versions of the code with
improved usability. The mesh selection strategy used is described in [41].

Finally, we consider the Matlab code bvptwp [18] based on an efficient translation
of the Fortran codes twpbvp, twpbvpl and acdc in the Matlab environment, which are
named twpbvp_m, twpbvp_l, acdc. Moreover, the Matlab package also contains the
translation of the Fortran version of the same codes that use a hybrid mesh selection based
on conditioning, similar to the one used in the code TOM, called twpbvpc_m, twpbvpc_l,

acdcc. The code bvptwp is available on the calgo website and on the web-page called Test
Set for BVP Solvers [15]. The version used in this paper is the release of May 2021.

3.3. R Codes

In recent years, the use of the open-source software R is upward among the problem-
solving environments (PSEs) , and although it is mainly used as a software for statistics
and visualization, several powerful methods solving differential equations have been
developed. In this regard we highlight the package bvpSolve [23], which, using an interface,
implements all the Fortran codes introduced in Section 3.1.

3.4. Experiments

Since our aim is to show the suitability and the efficiency of the BVP solvers in
computing the solution of the Hamiltonian boundary value problems deriving from the
application of the indirect method to optimal control problems, in the following sections
we carry out some interesting numerical tests. We run experiments using the Matlab codes
bvp4c, bvp5c, and bvptwp. For the last solver we consider all the codes available, i.e.,
twpbvp_m, twpbvp_l, twpbvpc_m, twpbvpc_l, acdc, acdcc. We also add the results
obtained with the new release of the code TOM (May 2021). This code allows the choice
of a boundary value method of specific order and a mesh variation strategy. For all the
examples we choose the BS method of order 4 and we denote by tom the code run using a
mesh variation for regular problems and by tomc the one implementing a mesh variation
suited for stiff problems. For R-users all the examples could be solved applying all the
codes included in the bvpSolve package. Since bvpSolve runs the Fortran codes by an
interface, the obtained results are similar to those computed by means of the original
Fortran codes. We also observe that some of the codes considered here for the numerical
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tests are also present in the R package bvpSolve rel. 1.4.2. The R version of these codes on
the same examples show comparable results.

In our tests we use an initial mesh with 16 equidistant points and an initial solution
with zero elements, except in some examples where specified. Moreover, the maximal
mesh allowed has been set to 104 and the function evaluations have been vectorized. In the
tables we report the number of points in the final mesh f M (in reading this value we recall
that the code TOM does not use any auxiliary steps but all the others codes needs also
several intermediate steps depending on the order of the methods used), the total number
of vectorized function evaluation NVF and the mixed relative error on some significant
components of the solution defined for a generic component x by the following formula

max
i

|xi − x(ti)|
(1 + |x(ti)|)

where xi is the numerical approximation of x(ti). If the exact solution of the test problem is
not available, the error is computed by running the code twpbvpc_l using a doubled mesh
and a halved input tolerance. For all the codes we give in input equal absolute and relative
tolerances. If the codes twpbvp_m/twpbvpc_m, twpbvp_l/twpbvpc_l, acdc/acdcc give
the same results we report only one result in the tables. If a code cannot solve the problem,
we put * in the tables.

4. Hypersensitive Optimal Control Problems

The first class of examples we consider is the class of hypersensitive optimal control
problems. Problems in this class are stiff, and need a suitable mesh variation strategy when
solved using both direct and indirect methods. Usually, they are considered extremely
difficult to be solved by indirect methods, because the solution is sensitive to changes in
the initial conditions. In [42] the authors describe a dichotomic basis method which is
inspired to the computation of the solution of singular perturbation problems for stiff initial
value problems. In the following examples we show that general-purpose finite differences
codes can solve very efficiently this class of problems. The codes can be applied for the
numerical solution of completely hypersensitive problems whose solution has fast rates in
all directions and partially hypersensitive problems, with the fast rate in only one direction.

4.1. Nonlinear Mass Spring System with Quadratic Cost

As first example we consider a hypersensitive nonlinear mass spring system [43],
where the mass position x is defined such that the spring is unstretched when x = 0. The
spring force is Fs(x) = −k1x − k2x3. The control is exerted on the mass by an external force
denoted by F(t), hence the control input is u(t) = F(t). The equation of motion of the mass
is mx′′ = Fs(x) + F(t). We assume that k1 = 1, k2 = 1 and m = 1.

The optimal control problem needs to determine the control u on the fixed time
interval [0, T] such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x,u

1
2

∫ T

0
(x2 + v2 + u2) dt

x′ = v
v′ = −x − x3 + u
x(0) = 1, v(0) = 0, x(T) = 0.75, v(T) = 0.

The associated Hamiltonian is

H(x, v, λ, μ, u) =
1
2
(x2 + v2 + u2) + λv + μ(−x − x3 + u)

and the optimal control, obtained by computing ∂H
∂u = 0, is given by u∗ = −μ. There-

fore, applying the indirect method the optimal control problem is equivalent to solve the
following BVP
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x′ = v

v′ = −x − x3 − μ

λ′ = −x + μ(1 + 3x2) (3)

μ′ = −v − λ

x(0) = 1, v(0) = 0, x(T) = 0.75, v(T) = 0.

In Figure 1 we show the solution for T = 20 and T = 40. In Table 1 we present some
results obtained increasing the value of T from 20 to T = 2 × 106. First, we choose an
initial mesh of 16 equidistant points and try to run all the codes, except the codes acdc

and acdcc, since for this formulation of the problem there is not a parameter to be used
for continuation. If on one hand, for T = 20 all the methods converge to the solution, and
for T = 2 × 104 only the codes bvp4c and bvp5 fail, on the other hand for T = 2 × 106 no
one goes to convergence except the codes tom and tomc (see Table 2). Essentially, there
are some troubles with a singular Jacobian for bvp4c and bvp5c, or a drawback with the
maximum number of mesh points allowed with the other codes. In the last case we could
increase the maximum value of mesh points; however, we will try to differently overcome
this matter and to debunk the idea that the indirect methods are not as competitive as
direct ones.

Table 1. Nonlinear Mass spring: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors
for x, v, u. The solution is computed starting from an initial mesh with 16 equidistant points.

tol = 10−4

T = 20 T = 2 × 104

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 71 35 6.0 × 10−6 9.8 × 10−6 1.7 × 10−5 * * * * *
bvp5c 294 1001 9.0 × 10−9 2.0 × 10−8 4.7 × 10−8 * * * * *

twpbvp_m 23 52 2.5 × 10−6 4.4 × 10−6 4.8 × 10−6 158 263 3.8 × 10−6 2.4 × 10−6 3.0 × 10−7

twpbvpc_m 38 52 2.4 × 10−6 4.5 × 10−6 5.1 × 10−6 201 246 1.2 × 10−6 1.7 × 10−6 2.3 × 10−6

twpbvp_l 27 54 1.7 × 10−6 2.1 × 10−6 4.4 × 10−6 97 200 6.9 × 10−6 1.1 × 10−5 3.2 × 10−5

twpbvpc_l 27 54 1.7 × 10−6 2.1 × 10−6 4.4 × 10−6 104 246 5.7 × 10−6 6.2 × 10−6 2.8 × 10−5

tom 116 14 2.8 × 10−6 1.7 × 10−6 3.1 × 10−6 426 30 7.7 × 10−6 4.5 × 10−6 7.6 × 10−6

tomc 136 16 1.2 × 10−6 1.6 × 10−6 2.4 × 10−6 526 41 7.5 × 10−7 1.1 × 10−6 1.5 × 10−6

tol = 10−6

bvp4c 254 49 2.4 × 10−8 6.6 × 10−8 1.5 × 10−7 * * * * *
bvp5c 392 1221 1.2 × 10−10 1.2 × 10−10 1.7 × 10−10 * * * * *

twpbvp_m 42 50 1.1 × 10−8 1.3 × 10−8 2.3 × 10−8 254 271 1.3 × 10−7 1.0 × 10−7 1.1 × 10−7

twpbvpc_m 57 73 3.2 × 10−8 4.4 × 10−8 5.0 × 10−8 306 306 8.1 × 10−7 7.1 × 10−7 6.3 × 10−7

twpbvp_l 48 78 2.0 × 10−8 1.9 × 10−8 2.3 × 10−8 152 207 1.7 × 10−8 2.2 × 10−8 2.5 × 10−8

twpbvpc_l 58 78 2.0 × 10−8 1.9 × 10−8 2.3 × 10−8 136 253 1.7 × 10−8 2.2 × 10−8 2.5 × 10−8

tom 196 19 1.6 × 10−7 2.2 × 10−7 2.8 × 10−7 481 33 4.5 × 10−7 4.1 × 10−7 5.1 × 10−7

tomc 166 17 7.2 × 10−7 6.8 × 10−7 7.4 × 10−7 511 44 2.1 × 10−7 2.7 × 10−7 3.1 × 10−7

Table 2. Nonlinear Mass spring, T = 2 × 106: final mesh (fM), total number of vectorized function evaluation (NVF) and
mixed errors for x, v, u, initial mesh with 16 equidistant points.

fM NVF Error x Error v Error u fVM NVF Error x Error v Error u

tom 6266 256 6.4 × 10−7 8.9 × 10−7 1.1 × 10−6 6266 256 6.4 × 10−7 8.9 × 10−7 1.1 × 10−6

tomc 1291 177 6.6 × 10−7 7.5 × 10−7 1.4 × 10−6 1236 180 1.7 × 10−7 1.6 × 10−7 1.8 × 10−7

120



Mathematics 2021, 9, 2618

0 10 20 30 40
t

-0.2

0

0.2

0.4

0.6

0.8

1

x(
t)

0 10 20 30 40
t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
(t

)

Figure 1. Mass spring: solution in time for the mass position x on the left and the control u on the
right. Final time T = 20 (blue line) and T = 40 (red dash-dot line).

First, we point out that the results presented in Table 2 clearly show that the mesh
selection based on conditioning allows the solution of the problem using a reduced number
of mesh points and vectorial function evaluations. To gain the convergence for the other
codes, it can be sufficient, in some cases, to increase the number of points in the initial
mesh. To this aim, in Table 3 we show the numerical results obtained for bvp5c using 501
or 1001 initial equidistant points and T = 2 × 104. This strategy is advantageous for bvp5c,
not yet for bvp4c, that needs an initial mesh of 2501 mesh points to reach the convergence.
However, we observe that bvp5c is not able to reach convergence if we use an initial mesh
of 2501 mesh points. For the other classes of methods increasing the number of mesh points
is not advantageous in terms of computational cost and time execution.

Table 3. Nonlinear Mass spring, initial mesh (IM) with 501, 1001 and 2501 equidistant points and
T = 2 × 104: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors
for x, v, u.

IM fM NVF Error x Error v Error u

bvp4c 2501 421 57 9.5 × 10−6 1.1 × 10−5 1.0 × 10−5

bvp5c 501 261 7200 4.2 × 10−6 4.9 × 10−6 4.8 × 10−6

bvp5c 1001 641 13,088 4.1 × 10−6 4.7 × 10−6 4.6 × 10−6

tol = 10−6

bvp4c 2501 471 71 1.4 × 10−7 1.4 × 10−7 1.5 × 10−7

bvp5c 501 333 7578 3.9 × 10−8 5.7 × 10−8 6.1 × 10−8

bvp5c 1001 512 13,880 3.9 × 10−8 5.7 × 10−8 6.1 × 10−8

To improve the performance of all considered codes, the BVP (3) is reformulated using
a variable transformation. Let τ = t/T with τ ∈ [0, 1], we solve the following BVP

x′ = Tv

v′ = −T(x + x3 + μ)

λ′ = T
(
−x + μ(1 + 3x2)

)
(4)

μ′ = −T(v + λ)

x(0) = 1, v(0) = 0, x(1) = 0.75, v(1) = 0.

Now, we set the perturbation parameter ε = 1/T, so that we can run for parameters
less than 1 the codes acdc and acdcc that use an automatic continuation strategy. For all
the other codes, we can adopt a continuation strategy starting with an initial value of
ε0 that guarantees the convergence, in our case we use ε0 = 1/20 and we change this
value up to reach the required value. To this aim we consider the perturbation parameter
changing in the interval [ε0, ε] among the values 0.5 × 10−j, j = −2, . . . ,−6. This means
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that we discretize the interval with Nε = 3 and Nε = 5 respectively for T = 2 × 104 and
T = 2 × 106. In Table 4 we show the results obtained applying this successful continuation
strategy. All the methods converge for all the values of T using a low computational cost.
In this case, the codes based on automatic continuation strategy are very efficient, using
acdc/acdcc the users do not need to decide how to change the continuation parameters,
even if in some cases the automatic continuation could fail to reach the final desired value.

More information about this problem could be obtained by analyzing the conditioning
parameters given in output by the codes twpbvpc_m and tomc, reported in Table 5. As we
can see the stiffness parameter σ grows with the width of the interval, and depends on this
last, moreover κ2 > κ1 shows that the problem could be ill posed, and γ1 tending to zeros
shows the presence of different time scales. The transformation of time interval in [0, 1]
does not change the stiffness of the problem, but the problem is well posed (see Table 6).

4.2. Completely Hypersensitive Control Problem

This example is a hypersensitive optimal control problem implemented in ICLOCS2,
defined as a problem “extremely difficult” to solve using an indirect method [42,44] and
given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
x,u

∫ T

0
(x2 + u2) dt

x′ = −x3 + u
x(0) = 1, x(T) = 1.5.

(5)

Considered the Hamiltonian H(x, λ, u) = x2 + u2 + λ(−x3 + u), the first-order neces-
sary conditions for optimality leads to the following boundary value problem (BVP)

x′ = −x3 − λ

2
λ′ = −2x + 3λx2 (6)

x(0) = 1, x(T) = 1.5,

where the optimal control is u∗ = − λ
2 . We choose T = 104, T = 106 and an initial mesh of

11 equidistant points, the solution is plotted in Figure 2. Numerical results shown in Table 7
point out good performance of all the codes except bvp4c and bvp5c, which are not suitable
for stiff problems, indeed we underline as they converge to the solution respectively up to
T = 38 and T = 29.

In Table 8 the approximations of the conditioning constants show the dependence of
the stiffness on the width of the interval. Moreover, the numerical results underline the
necessity of adopting a good mesh selection strategy for computing the solution.

0 2,000 4,000 6,000 8,000 10,000
t

0

0.5

1

1.5

x(
t)

0 2,000 4,000 6,000 8,000 10,000
t

-2

0

2
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u(
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Figure 2. Hypersensitive: solution in time for the mass position x on the left and the control u on the
right, final time T = 104.
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Table 5. Nonlinear Mass spring: conditioning parameters computed using tol = 10−6 and initial
mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 20

twpbvpc_m 1.90 × 101 1.33 × 101 4.72 × 100 8.57 × 100 2.16 × 10−1

tomc 2.04 × 101 1.33 × 101 4.79 × 100 8.61 × 100 5.28 × 10−1

T = 2 × 104

twpbvpc_m 1.97 × 104 1.34 × 101 4.73 × 100 8.65 × 100 5.09 × 10−4

tomc 2.08 × 104 1.66 × 101 5.42 × 100 1.12 × 101 2.11 × 10−4

T = 2 × 106

twpbvpc_m 1.90 × 106 1.34 × 101 4.75 × 100 8.61 × 100 5.28 × 10−6

tomc 2.03 × 106 1.66 × 101 5.45 × 100 1.11 × 101 2.17 × 10−6

Table 6. Nonlinear Mass spring using the variable τ = t/T: conditioning parameters computed
using tol = 10−6 and initial mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 20

twpbvpc_m 1.90 × 101 5.15 × 100 4.72 × 100 4.31 × 10−1 5.28 × 10−1

tomc 2.06 × 101 5.18 × 100 4.75 × 100 4.30 × 10−1 2.12 × 10−1

T = 2 × 104

twpbvpc_m 1.90 × 104 4.73 × 100 4.73 × 100 4.30 × 10−4 5.26 × 10−4

tomc 2.08 × 104 4.75 × 100 4.75 × 100 4.31 × 10−4 2.10 × 10−4

T = 2 × 106

twpbvpc_m 1.90 × 106 4.75 × 100 4.75 × 100 4.31 × 10−6 5.28 × 10−6

tomc 2.09 × 106 4.75 × 100 4.75 × 100 4.31 × 10−6 2.09 × 10−6

Table 7. Hypersensitive problem solved with an initial mesh with 11 equidistant points: final mesh (fM), total number of
vectorized function evaluation (NVF) and mixed errors for x, v, u.

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

twpbvp_m 117 239 1.5 × 10−6 3.1 × 10−6 1.5 × 10−6 1821 394 1.9 × 10−5 3.8 × 10−5 1.9 × 10−5

twpbvpc_m 140 237 1.7 × 10−6 3.4 × 10−6 1.7 × 10−6 650 456 3.3 × 10−5 6.7 × 10−5 5.0 × 10−5

twpbvp_l 105 224 7.0 × 10−6 2.7 × 10−5 1.7 × 10−5 * * * * *
twpbvpc_l 91 286 6.6 × 10−9 1.3 × 10−8 6.6 × 10−9 1176 425 8.2 × 10−9 3.0 × 10−8 1.9 × 10−8

tom 691 33 2.8 × 10−9 5.5 × 10−9 2.8 × 10−9 636 169 2.5 × 10−6 2.3 × 10−5 2.1 × 10−5

tomc 681 46 5.7 × 10−7 1.1 × 10−6 5.7 × 10−7 1941 134 4.0 × 10−9 8.0 × 10−9 4.0 × 10−9

tol = 10−6

twpbvp_m 357 245 9.8 × 10−9 2.0 × 10−8 1.3 × 10−8 1859 392 2.6 × 10−8 5.3 × 10−8 2.6 × 10−8

twpbvpc_m 265 239 3.2 × 10−7 6.4 × 10−7 3.2 × 10−7 536 475 4.4 × 10−8 8.8 × 10−8 4.4 × 10−8

twpbvp_l 94 248 5.3 × 10−8 1.1 × 10−7 5.3 × 10−8 * * * * *
twpbvpc_l 91 286 6.6 × 10−9 1.3 × 10−8 6.6 × 10−9 1176 425 8.2 × 10−9 3.0 × 10−8 1.9 × 10−8

tom 691 33 2.8 × 10−9 5.5 × 10−9 2.8 × 10−9 691 172 8.8 × 10−8 2.5 × 10−7 2.3 × 10−7

tomc 681 46 5.7 × 10−7 1.1 × 10−6 5.7 × 10−7 1941 134 4.0 × 10−9 8.0 × 10−9 4.0 × 10−9
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Table 8. Hypersensitive problem: conditioning parameters computed using tol = 10−6 and initial
mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 10

twpbvpc_m 5.94 × 101 3.09 × 101 2.67 × 101 4.23 × 100 5.51 × 10−1

twpbvpc_l 5.95 × 101 3.09 × 101 2.67 × 101 4.23 × 100 5.49 × 10−1

tomc 6.83 × 101 3.09 × 101 2.67 × 101 4.23 × 100 3.90 × 10−1

T = 104

twpbvpc_m 6.34 × 104 3.09 × 101 2.66 × 101 4.23 × 100 5.24 × 10−4

twpbvpc_l 5.80 × 104 3.09 × 101 2.67 × 101 4.23 × 100 5.61 × 10−4

tomc 6.74 × 104 3.09 × 101 2.66 × 101 4.23 × 100 3.96 × 10−4

T = 106

twpbvpc_m 6.44 × 106 3.09 × 101 2.66 × 101 4.23 × 100 5.11 × 10−6

twpbvpc_l 5.97 × 106 3.09 × 101 2.67 × 101 4.23 × 100 5.54 × 10−6

tomc 6.92 × 106 4.70 × 101 9.15 × 100 3.78 × 101 3.85 × 10−6

For the purpose of improving the performance and overcoming some drawbacks, we
propose, as already done for the test problem in Section 4.1, to use the transformation of
the variable τ = t/T, such that the BVP (6) can be reformulated for τ ∈ [0, 1] as

x′ = T
(
−x3 − λ

2

)
λ′ = T

(
−2x + 3λx2

)
(7)

x(0) = 1, x(1) = 1.5.

The advantage of this formulation is that considering ε = 1/T as a perturbation
parameter, we can apply the continuation strategy on that parameter. In Table 9 we report
the results using as starting value ε0 = 1/10 and changing the continuation parameters in
the interval [ε0, ε] among the value of the set 10−2, 10−3, 10−4. We remember that acdc and
acdcc, using an automatic continuation strategy, needs only to insert the desired value of ε
and uses as ε0 the default value 0.5. The numerical tests and the conditioning parameters in
Tables 8 and 10 clearly show that for this class of problems, if we cannot use a continuation
of parameters, the codes able to give a solution are the ones suited for stiff problems that
work still better if also the mesh selection is appropriate for this class of problems.

Table 9. Hypersensitive problem using the variable τ = t/T, initial mesh with 11 equidistant points and continuation
strategy on T: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x,v,u.

T = 104

tol = 10−4 tol = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 107 198 1.1 × 10−4 4.5 × 10−4 3.8 × 10−4 242 170 1.1 × 10−6 4.6 × 10−6 3.6 × 10−6

bvp5c 70 1277 8.5 × 10−7 1.7 × 10−6 8.5 × 10−7 132 2874 4.9 × 10−9 9.8 × 10−9 4.9 × 10−9

twpbvp_m 59 266 2.2 × 10−5 4.4 × 10−5 2.2 × 10−5 124 311 4.9 × 10−6 8.1 × 10−6 4.9 × 10−6

twpbvpc_m 101 210 9.1 × 10−5 1.8 × 10−4 9.1 × 10−5 190 226 9.5 × 10−8 1.9 × 10−7 9.5 × 10−8

twpbvp_l 45 389 3.5 × 10−6 1.9 × 10−5 1.8 × 10−5 63 306 4.9 × 10−8 1.9 × 10−7 1.8 × 10−7

twpbvpc_l 76 229 1.3 × 10−5 2.6 × 10−5 1.3 × 10−5 79 234 4.7 × 10−8 9.4 × 10−8 4.7 × 10−8

tom 571 56 7.9 × 10−7 1.8 × 10−7 1.2 × 10−7 746 59 1.1 × 10−8 2.6 × 10−8 2.1 × 10−8

tomc 951 46 4.9 × 10−9 7.2 × 10−9 5.8 × 10−9 1231 52 1.2 × 10−8 3.7 × 10−9 2.3 × 10−9

acdc 56 491 4.0 × 10−6 1.5 × 10−5 1.4 × 10−5 60 425 5.7 × 10−8 1.9 × 10−7 1.7 × 10−7

acdcc 130 672 2.1 × 10−5 5.6 × 10−5 3.6 × 10−5 144 478 5.2 × 10−8 1.8 × 10−7 1.2 × 10−7
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Table 10. Hypersensitive problem using the variable τ = t/T: conditioning parameters computed
using tol = 10−6 and initial mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 10

twpbvpc_m 5.94 × 101 2.71 × 101 2.67 × 101 4.23 × 10−1 5.51 × 10−1

twpbvpc_l 5.95 × 101 2.71 × 101 2.67 × 101 4.23 × 10−1 5.49 × 10−1

tomc 6.86 × 101 2.71 × 101 2.66 × 101 4.23 × 10−1 3.88 × 10−1

T = 104

twpbvpc_m 6.34 × 104 2.66 × 101 2.66 × 101 4.23 × 10−4 5.24 × 10−4

twpbvpc_l 5.80 × 104 2.67 × 101 2.67 × 101 4.23 × 10−4 5.61 × 10−4

tomc 6.74 × 104 2.66 × 101 2.66 × 101 4.23 × 10−4 3.95 × 10−4

T = 106

twpbvpc_m 6.52 × 106 2.66 × 101 2.66 × 101 4.23 × 10−6 5.06 × 10−6

twpbvpc_l 5.72 × 106 2.67 × 101 2.67 × 101 4.23 × 10−6 5.72 × 10−6

tomc 6.87 × 106 2.66 × 101 2.66 × 101 4.23 × 10−6 3.88 × 10−6

5. Bang-Bang Optimal Control Problem

The bang-bang optimal control problem [45] is among the more challenging ones.
It arises from a model in which a point unit mass m subjects to a limited force in one-
dimensional space, i.e., mx′′(t) = u(t) and u(t) ≤ 1. The main feature of optimal control
problem of moving the mass from x = 0 to the maximum distance x in one second can be
formulated as follows

min−x(1) =
∫ 1

0
(−v)dt,

x′ = v,

v′ = u, t ∈ [0, 1], (8)

x(0) = v(0) = v(1) = 0,

|u| ≤ 1,

The associated Hamiltonian function is defined as

H(x, v, λ, μ, u) = −v + λv + μu

and the optimal control is given by

u∗ = arg min
|u|≤1

H(x, v, λ, μ, u) = −sign(μ).

Now, by applying the indirect method the solution of the optimal control Problem (8)
is equivalent to solve the following BVP problem

x′ = v,

v′ = u,

λ′ = 0, (9)

μ′ = 1 − λ,

x(0) = v(0) = v(1) = λ(1) = 0.

We observe that the optimal control is defined as
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u(t) = −sign(μ) =

⎧⎪⎨⎪⎩
1 μ < 0,
−1 μ > 0,
any value in [-1,1] μ = 0,

and the exact solution is given by

x(t) =

⎧⎪⎪⎨⎪⎪⎩
t2

2
t < 1/2

t − t2

2
− 1

4
t > 1/2

, v(t) =

⎧⎨⎩t t < 1/2

1 − t t > 1/2
,

u(t) =

⎧⎨⎩1 t < 1/2,

−1 t > 1/2,
, λ(t) = 0, μ(t) = t − 1

2
.

The discontinuity of the switching function is overcome by a smoothing technique
that can be executed by different strategies. We choose two of them in particular. The first
strategy, given a small parameter ε, consists of using the approximation

sign(μ) ≈ 2
π

arctan
(μπ

2ε

)
.

The exact bang-bang solution is better approximated when ε becomes smaller; how-
ever, this for value around smaller than 10−4 can give ill-conditioning problems. Table 11
contains all the results obtained using the Matlab codes, the solution is plotted in Figure 3.
Only bvp5c fails, and for getting the solution is necessary to use the continuation strategy.
To this regard we consider as initial perturbation parameter ε0 = 1 and then we change
it choosing Nε = 10 logarithmically equispaced points between 1 and the value required
ε. When tol = 10−4 bvp5c converges using 19 points for both ε equal to 10−3 and 10−6,
instead when tol = 10−4 bvp5c gets the solution with 36 and 28 points respectively for
ε = 10−3 and ε = 10−6.

Table 11. Bang-Bang optimal control Problem (9): final mesh (fM), total number of vectorized function evaluation (NVF)
and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 25 51 3.2 × 10−4 1.8 × 10−3 0 27 97 3.2 × 10−7 4.0 × 10−6 0
twpbvp_m 16 11 3.0 × 10−4 7.5 × 10−4 0 16 11 2.1 × 10−5 7.5 × 10−7 0
twpbvp_l 16 13 2.5 × 10−4 7.5 × 10−4 0 16 13 7.6 × 10−5 7.5 × 10−7 0

tom 111 10 3.2 × 10−4 1.0 × 10−3 0 31 16 1.8 × 10−4 8.8 × 10−4 0
tomc 121 10 3.2 × 10−4 1.0 × 10−3 0 31 28 1.8 × 10−4 8.8 × 10−4 0

acdc 9 157 3.2 × 10−4 8.7 × 10−4 0 9 221 3.2 × 10−7 1.5 × 10−6 0

tol = 10−6

bvp4c 79 57 3.2 × 10−4 2.0 × 10−3 0 47 93 3.2 × 10−7 4.0 × 10−6 0
twpbvp_m 10 32 3.3 × 10−4 1.0 × 10−3 0 10 32 5.1 × 10−6 1.0 × 10−6 0
twpbvp_l 17 66 3.2 × 10−4 1.3 × 10−3 0 15 130 3.2 × 10−7 2.1 × 10−6 0

tom 231 19 3.2 × 10−4 1.1 × 10−3 0 281 32 3.3 × 10−7 1.1 × 10−6 0
tomc 201 19 3.2 × 10−4 1.1 × 10−3 0 231 40 3.3 × 10−7 1.1 × 10−6 0

acdc 20 170 3.2 × 10−4 1.3 × 10−3 0 17 242 3.2 × 10−7 2.2 × 10−6 0
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Figure 3. Bang-Bang, ε = 10−3: solution in time for the mass position x on the (left), for the velocity in the (center) and the
control u on the (right).

For the second smoothing technique we can add a barrier or a penalty function. In
this regard, we consider a piecewise quadratic penalty function defined as in [45]

P(u; ε, σ) =
ε

2
u2 +

1
σ2

{
(|u| − 1 + σ)2 |u| > 1 − σ,
0 otherwise

where the parameter σ gives the distance from the border where the penalty changes fast.
Consequently, the Problem (8) is reformulated without inequality constraint as follows

min
∫ 1

0
P(u; ε, σ)− v dt,

x′ = v,

v′ = u, t ∈ [0, 1], (10)

x(0) = v(0) = v(1) = 0.

The optimal control u, obtained as a solution of the equation

Pu(u; ε, σ) + μ = 0,

is equal to

u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 − 2σ − σ2μ

εσ2 + 2
u ≥ 1 − σ

−2 + 2σ − σ2μ

εσ2 + 2
u < σ − 1

0 otherwise.

In Table 12 we show the numerical results obtained for σ = 10−4 and ε = 10−4, 10−6,
starting with an initial mesh of 16 equidistant points and a null initial solution. It is
clear that all the codes have a good performance, we do not report the results for bvp4c
and bvp5c because they fail. To overcome this drawback in Table 13 we consider the
continuation strategy, this means that the codes bvp4c and bvp5c are run for different
values of ε starting from ε0 = 10 up to the desired value ε. In particular, we choose Nε = 10
values logarithmically equispaced.
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Table 12. Bang-Bang optimal control problem-solving (8) using a piecewise quadratic penalty function with σ = 10−4: final
mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

twpbvp_m 16 11 9.8 × 10−6 3.2 × 10−5 5.0 × 10−5 16 11 9.8 × 10−6 3.2 × 10−5 5.0 × 10−5

twpbvp_l 16 13 6.4 × 10−5 3.2 × 10−5 5.0 × 10−5 16 13 6.4 × 10−5 3.2 × 10−5 5.0 × 10−5

tom 111 10 2.2 × 10−5 6.3 × 10−5 5.0 × 10−5 31 27 1.9 × 10−4 8.5 × 10−4 5.0 × 10−5

tomc 126 9 2.1 × 10−5 6.6 × 10−5 5.0 × 10−5 31 20 1.9 × 10−4 8.5 × 10−4 5.0 × 10−5

tol = 10−6

twpbvp_m 8 32 2.4 × 10−5 3.3 × 10−5 5.0 × 10−5 8 32 2.4 × 10−5 3.3 × 10−5 5.0 × 10−5

twpbvp_l 9 93 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5 8 130 2.0 × 10−5 3.7 × 10−5 5.0 × 10−5

tom 231 19 2.0 × 10−5 3.4 × 10−5 5.0 × 10−5 381 51 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5

tomc 261 20 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5 241 56 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5

Table 13. Bang-Bang optimal control problem-solving (8) using a piecewise quadratic penalty function with σ = 10−4 and
the continuation strategy: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for
x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

Nε fM NVF Error x Error v Error u Nε fM NVF Error x Error v Error u

bvp4c 10 12 1899 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5 5 13 1214 2.0 × 10−5 2.0 × 10−5 5.0 × 10−5

bvp5c 10 9 1551 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5 10 13 1442 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5

acdc 4 326 1.5 × 10−5 3.3 × 10−5 5.0 × 10−5 4 326 1.5 × 10−5 3.3 × 10−5 5.0 × 10−5

tol = 10−6

bvp4c 10 16 3168 2.0 × 10−5 3.3 × 10−4 5.0 × 10−5 10 19 3421 2.0 × 10−5 2.0 × 10−5 5.0 × 10−5

bvp5c 10 13 3235 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5 100 14 21747 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5

acdc 9 380 2.0 × 10−5 6.7 × 10−5 5.0 × 10−5 9 380 2.0 × 10−5 3.3 × 10−5 5.0 × 10−5

We also report the results of acdc and acdcc that use an automatic continuation
strategy. The results point out the suitability and efficiency of the strategy in solving this
kind of problems, also for bvp4c and bvp5c when the nonlinear solution is approximated
using a continuation strategy. The conditioning parameters reported in Tables 14 and 15
show that the problem is not stiff since σ is of moderate size, indeed the main difficulty
is caused by the convergence of the nonlinear discretization schemes. In this regard we
highlight as the results of the codes twpbvpc_m and twpbvpc_l are the same of those gained
by the codes twpbvp_m and twpbvp_l, confirming the non-necessity of these codes to use a
mesh selection strategy based on conditioning for this non-stiff problem.
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Table 14. Bang-Bang optimal control problem: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 1.8 3.3 2.0 1.3 1.6
twpbvpc_l 1.4 3.3 2.0 1.3 1.6

tomc 1.5 3.3 2.0 1.2 1.0

ε = 10−6

twpbvpc_m 2.0 3.2 2.0 1.2 1.6
twpbvp_l 2.0 3.3 2.0 1.3 1.7

tomc 2.1 3.3 2.0 1.2 1.0

Table 15. Bang-Bang optimal control problem with penalty: conditioning parameters computed
using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 1.8 3.2 2.0 1.2 1.6
twpbvpc_l 1.4 3.3 2.0 1.3 1.7

tomc 1.4 3.3 2.0 1.2 1.0

ε = 10−6

twpbvpc_m 2.0 3.2 2.0 1.2 1.6
twpbvpc_l 2.0 3.3 2.0 1.3 1.7

tomc 1.3 3.3 2.0 1.2 1.0

6. Longitudinal Dynamics of a Vehicle

We consider an example of nonlinear optimal control problem derived from a model of
the longitudinal dynamics of a vehicle with the aerodynamic down-force [2]. In particular,
a vehicle, supposed to be a point mass, is moved in a fixed time T from an initial zero
velocity to a final zero velocity

min{x(0)− x(T)} = min
(
−
∫ T

0
v dt

)
x′ = v,

v′ = u − k0 − k1v − k2v2, t ∈ [0, T], (11)

x(0) = v(0) = v(T) = 0,

|u| ≤ g + k3v2.

The Hamiltonian function associated with this problem is

H(x, v, λ, μ, u) = −v + λv + μ
(

u − k0 − k1v − k2v2
)

and the optimal control is given by

u∗ = arg min
|u|≤g+k3v2

H(x, v, λ, μ, u) = −(g + k3v2)sign(μ).

Now, applying the indirect method the global optimal control problem is reduced to
the boundary value problem
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x′ = v,

v′ = u − k0 − k1v − k2v2,

λ′ = 0, (12)

μ′ = 1 − λ + μ(k1 + 2vk2),

x(0) = v(0) = v(T) = λ(T) = 0.

We observe that the optimal control problem has a theoretical solution given by

u = −sign(μ)(g + k3v2)

that can be approximated using a barrier function defined as

u = − 2
π
(g + k3v2) arctan

(
2μ

πε

)
.

Let g+ = g + k0 and g− = g − k0, if ts =
1
k1

ln
g− + g+ek1T

2g
is the switching time, then

the solution for the optimal control is defined as

u(t) =

{
1 t ≤ ts,
−1 t > ts.

Moreover, the exact solution for the space and the velocity is expressed by

x(t) =

⎧⎨⎩k−2
1 g−

(
k1t + e−k1t − 1

)
t ≤ ts,

k−2
1

(
g+ + e−k1t

(
g− − 2gek1ts

)
+ k1(2gts − tg+)

)
t > ts,

and

v(t) =

⎧⎨⎩k−1
1 g−

(
1 − e−k1t

)
t ≤ ts,

k−1
1 g+

(
ek1(T−t) − 1

)
t > ts,

while the multipliers assume the form

λ(t) = 0, μ(t) =
1
k1

(
2gek1(t−T)

g−e−k1t + g+
− 1

)
.

In Table 16 are shown all the numerical results obtained using all the Matlab codes
considered starting with an initial mesh of 11 equispaced points and an initial approxima-
tion with null elements, the solution is plotted in Figure 4. For this problem only the codes
of the bvptwp package are able to give a solution for ε = 10−6, so for the other codes we
have used a continuation strategy with a starting value ε0 = 10−3 and Nε = 10 logarithmic
equispaced intermediate points. In Table 16 all the results obtained are shown in order that
the symbol c in bracket labels those computed using the continuation strategy. Moreover,
the results emphasize that not always the automatic continuation is advantageous and
cheaper from a computational cost of view, since it is evident that the total number of
vectorial functions evaluation is much greater for acdc than for twpbvp_m and twpbvp_l.
Remember that they use the same numerical scheme. The conditioning parameters in
Table 17 are all moderate size, hence the problem is not stiff.
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Table 16. Longitudinal dynamics of a vehicle T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g, k2 = 0, k3 = 0: final mesh (fM),
total number of vectorized function evaluation (NVF) and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 38 125 4.4 × 10−4 1.8 × 10−3 0 32(c) 242 4.4 × 10−7 3.1 × 10−6 0
bvp5c 18 270 4.4 × 10−4 1.7 × 10−3 0 18(c) 662 4.4 × 10−7 2.1 × 10−6 0

twpbvp_m 38 54 4.4 × 10−4 1.6 × 10−3 0 13 146 4.0 × 10−7 5.2 × 10−4 0
twpbvp_l 38 57 4.4 × 10−4 2.0 × 10−3 0 28 134 4.0 × 10−7 7.4 × 10−4 0

tom 176 23 4.4 × 10−4 1.6 × 10−3 0 176(c) 50 4.7 × 10−7 4.0 × 10−5 0
tomc 131 20 4.4 × 10−4 1.6 × 10−3 0 131(c) 48 1.1 × 10−6 2.3 × 10−4 0

acdc 15 320 4.4 × 10−4 1.1 × 10−3 0 8 550 2.0 × 10−6 1.1 × 10−6 0

Table 17. Longitudinal dynamics of a vehicle T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g, k2 = 0,
k3 = 0: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 3.04 × 100 4.88 × 101 1.11 × 101 4.36 × 101 7.22 × 100

twpbvpc_l 3.11 × 100 4.89 × 101 1.11 × 101 4.36 × 101 7.15 × 100

tomc 3.78 × 100 2.94 × 102 7.43 × 101 2.20 × 102 4.02 × 100

ε = 10−6

twpbvpc_m 3.81 × 100 4.84 × 101 1.10 × 101 4.33 × 101 6.47 × 100

twpbvpc_l 3.83 × 100 4.84 × 101 1.10 × 101 4.33 × 101 6.47 × 100

tomc 3.86 × 100 2.99 × 102 7.48 × 101 2.24 × 102 4.02 × 100
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Figure 4. Longitudinal dynamics of a vehicle, ε = 10−3, T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g,
k2 = 0, k3 = 0: theoretical (dash-dot line) and numerical (dot line) solution in time for the control u.

7. Gottard Rocket

Now, we consider an example of optimal control problem with a singular arc [46]. A
rocket of mass m lifts off vertically at time t = 0 with (normalized) altitude h(0) = 1 and
velocity v(0) = 0. Known the initial mass, the fuel mass and the drag characteristics of the
rocket, the aim is to choose the thrust u(t) and the final time T to maximize the altitude
h(T) at the final time T. The optimal control problem is given by
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min
T,v

∫ T

0
(−v)dt,

h′ = v,

v′ = u − D(h, v)
m

− g(h), (13)

m′ = −u
c

,

0 ≤u ≤ umax,

h(0) = 1, v(0) = 0, m(0) = 1, m(T) = 0.6.

Given the constants Dc and hc, the aerodynamic drag is defined by

D(h, v) = Dcv2e−hc

(
h−h(0)

h(0)

)
.

Moreover, if g0 is the gravitational force at the earth’s surface, then the gravitational
force is given by

g(h) = g0

(
h(0)

h

)2

.

The equation is scaled choosing the model parameters m(0), h(0) and g0, which allows
management of dimension-free equations. As in [46], we consider

umax = 3.5g0m(0), Dc =
1
2

vc
m(0)

g0
, c =

1
2
(g0h(0))1/2,

where g0 = 1, hc = 500, mc = 0.6 and vc = 620.
Since the problem (13) has a free final time, we fix the time interval using the variable

transformation t(τ) := τT, with τ ∈ [0, 1]. A new state variable T satisfying the differential
constrain Ṫ = 0 is added to the problem and a penalty function P(u; ε, σ̄) is used as
smoothing technique, so that the problem can be reformulated as follows

min
T,v,u

∫ 1

0
(−Tv + TP(u; ε, σ̄)) dτ,

h′ = Tv,

v′ = T
m

(
u − 1

2
vcv2ehc(1−h)

)
− T

h2 , (14)

m′ = −T
u
c

,

T′ = 0,

h(0) = 1, v(0) = 0, m(0) = 1, m(1) = 0.6.

As in Section 5, P(u; ε, σ̄) is a piecewise quadratic penalty function defined as

P(u; ε; σ̄) =
ε

2

(
u − umax

2

)2
+

1
σ̄2

⎧⎨⎩
(u − umax + σ̄)2 u > umax − σ̄
(σ̄ − u)2 u < σ̄
0 otherwise.

Now, the Hamiltonian formulation of the problem (14) gives as a result the follow-
ing BVP
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h′ = Tv,

v′ = T
m

(
u − 1

2
vcv2ehc(1−h)

)
− T

h2 ,

m′ = −T
u
c

,

T′ = 0,

λ′
1 = −Tλ2

(
1

2m
hcvcv2ehc(1−h) +

2
h3

)
, (15)

λ′
2 = −T

(
λ1 − λ2

vcvehc(1−h)

m
− 1

)
,

λ′
3 =

T
m2 λ2

(
u − 1

2
vcv2ehc(1−h)

)
,

λ′
4 = v − P(u; ε, σ̄)− λ1v − λ2

(
u − 1

2 vcv2ehc(1−h)

m
− 1

h2

)
+ λ3

u
c

,

h(0) = 1, v(0) = 0, m(0) = 1, m(1) = 0.6,

λ1(1) = 0, λ2(1) = 0, λ4(0) = 0, λ4(1) = 0,

where the thrust u, computed by solving the equation

Pu(u; ε, σ̄) +
λ2

m
− λ3

c
= 0,

is equivalent to

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
εσ̄2 + 2

(
εσ̄2 umax

2
+ 2umax − 2σ̄ + σ̄2

(
λ2

m
− λ3

c

))
u > umax − σ̄

σ̄

εσ̄2 + 2

(
εσ̄

umax

2
+ 2 − σ̄

(
λ2

m
− λ3

c

))
u < σ̄

1
ε

(
ε

umax

2
− λ2

m
+

λ3

c

)
otherwise.

Since the problem is highly nonlinear, it is chosen as starting approximation of the
solution h = λ1 = λ2 = λ3 = 1, λ4 = 0, v(τ) = τ(1 − τ), m(τ) = (m(1)− m(0))τ + m(0)
and T = 0.01. The choice of a good initial approximation is the main matter when the
parameters of the penalty function σ̄ and ε become extremely small. In this case, it is
helpful to apply a continuation strategy for the parameter ε, changing the value of this
parameter from ε0 = 10−1 to the desired value of ε. To highlight the advantages of this
strategy, we solve the optimal control problem (15) choosing σ̄ = 10−4 and two different
values of ε = 10−3, 10−6, the solution is plotted in Figure 5.

In Table 18 the results are computed without applying the continuation strategy, hence
we observe that if on one hand only the codes bvp5c, tom and tomc fail for ε = 10−3,
on the other all the codes do not converge for ε = 10−6. Consequently, in Table 19 we
run the codes using the continuation strategy. All the numerical tests use an initial mesh
of 16 equidistant points. For the continuation strategy in Table 19, except for acdc and
acdcc, the parameter ε is initially set to ε0 = 10−1 ( ε0 = 1 for tom and tomc), and then it is
changed using Nε = 10 logarithmically equispaced values up to reach the value required ε.
However, to obtain the convergence of bvp4c for ε = 10−6, we put the value of Nε = 100
when tol = 10−4 and Nε = 20 when tol = 10−6 and for tom/tomc we put the value of
Nε = 55. The conditioning parameters reported in Table 20 show that the problem is not
stiff, but it is ill conditioned since κ1 > κ2.
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Figure 5. Goddard rocket, ε = 10−3, σ̄ = 10−4: from left to right solutions in time for altitude h and mass m (on the top), for
velocity v and thrust u (on the bottom).

Table 18. Goddard Rocket problem (15) solved using a piecewise quadratic penalty function with
σ̄ = 10−4 and ε = 10−3: final mesh (fM), total number of vectorized function evaluation (NVF) and
mixed errors for h, v, m, T and u.

tol = 10−4

fM NVF Error h Error v Error m Error T Error u

bvp4c 1388 8058 8.9 × 10−10 4.9 × 10−7 4.7 × 10−9 4.6 × 10−8 3.0 × 10−5

twpbvp_m 31 86 6.0 × 10−7 3.8 × 10−5 4.0 × 10−5 1.1 × 10−5 1.0 × 10−3

twpbvp_l 31 91 1.0 × 10−6 6.9 × 10−5 7.5 × 10−5 1.2 × 10−5 1.7 × 10−3

tol = 10−6

bvp4c 1466 20,898 4.9 × 10−12 2.7 × 10−9 2.6 × 10−9 3.1 × 10−10 1.7 × 10−7

twpbvp_m 32 142 4.6 × 10−9 1.6 × 10−6 1.5 × 10−6 1.4 × 10−7 9.8 × 10−5

twpbvp_l 33 169 3.7 × 10−10 6.8 × 10−8 6.5 × 10−8 3.3 × 10−9 3.9 × 10−6

135



Mathematics 2021, 9, 2618

T
a

b
le

1
9

.
G

od
d

ar
d

R
oc

ke
tP

ro
bl

em
(1

5)
so

lv
ed

u
si

ng
a

p
ie

ce
w

is
e

qu
ad

ra
ti

c
p

en
al

ty
fu

nc
ti

on
w

it
h

σ̄
=

10
−4

an
d

th
e

co
nt

in
u

at
io

n
st

ra
te

gy
:fi

na
lm

es
h

(f
M

),
to

ta
l

nu
m

be
r

of
ve

ct
or

iz
ed

fu
nc

ti
on

ev
al

u
at

io
n

(N
V

F)
an

d
m

ix
ed

er
ro

rs
fo

r
h,

v,
m

,
T

an
d

u.
∗

O
bs

er
ve

th
at

ac
dc

fo
r

to
l
=

10
−4

,ε
=

10
−6

ob
ta

in
s

a
so

lu
ti

on
fo

r
ε
=

3.
98

×
10

−6
.

to
l
=

1
0
−

4

ε
=

1
0
−

3
ε
=

1
0
−

6

fM
N

V
F

E
rr

o
r

h
E

rr
o

r
v

E
rr

o
r

m
E

rr
o

r
T

E
rr

o
r

u
fM

N
V

F
E

rr
o

r
h

E
rr

o
r

v
E

rr
o

r
m

E
rr

o
r

T
E

rr
o

r
u

bv
p4
c

47
28

23
3.

2
×

10
−9

1.
2
×

10
−6

1.
1
×

10
−6

1.
2
×

10
−7

7.
9
×

10
−5

13
8

46
,5

07
5.

0
×

10
−9

3.
8
×

10
−7

4.
1
×

10
−7

4.
4
×

10
−8

2.
3
×

10
−3

tw
pb
vp
_m

16
26

8
7.

0
×

10
−7

4.
0
×

10
−5

4.
4
×

10
−5

4.
6
×

10
−6

8.
5
×

10
−4

93
48

4
4.

5
×

10
−9

3.
4
×

10
−5

3.
3
×

10
−5

2.
4
×

10
−7

9.
4
×

10
−2

tw
pb
vp
_l

16
30

4
1.

1
×

10
−6

7.
3
×

10
−5

7.
9
×

10
−5

9.
4
×

10
−6

1.
7
×

10
−3

22
5

62
7

3.
2
×

10
−9

5.
2
×

10
−7

4.
9
×

10
−7

5.
6
×

10
−8

1.
5
×

10
−3

to
m

40
1

66
1.

4
×

10
−7

6.
8
×

10
−5

6.
7
×

10
−5

1.
7
×

10
−7

4.
2
×

10
−3

54
1

22
4

1.
6
×

10
−8

3.
7
×

10
−5

3.
2
×

10
−5

1.
7
×

10
−7

4.
2
×

10
−2

to
mc

29
1

62
5.

4
×

10
−8

3.
9
×

10
−5

3.
7
×

10
−5

8.
7
×

10
−7

2.
1
×

10
−3

28
6

21
0

1.
1
×

10
−8

9.
5
×

10
−5

9.
2
×

10
−5

8.
7
×

10
−7

1.
2
×

10
−1

ac
dc

17
34

1
7.

2
×

10
−7

8.
2
×

10
−5

8.
4
×

10
−5

9.
3
×

10
−6

5.
1
×

10
−3

24
∗

20
66

3.
8
×

10
−9

8.
7
×

10
−7

7.
1
×

10
−7

9.
2
×

10
−8

4.
8
×

10
−3

to
l
=

1
0
−

6

bv
p4
c

14
8

91
89

3.
8
×

10
−1

1
7.

7
×

10
−9

6.
9
×

10
−9

9.
1
×

10
−1

1
8.

2
×

10
−7

13
85

52
,0

28
5.

2
×

10
−1

1
2.

9
×

10
−9

3.
5
×

10
−9

7.
9
×

10
−1

0
1.

9
×

10
−5

tw
pb
vp
_m

29
59

3
2.

3
×

10
−8

2.
3
×

10
−6

2.
3
×

10
−6

3.
4
×

10
−9

1.
4
×

10
−4

14
9

68
1

1.
8
×

10
−1

0
2.

9
×

10
−7

2.
8
×

10
−7

8.
0
×

10
−9

8.
2
×

10
−4

tw
pb
vp
_l

32
64

6
4.

5
×

10
−9

2.
3
×

10
−6

2.
2
×

10
−6

2.
1
×

10
−7

1.
4
×

10
−4

11
9

96
9

8.
9
×

10
−1

0
2.

9
×

10
−6

2.
5
×

10
−6

1.
1
×

10
−8

6.
9
×

10
−3

to
m

55
1

80
1.

6
×

10
−8

1.
4
×

10
−5

1.
4
×

10
−5

3.
0
×

10
−8

7.
3
×

10
−4

66
1

27
9

6.
3
×

10
−9

1.
7
×

10
−5

1.
5
×

10
−5

3.
0
×

10
−8

3.
5
×

10
−2

to
mc

32
1

74
1.

1
×

10
−7

1.
7
×

10
−5

1.
6
×

10
−5

2.
4
×

10
−8

7.
7
×

10
−4

73
1

28
6

7.
3
×

10
−1

0
5.

6
×

10
−6

5.
4
×

10
−6

2.
4
×

10
−8

1.
2
×

10
−2

ac
dc

28
49

6
4.

5
×

10
−9

2.
3
×

10
−6

2.
2
×

10
−6

2.
1
×

10
−7

1.
4
×

10
−4

58
94

2
2.

3
×

10
−1

0
3.

5
×

10
−7

3.
4
×

10
−7

3.
5
×

10
−9

9.
7
×

10
−4

136



Mathematics 2021, 9, 2618

Table 20. Goddard Rocket problem: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 4.8 9.1 × 102 7.3 × 102 1.8 × 102 2.2 × 102

twpbvpc_l 4.9 9.0 × 102 7.2 × 102 1.8 × 102 2.2 × 102

tomc 5.4 9.0 × 102 7.3 × 102 1.8 × 102 1.7 × 102

ε = 10−6

twpbvpc_m 5.3 1.0 × 103 8.2 × 102 2.0 × 102 2.0 × 102

twpbvpc_l 5.2 1.0 × 103 8.1 × 102 2.0 × 102 2.0 × 102

tomc 5.5 1.0 × 103 8.1 × 102 2.0 × 102 1.7 × 102

8. Minimization of the Fuel Cost in the Operation of a Train

As in [2,47] an optimal control problem in transportation is to minimize fuel cost in the
operation of a train. To simplify the track is supposed to be straight. Let x be the position
along the track measured from a fixed reference point and v the velocity of the train, such
that the minimization problem is equivalent to solve the optimal control problem

min
v,ua

∫ 4.8

0
ua v dt,

x′ = v,

v′ = h(x)− F(v) + ua − ub, (16)

0 ≤ ua ≤ 10, 0 ≤ ub ≤ 2,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6,

where F(v(t)) models the friction due to the rolling of the wheels and the air resistance and
h(x) is the active component of the gravitational force due to hill slopes that are respectively
defined as

h(x) =
2
π

(
tan−1

(
x − 2

δ

)
+ tan−1

(
x − 4

δ

))
, δ = 0.05,

F(v) = 0.3 + 0.14|v|+ 0.16v2.

Moreover, the control variables ua and ub represent respectively the acceleration
provided by the engine and the deceleration from applying the brakes.

First, as smoothing technique let us consider piecewise quadratic penalty functions
defined as

Pa(ua; ε; τ) =
ε

2
(ua − 5)2 +

1
τ2

⎧⎨⎩
(ua − 10 + τ)2 ua > 10 − τ
(τ − ua)2 ua < τ
0 otherwise,

Pb(ub; ε; τ) =
ε

2
(ub − 1)2 +

1
τ2

⎧⎨⎩
(ub − 2 + τ)2 ub > 2 − τ
(τ − ub)

2 ub < τ
0 otherwise.

so that the Problem (16) can be written as

min
v,ua

∫ 4.8

0

(
ua v + Pa(ua; ε, τ) + Pb(ub; ε, τ)

)
dt,

x′ = v, (17)

v = h(x)− F(v) + ua − ub,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6.

From the Hamiltonian formulation we obtain the following BVP
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x′ = v,

v′ = h(x)− F(v) + ua − ub,

λ′ = −μhx(x), (18)

μ′ = −λ + μFv(v)− ua,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6,

where ua and ub, computed by solving the equations

Pa
ua(ua; ε, τ) + μ + v = 0, Pa

ub
(ub; ε, τ)− μ = 0,

are respectively

ua =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

5ετ2 + 20 − 2τ − τ2(μ + v)
ετ2 + 2

ua > 10 − τ

τ(5ετ + 2 − τ(μ + v))
ετ2 + 2

ua < τ

5ε − (μ + v)
ε

otherwise,

ub =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ετ2 + 4 − 2τ + τ2μ

ετ2 + 2
ub > 2 − τ

τ(ετ + 2 + τμ)

ετ2 + 2
ub < τ

ε + μ

ε
otherwise.

As shown in Table 21, all the methods, starting with an initial mesh of 16 equidistant
points and initial solution x = v = λ = μ = 1, converge when ε = 1, 0.5 and tol = 10−4.

Table 21. Minimization of the fuel cost in the operation of a train (18) using a piecewise quadratic penalty function with
τ = 10−2: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x, v, ua, ub.

tol = 10−4

ε = 1 ε = 0.5

fM NVF Error x Error v Error ua Error ub fM NVF Error x Error v Error ua Error ub

bvp4c 121 1747 3.0× 10−6 6.7× 10−6 3.4× 10−5 1.7× 10−5 116 2414 1.4× 10−6 1.8× 10−6 5.1× 10−5 6.3× 10−5

bvp5c 52 3259 9.8× 10−7 5.9× 10−6 3.3× 10−5 1.8× 10−5 56 4295 5.3× 10−7 4.8× 10−6 1.4× 10−4 1.5× 10−4

twpbvp_m 34 132 5.6× 10−6 2.3× 10−5 2.0× 10−4 9.1× 10−5 52 124 2.6× 10−2 3.3× 10−2 1.5× 10−2 6.1× 10−3

twpbvpc_m 47 132 5.7× 10−6 2.3× 10−5 2.0× 10−4 9.1× 10−5 55 104 2.6× 10−2 3.3× 10−2 1.5× 10−2 6.2× 10−3

twpbvp_l 33 136 9.0× 10−6 2.8× 10−5 4.3× 10−4 1.0× 10−4 223 124 2.2× 10−2 2.6× 10−2 9.9× 10−3 8.7× 10−4

twpbvpc_l 46 136 9.0× 10−6 2.8× 10−5 4.3× 10−4 1.0× 10−4 115 104 2.2× 10−2 2.6× 10−2 9.9× 10−3 8.7× 10−4

tom 1471 44 5.9× 10−5 3.9× 10−4 4.0× 10−4 1.4× 10−4 1091 45 4.9× 10−6 2.6× 10−5 1.1× 10−4 8.9× 10−5

tomc 1406 148 4.0× 10−7 1.5× 10−6 2.2× 10−5 8.7× 10−6 2896 93 1.2× 10−7 3.7× 10−6 3.5× 10−5 1.5× 10−5

Now, decreasing the value of ε, all these methods fail, since the Problem (18) is highly
ill conditioned and strongly depends on perturbations. However, these methods can reach
the convergence using a continuation strategy on the parameter ε. As initial ε we can
choose 1 or 0.5, since we know that all the methods converge for those values. Moreover,
we need to define the discretization for the perturbation parameter, namely we consider
Nε logarithmically equispaced points in the range ε0, ε. Since the continuation depends on
the choice of Nε and the initial value ε0, in Table 22 we show the results obtained using
ε0 = 1 and Nε = 5, except for tom/tomc for which we need to consider for the convergence
Nε = 10. Our interest is to analyze the performance of the codes for small perturbation
parameters, as ε = 10−2, 10−3, requiring an exit tolerance tol = 10−3. In Figure 6 we
show the solution for ε = 10−2. The conditioning parameters in Table 23 suggest that the
problem is ill conditioned but not stiff, in fact κ, κ1, κ2, γ1 are all much greater than 1. The
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condition number of the matrix of the last step of the integration procedure (last column of
Table 23) is very high and confirms the ill-conditioning of the problem.

Table 22. Minimization of the fuel cost in the operation of a train (18) using a piecewise quadratic penalty function with
τ = 10−2 and continuation strategy: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed
errors for x, v, ua, ub.

tol = 10−4

ε = 10−2 ε = 10−3

fM NVF Error x Error v Error ua Error ub fM NVF Error x Error v Error ua Error ub

bvp4c 69 6055 1.1× 10−5 3.4× 10−5 2.1× 10−3 1.9× 10−2 78 8213 1.3× 10−5 3.4× 10−5 5.2× 10−3 1.9× 10−1

bvp5c 39 7180 6.0× 10−6 6.0× 10−5 5.5× 10−4 1.6× 10−2 59 8012 1.3× 10−6 5.0× 10−5 6.2× 10−5 1.6× 10−2

twpbvp_m 415 432 4.0× 10−6 7.8× 10−6 1.2× 10−3 4.8× 10−8 589 319 4.1× 10−6 9.0× 10−5 2.0× 10−3 2.4× 10−8

twpbvpc_m 132 359 5.5× 10−5 3.8× 10−4 4.2× 10−3 2.4× 10−2 589 319 4.1× 10−6 9.0× 10−5 2.0× 10−3 2.4× 10−8

twpbvp_l 202 312 4.3× 10−5 3.9× 10−4 2.8× 10−3 9.0× 10−3 589 332 3.3× 10−6 8.1× 10−5 1.9× 10−3 1.6× 10−8

twpbvpc_l 202 312 4.3× 10−5 3.9× 10−4 2.8× 10−3 9.0× 10−3 589 332 3.3× 10−6 8.1× 10−5 1.9× 10−3 1.6× 10−8

tom 2201 99 1.5× 10−6 1.2× 10−4 1.7× 10−4 1.3× 10−3 2166 102 3.7× 10−5 6.8× 10−4 1.8× 10−2 1.4× 10−1

tomc 2211 218 4.8× 10−6 1.2× 10−4 1.1× 10−3 5.2× 10−3 2886 230 6.3× 10−6 5.9× 10−5 4.2× 10−3 2.2× 10−1

acdc 36 723 2.2× 10−6 1.2× 10−5 3.6× 10−4 9.4× 10−3 40 1219 9.4× 10−7 1.7× 10−5 7.6× 10−4 5.2× 10−9
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Figure 6. Minimization of the fuel cost in the operation of a train ε = 10−2: from left to right solutions in time for the
position x, the velocity v and the difference between the control variables representing the acceleration and the deceleration
ua − ub.

Table 23. Minimization of the fuel cost in the operation of a train: conditioning parameters computed
using tol = 10−6, cond is the condition number of the matrix associated with the last nonlinear iteration.

σ κ κ1 κ2 γ1 Cond

ε = 10−3

twpbvpc_m 6.6 × 105 9.9 × 1012 9.9 × 1012 1.1 × 103 1.5 × 107 9.9 × 1025

twpbvpc_l 5.8 × 107 7.3 × 109 7.3 × 109 7.3 × 102 1.6 × 102 5.3 × 1019

tomc 6.6 × 100 2.8 × 103 1.5 × 103 1.3 × 103 2.0 × 102 2.4 × 1015

ε = 10−6

twpbvpc_m 1.1 × 108 5.0 × 1010 5.0 × 1010 4.7 × 102 4.9 × 102 2.5 × 1021

twpbvpc_l 8.6 × 107 7.1 × 109 7.1 × 109 4.7 × 102 1.1 × 102 5.1 × 1019

tomc 3.2 × 100 1.4 × 103 5.1 × 102 8.9 × 102 1.4 × 102 2.8 × 1014

9. Conclusions

In this paper, after a review of general-purpose codes for solving boundary value prob-
lems we have solved some challenging optimal control problems derived using the indirect
method. The presented results show that this approach could be a good alternative to the
direct methods for the solution of this kind of problems, especially if the mesh selection
strategy adopted is suitable for stiff problems in the case of hypersensitive problems, or an
appropriate initial condition is computed for the nonlinear iteration using a continuation
strategy. All these techniques can sometimes require the application of some regularization
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procedure, as in the presence of singular arc. Our goal with this paper is to give some
indications useful to handle the input parameters of a BVP code to achieve an accurate
solution, since the default values assigned usually works for very simple regular problems.
Moreover, some codes give in output information about the stiffness and the conditioning
of the problems, which could be used in choosing the correct solution method.
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