
mathematics

Article

BVPs Codes for Solving Optimal Control Problems

Francesca Mazzia 1,*,† and Giuseppina Settanni 2,†

����������
�������

Citation: Mazzia, F.; Settanni, G.

BVPs Codes for Solving Optimal

Control Problems. Mathematics 2021,

9, 2618. https://doi.org/10.3390/

math9202618

Academic Editor: Fasma Diele and

Janusz Brzdek

Received: 30 June 2021

Accepted: 12 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
2 Dyrecta Lab, Instituto di Ricerca, via Vescovo Simplicio 45, 70014 Conversano, Italy;

giuseppina.settanni@dyrecta.com
* Correspondence: francesca.mazzia@uniba.it
† These authors contributed equally to this work.

Abstract: Optimal control problems arise in many applications and need suitable numerical methods
to obtain a solution. The indirect methods are an interesting class of methods based on the Pontrya-
gin’s minimum principle that generates Hamiltonian Boundary Value Problems (BVPs). In this paper,
we review some general-purpose codes for the solution of BVPs and we show their efficiency in
solving some challenging optimal control problems.

Keywords: optimal control; indirect methods; boundary value problems

1. Introduction

Many optimal control problems arise from an interest in observing the dynamic
behavior of a state variable described by a dynamic equation, namely by a differential
equation, in several areas of applications such as biology, chemistry, economy, physics,
and engineering. For example, we can consider the development of a specific species
of animals in an ecological preserve, the dynamical behavior of a chemical process, the
evolution of the selling trend of a company, or the simulation of high-performance racing
vehicles. The dynamical behavior of this kind of problems is influenced by the choice of
control variables, as it might be incorporating the presence of predators in the ecological
preserve, moreover, both state and control variables must fulfil constraints, and minimize
or maximize an objective function.

Numerical methods solving optimal control problems were considered starting from
the 1950s, when Bellman introduced the dynamic programming [1], that requires solving
a partial differential equation, called the Hamiltonian-Jacobi-Bellman equation. Through
time the numerical approaches can be mainly divided into two classes: direct methods and
indirect methods [2,3]. Perhaps the first class of direct methods is the most widely applied,
it transforms the problem into a nonlinear optimization problem or nonlinear programming
problem, essentially this class is focused on the use of optimization techniques. The second
class of the indirect methods transforms the original optimal control problem into a two-
point boundary value problem, highlighting particular attention to numerical methods
solving differential equation systems. The last strategy is often considered disadvantageous
for figuring out challenging optimal control problem.

As against this last opinion, this work aims to review many of the available general-
purpose codes solving boundary value problems, able to figure out optimal control prob-
lems arising from adopting an indirect approach. The review is also devoted to some
numerical strategies that are useful and sometime necessary to numerically solve the
problem, such as continuation techniques associated with suitable penalty functions.

The most used solver for indirect methods has been the shooting method, based on
guessing the value of the unknown boundary condition at one end of the interval, so that
an initial value problem is solved to obtain the solution at the other end of the interval that
is already known. Although the shooting method is simple to apply, it is not particularly
advantageous to use when the boundary value problem is ill conditioned or stiff, and

Mathematics 2021, 9, 2618. https://doi.org/10.3390/math9202618 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1072-9578
https://orcid.org/0000-0002-9954-5371
https://doi.org/10.3390/math9202618
https://doi.org/10.3390/math9202618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202618
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202618?type=check_update&version=1

Mathematics 2021, 9, 2618 2 of 30

purposely when the optimal control problem is hypersensitive [4]. To overcome this matter
the multiple shooting method is considered, specifically the time interval is partitioned in
more subintervals and the shooting method is applied over each of these intervals. Another
class of methods widely used, since it is the most robust and fast converging, is the class of
collocation methods, where piecewise polynomials are used to parametrize the state and
control variables. Finally, the solution is computed solving a nonlinear system by means of
root finding techniques.

In the literature there exist different general-purpose open-source codes solving bound-
ary value problems that are highly suitable in solving stiff and singular perturbations prob-
lems. Many of them have been implemented in Fortran, which has been for many years the
preferred language for scientific computing. Some effort has been however accomplished
to make them also available in problem-solving environments such as Matlab or R. The
first bvp codes, as colsys/colnew [5,6], twpbvp [7] , twpbvpl [8], acdc and colmod [9],
coldae [10], mirkdc [11] and BVP_M-2 [12,13] have been written in Fortran/Fortran90. A
collection of the last releases of many of the cited Fortran codes, together with the driver
that allows a common input definition, and a list of numerical examples arising in several
applications are available in the web site Test set for BVP solvers [14,15].

The Matlab environment allows the use of two functions, named bvp4c [16] and
bvp5c [17], for solving BVPs. Other interesting codes that are usable in Matlab are
bvptwp [18], TOM [19], HOFiD_bvp [20] and bvpSuite2.0 [21], based on the code sbvp [22]
for the solution of singular problems. The code bvpSuite2.0 could be used also for singu-
lar BVPs and differential algebraic problems of index 1. For the R community is instead
available the package called bvpSolve that allows the running in R of many of the avail-
able Fortran codes [4,23]. In Python the package scipy.integrate includes the function
solve_bvp [24], a routine based on BVP_M-2 and similar to the bvp4c Matlab code. All of
them solve two-point boundary value problems, this means that applied to a second order
boundary value problems, they transform the original problem into a system of first-order
differential equations with boundary conditions, except for the collocation codes colsys,
colnew, colmod, coldae, bvpSuite, and the high-order finite difference code HOFiD_bvp,
since each of them can be applied directly to higher order problems.

Our aim is to apply some of the cited codes for figuring out boundary value problems
coming up using indirect methods to optimal control problems. Meanwhile, we will
highlight some matters that can arise in handling bvp solvers, such as the choice of an
initial mesh, or the use of a continuation technique for nonlinear problems. To this aim we
show by some test problems how the proper use of these techniques and a good choice of
the input parameters can allow us to obtain a solution in more efficient way than we could
achieve using default parameters. Since the aim of this paper is not to make a comparison
between the selected codes, we do not show the execution time, but we point out how the
choice of a code depends on the problem.

We use as platform to run the experiment the Matlab environment and we consider
the codes available in the Matlab distribution, bvptwp and TOM. We do not present the
results for the collocation code bvpSuite2.0 because it does not give in output the same
information of the other codes and it does not allow using a numerical Jacobian. For
R-users all the examples could be solved using all the codes available in the bvpSolve
package. Since bvpSolve run the Fortran codes by means of an interface, the results are the
same obtained by the original Fortran codes.

The paper shows a list of a few interesting problems, for other applications of the same
codes, here considered, to more involved optimal control problems, we refer the reader
to [25–28]. Moreover, we highlight that it is not our aim to compare direct and indirect
methods, but only to show the efficiency of indirect methods that often are not taken into
consideration because users do not know the potentiality of general-purpose codes for
BVPs.

The paper is organized as follows: in Section 2 we briefly introduce the indirect
methods; in Section 3 we review codes for solving boundary value problems (BVPs) that

Mathematics 2021, 9, 2618 3 of 30

are illustrated and classified through different programming environments, in particular
Fortran codes are allocated in Section 3.1, Matlab codes in Section 3.2 and R codes in Section
3.3. Finally, in Sections 4–8 interesting optimal control problems are solved using indirect
methods and the BVPs related. In Section 9 we give some conclusions, highlighting the
potentiality of the BVP codes considered.

2. Optimal Control Problems: Indirect Methods

Given a non-empty compact time interval [t0, t f] ⊂ R, with t0 < t f , an optimal control
problem is defined as

minimize ϕ(t f , x f) +
∫ t f

t0

L(t, x, u) dt,

x′ = f (t, x, u),

b(x(t0), x(t f)) = 0, (1)

u ∈ U ,

where ϕ and L are sufficiently smooth functions involved in the minimization of the
objective function, x(t) ∈ Rn is the state variable of the dynamical system, u(t) ∈ U ⊂ Rm

is the control variable and U the set of admissible controls, f is a regular function and
b(x(t0), x(t f)) = 0 are the general boundary conditions. Furthermore, Problem (1) might
be subject to a path constraint that can be expressed by a mixed control-state constraint
c(t, x, u) ≤ 0 or a pure state constraint s(t, x) ≤ 0 .

There exist two main approaches solving optimal control problems (1), direct methods
and indirect methods [2,29]. Direct methods suitably discretize an infinite-dimensional
optimal control problem, giving back a finite-dimensional optimization problem that can
be solved using appropriate nonlinear programming methods, such as sequential quadratic
programming. This approach results robust and efficient if applied to several problems,
besides not requiring a strong knowledge in optimal control theory, it becomes highly
advantageous to use.

On the other hand, indirect methods are instead related to the Pontryagin’s minimum
principle [29], a necessary condition for optimality that transforms the original Problem (1)
into a two-point boundary value problem for state and adjoint Lagrange multiplier func-
tions, defined as

x′ = f (t, x, u),

λλλ′ = −Hx(t, x, u, λ),

b(x(t0), x(t f)) = 0, (2)

bx(t0)
(x(t0), x(t f))ω = λλλ(t0),

bx(t f)
(x(t0), x(t f))ω = −ϕx(t f , x f)−λλλ(t f),

where H(t, x, u, λ) = L(t, x, u) +λλλ · f (t, x, u) is the Hamiltonian function and the optimal
control u∗(t) is obtained by a local optimization of the Hamiltonian, namely u∗(t) =
arg min

u∈U
H(t, x, u, λ). Pro this approach there is the possibility to compute an accurate

numerical solution; however, against we find some drawbacks, such as the necessity to
have a good initial guess for the solution of the generated nonlinear boundary value
problem. Now, to overcome this matter we focus on the application of some well-known
two-point boundary value codes that are considered extremely efficient and robust to solve
the BVP (2).

3. Codes for Bvps

Boundary value problems arise in many fields of application, so in the last 40 years
a great effort has been done to develop efficient methods solving this kind of problems.

Mathematics 2021, 9, 2618 4 of 30

Among them many are methods applied to two-point boundary value problems, i.e., to sys-
tems of first-order ordinary differential equations with boundary conditions, others can be
applied directly to second or high-order boundary value problems without any transforma-
tion of the original problem. Moreover, these codes are available in different programming
environment, so in the following we will give information about their characteristics.

3.1. Fortran Codes

The code colsys was written by U. Ascher, R. Matteij and R. Russell [5] and it is based
on method of spline collocation at Gaussian points and solves mixed-order systems of
multipoint BVPs, high-order equations, problems with non-separated boundary conditions
and problems with singularity. The code computes the solution on a sequence of meshes
that are refined using the equidistribution of error to satisfy the required input tolerance.
The error estimate is obtained roughly at each step halving the mesh. The components
of the collocation solution are expressed by B-spline basis, which are evaluated by the de
Boor’s algorithms. Indeed, the damped Newton’s method of quasilinearization is used for
solving the nonlinear problems.

The code colnew [6,30] is the descendant of colsys and, contrary to this last, it uses a
Runge–Kutta monomial representation for the piecewise polynomial solution, instead of
B-spline basis. This change returns a code faster than the native version colsys.

The codes twpbvp,twpbvpl and acdc were written by J. R. Cash and his collaborators.
The code twpbvp [7], differently from colsys, uses mono-implicit Runge–Kutta formulae
and a deferred correction method for solving two-point boundary value problems. The
mono-implicit Runge–Kutta formulae are implemented applying the deferred correction
procedure, which allows discovery of the solution of a high-order method using only low
order schemes. The code guarantees to construct a mesh refinement that is very suitable
for singular perturbation problems.

The code twpbvpl, differently from twpbvp, is based on three Lobatto Runge–Kutta
formulae of order 4, 6, 8, which are implemented using a suitable deferred correction
scheme, solved with a damped Newton iteration scheme. The code is devoted in solving
efficiently nonlinear stiff two-point boundary value problems.

The code acdc [9] has been developed from twpbvpl including an automatic continu-
ation strategy, implemented to suitably solve linear and nonlinear singular perturbation
problems characterized from a small parameter ε. The parameter ε often brings about
stiffness in the problem, so that for a nonlinear problem a good initial solution is required
to reach the convergence of the Newton method. The continuation strategy arises to over-
come these matters, specifically it consists of selecting an initial perturbation parameter ε0,
chosen to compute a solution of a problem not particularly stiff, usually for ε0 ≈ 1, and
satisfying a certain exit tolerance tol. The idea is to obtain an initial rough profile of the
solution of the problem for a desired perturbation parameter ε. Then, chosen an integer Nε

the interval [ε0, ε] is discretized in Nε subintervals, so that

ε0 > ε1 > · · · > · · · > εNε−1 > εNε .

Now, Nε + 1 boundary value problems satisfying an exit tolerance tol are iteratively
computed, so that the solution of the problem obtained at iteration i = 0, . . . , Nε − 1, for εi
on a mesh πi, is the initial solution of the next problem with perturbation parameter εi+1.
A crucial point of this strategy is the selection of the initial parameter ε0 and the value of
discretizazion Nε, both depend on the problem. In codes such as acdc ε0 is set equal to
0.5 by default; however the suggestion is to consider ε0 as a value not extremely small
allowing the obtaining of an accurate solution of the problem for that value of perturbation;
The code acdc chooses the sequences of parameters and the total number of continuation
steps automatically. It is however possible to implement a continuation strategy for the
other codes, in this case for Nε it would be convenient to start with a small integer and
then double or increment it, if the procedure does not converge.

Mathematics 2021, 9, 2618 5 of 30

The code colmod [9] is a modified version of the code colsys using the same continu-
ation strategy adopted in acdc.

The codes twpbvpc, twpbvplc and acdcc [14] are the modified version of the codes
twpbvp, twpbvpl and acdc that implement a mesh selection strategy based on the estima-
tion of the local error and of two conditioning parameters [31]. This hybrid mesh strategy
has first been used in the Matlab code TOM, described in the next section.

The code mirkdc written by W. Enright and P. Muir [11] uses MIRK method and
controls the defect, also BVP_M-2 written by J.J. Boisvert, P. Muir and R. Spiteri [12] is based
on MIRK methods, but this last controls both the defect and/or the global error, giving,
moreover, information about the conditioning constant.

Detailed information about all the numerical schemes and techniques related to the
Fortran codes in this subsection can be found in [32] where a review of global methods for
solving BVPs is presented.

3.2. Matlab Codes

The BVP codes available officially in the Matlab environment are bvp4c [33] and
bvp5c [34]. The code bvp4c [16] is based on a collocation method with a C1 piecewise
cubic polynomial, or equivalently on an implicit Runge–Kutta formula with a continuous
extension, namely the collocation method is equivalent to a three-stages Lobatto IIIa
implicit Runge–Kutta formula. This code implements a method of order four and solves a
large class of BVP, such as equations with non-separated boundary conditions, singular
problems, Sturm–Liouville problems. An advantage of this code is being able to compute
numerical partial derivatives and use a vectorized finite difference Jacobian. Differently
from the other codes the error estimation and the mesh selection are based on the residual
estimation. We recall that if S(x) approximates the solution y(x), then the residual control
in the differential equation y′(x) = f (x, y(x)) is given by r(x) = |S′(x)− f (x, S(x))|.

The code bvp5c is based on the four-stages Lobatto IIIa formula, giving a method
of order five. Contrarily to bvp4c, bvp5c controls the residual and the true approximate
error. It is clear that if the BVP is well-conditioned a small residual implies a small true
error, but this is not satisfied if the BVP is ill-conditioned, hence the strategy to control the
residual and the true error is more efficient than the one applied in bvp4c.

The next two codes TOM and HOFiD_bvp belong to the class of Boundary Value Meth-
ods [35], especially suitable for solving BVPs.

The code TOM [19], based on the TOP Order Methods and the BS method of order four,
six, eight and ten distinguishes for the use of conditioning in the mesh selection strategy.
In [36] the authors analyzed how the conditioning and the stiffness of a problem depend
on the estimation of the following conditioning parameters:

κ conditioning constant with respect to all type of perturbation, computed using the
maximum norm;

κ1 conditioning constant with respect to a perturbation of the boundary conditions,
computed using the maximum norm;

κ2 conditioning constant with respect to a perturbation of the differential problem, com-
puted using the maximum norm;

γ1 conditioning constant with respect to a perturbation of the boundary conditions,
computed using the one norm;

σ the stiffness ratio.

Specifically, the problem is: well-conditioned if κ, κ1, γ1 and σ are of moderate size;
stiff if σ � 1; ill-conditioned if κ � 1 and γ � 1; ill posed if κ2 > κ1. A complete
description of the parameters and the algorithms used to compute their approximation
is presented in [37]. The hybrid mesh selection algorithm controls the approximation
of conditioning parameters and chooses the mesh points to have an estimation of those
discrete quantities close to the continuous ones. Meanwhile, the code controls that the error
of the solution computed is less than a prescribed tolerance. The error approximation is
computed using a deferred correction technique with a higher order method, moreover a

Mathematics 2021, 9, 2618 6 of 30

quasi-linearization technique is implemented to solve nonlinear problem. The release of
May 2021, which has been used for the numerical tests in this paper, has the possibility to
choose two different mesh selections, one suitable for regular problem and the other one
for stiff or singular perturbation problems.

The code HOFiD_bvp [20] is based on high-order finite difference schemes (HOFiD) of
order four, six, eight and ten, and an upwind method. Each derivative in the high-order
boundary value problem is approximated directly by these schemes, hence it is not required
any transformation of the problem in a system of first-order differential equations. The
error estimation is computed applying the deferred correction technique to two consecutive
order methods. The mesh selection is based on the error equidistribution. For nonlinear
problems, the code uses a continuation strategy, as explained previously, and also combines
an order variation strategy, this means that a solution of the problem obtained with a lower
order and tolerance can be considered to be initial solution to run the code with higher
order and tolerance. The strategy adopted returns a code suitable to solve high-order
boundary value problems that can be singularly perturbed, singular, with discontinuous
terms and multipoint. Other versions of the code solve singular second order initial value
problems [38], Sturm–Liouville problems [39] and multi-parameters spectral problems [40].

An interesting code for solving high-order BVPs is the bvpSuite2.0 package, based
on collocation methods. The collocation points could be chosen by the users among
Gauss, Lobatto, uniform or user defined points. The code solves implicit BVPs, eigenvalue
problems, differential algebraic problems of index 1 and it is particularly suited for singular
problems. BvpSuite2.0 [21] is the evolution of two previous versions of the code with
improved usability. The mesh selection strategy used is described in [41].

Finally, we consider the Matlab code bvptwp [18] based on an efficient translation
of the Fortran codes twpbvp, twpbvpl and acdc in the Matlab environment, which are
named twpbvp_m, twpbvp_l, acdc. Moreover, the Matlab package also contains the
translation of the Fortran version of the same codes that use a hybrid mesh selection based
on conditioning, similar to the one used in the code TOM, called twpbvpc_m, twpbvpc_l,
acdcc. The code bvptwp is available on the calgo website and on the web-page called Test
Set for BVP Solvers [15]. The version used in this paper is the release of May 2021.

3.3. R Codes

In recent years, the use of the open-source software R is upward among the problem-
solving environments (PSEs) , and although it is mainly used as a software for statistics
and visualization, several powerful methods solving differential equations have been
developed. In this regard we highlight the package bvpSolve [23], which, using an interface,
implements all the Fortran codes introduced in Section 3.1.

3.4. Experiments

Since our aim is to show the suitability and the efficiency of the BVP solvers in
computing the solution of the Hamiltonian boundary value problems deriving from the
application of the indirect method to optimal control problems, in the following sections
we carry out some interesting numerical tests. We run experiments using the Matlab codes
bvp4c, bvp5c, and bvptwp. For the last solver we consider all the codes available, i.e.,
twpbvp_m, twpbvp_l, twpbvpc_m, twpbvpc_l, acdc, acdcc. We also add the results
obtained with the new release of the code TOM (May 2021). This code allows the choice
of a boundary value method of specific order and a mesh variation strategy. For all the
examples we choose the BS method of order 4 and we denote by tom the code run using a
mesh variation for regular problems and by tomc the one implementing a mesh variation
suited for stiff problems. For R-users all the examples could be solved applying all the
codes included in the bvpSolve package. Since bvpSolve runs the Fortran codes by an
interface, the obtained results are similar to those computed by means of the original
Fortran codes. We also observe that some of the codes considered here for the numerical

Mathematics 2021, 9, 2618 7 of 30

tests are also present in the R package bvpSolve rel. 1.4.2. The R version of these codes on
the same examples show comparable results.

In our tests we use an initial mesh with 16 equidistant points and an initial solution
with zero elements, except in some examples where specified. Moreover, the maximal
mesh allowed has been set to 104 and the function evaluations have been vectorized. In the
tables we report the number of points in the final mesh f M (in reading this value we recall
that the code TOM does not use any auxiliary steps but all the others codes needs also
several intermediate steps depending on the order of the methods used), the total number
of vectorized function evaluation NVF and the mixed relative error on some significant
components of the solution defined for a generic component x by the following formula

max
i

|xi − x(ti)|
(1 + |x(ti)|)

where xi is the numerical approximation of x(ti). If the exact solution of the test problem is
not available, the error is computed by running the code twpbvpc_l using a doubled mesh
and a halved input tolerance. For all the codes we give in input equal absolute and relative
tolerances. If the codes twpbvp_m/twpbvpc_m, twpbvp_l/twpbvpc_l, acdc/acdcc give
the same results we report only one result in the tables. If a code cannot solve the problem,
we put ∗ in the tables.

4. Hypersensitive Optimal Control Problems

The first class of examples we consider is the class of hypersensitive optimal control
problems. Problems in this class are stiff, and need a suitable mesh variation strategy when
solved using both direct and indirect methods. Usually, they are considered extremely
difficult to be solved by indirect methods, because the solution is sensitive to changes in
the initial conditions. In [42] the authors describe a dichotomic basis method which is
inspired to the computation of the solution of singular perturbation problems for stiff initial
value problems. In the following examples we show that general-purpose finite differences
codes can solve very efficiently this class of problems. The codes can be applied for the
numerical solution of completely hypersensitive problems whose solution has fast rates in
all directions and partially hypersensitive problems, with the fast rate in only one direction.

4.1. Nonlinear Mass Spring System with Quadratic Cost

As first example we consider a hypersensitive nonlinear mass spring system [43],
where the mass position x is defined such that the spring is unstretched when x = 0. The
spring force is Fs(x) = −k1x− k2x3. The control is exerted on the mass by an external force
denoted by F(t), hence the control input is u(t) = F(t). The equation of motion of the mass
is mx′′ = Fs(x) + F(t). We assume that k1 = 1, k2 = 1 and m = 1.

The optimal control problem needs to determine the control u on the fixed time
interval [0, T] such that

min
x,u

1
2

∫ T

0
(x2 + v2 + u2) dt

x′ = v
v′ = −x− x3 + u
x(0) = 1, v(0) = 0, x(T) = 0.75, v(T) = 0.

The associated Hamiltonian is

H(x, v, λ, µ, u) =
1
2
(x2 + v2 + u2) + λv + µ(−x− x3 + u)

Mathematics 2021, 9, 2618 8 of 30

and the optimal control, obtained by computing ∂H
∂u = 0, is given by u∗ = −µ. There-

fore, applying the indirect method the optimal control problem is equivalent to solve the
following BVP

x′ = v

v′ = −x− x3 − µ

λ′ = −x + µ(1 + 3x2) (3)

µ′ = −v− λ

x(0) = 1, v(0) = 0, x(T) = 0.75, v(T) = 0.

In Figure 1 we show the solution for T = 20 and T = 40. In Table 1 we present
some results obtained increasing the value of T from 20 to T = 2 · 106. First, we choose
an initial mesh of 16 equidistant points and try to run all the codes, except the codes acdc
and acdcc, since for this formulation of the problem there is not a parameter to be used
for continuation. If on one hand, for T = 20 all the methods converge to the solution, and
for T = 2 · 104 only the codes bvp4c and bvp5 fail, on the other hand for T = 2 · 106 no
one goes to convergence except the codes tom and tomc (see Table 2). Essentially, there
are some troubles with a singular Jacobian for bvp4c and bvp5c, or a drawback with the
maximum number of mesh points allowed with the other codes. In the last case we could
increase the maximum value of mesh points; however, we will try to differently overcome
this matter and to debunk the idea that the indirect methods are not as competitive as
direct ones.

Table 1. Nonlinear Mass spring: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors
for x, v, u. The solution is computed starting from an initial mesh with 16 equidistant points.

tol = 10−4

T = 20 T = 2 · 104

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 71 35 6.0× 10−6 9.8× 10−6 1.7× 10−5 * * * * *
bvp5c 294 1001 9.0× 10−9 2.0× 10−8 4.7× 10−8 * * * * *

twpbvp_m 23 52 2.5× 10−6 4.4× 10−6 4.8× 10−6 158 263 3.8× 10−6 2.4× 10−6 3.0× 10−7

twpbvpc_m 38 52 2.4× 10−6 4.5× 10−6 5.1× 10−6 201 246 1.2× 10−6 1.7× 10−6 2.3× 10−6

twpbvp_l 27 54 1.7× 10−6 2.1× 10−6 4.4× 10−6 97 200 6.9× 10−6 1.1× 10−5 3.2× 10−5

twpbvpc_l 27 54 1.7× 10−6 2.1× 10−6 4.4× 10−6 104 246 5.7× 10−6 6.2× 10−6 2.8× 10−5

tom 116 14 2.8× 10−6 1.7× 10−6 3.1× 10−6 426 30 7.7× 10−6 4.5× 10−6 7.6× 10−6

tomc 136 16 1.2× 10−6 1.6× 10−6 2.4× 10−6 526 41 7.5× 10−7 1.1× 10−6 1.5× 10−6

tol = 10−6

bvp4c 254 49 2.4× 10−8 6.6× 10−8 1.5× 10−7 * * * * *
bvp5c 392 1221 1.2× 10−10 1.2× 10−10 1.7× 10−10 * * * * *

twpbvp_m 42 50 1.1× 10−8 1.3× 10−8 2.3× 10−8 254 271 1.3× 10−7 1.0× 10−7 1.1× 10−7

twpbvpc_m 57 73 3.2× 10−8 4.4× 10−8 5.0× 10−8 306 306 8.1× 10−7 7.1× 10−7 6.3× 10−7

twpbvp_l 48 78 2.0× 10−8 1.9× 10−8 2.3× 10−8 152 207 1.7× 10−8 2.2× 10−8 2.5× 10−8

twpbvpc_l 58 78 2.0× 10−8 1.9× 10−8 2.3× 10−8 136 253 1.7× 10−8 2.2× 10−8 2.5× 10−8

tom 196 19 1.6× 10−7 2.2× 10−7 2.8× 10−7 481 33 4.5× 10−7 4.1× 10−7 5.1× 10−7

tomc 166 17 7.2× 10−7 6.8× 10−7 7.4× 10−7 511 44 2.1× 10−7 2.7× 10−7 3.1× 10−7

Table 2. Nonlinear Mass spring, T = 2 · 106: final mesh (fM), total number of vectorized function evaluation (NVF) and
mixed errors for x, v, u, initial mesh with 16 equidistant points.

fM NVF Error x Error v Error u fVM NVF Error x Error v Error u

tom 6266 256 6.4× 10−7 8.9× 10−7 1.1× 10−6 6266 256 6.4× 10−7 8.9× 10−7 1.1× 10−6

tomc 1291 177 6.6× 10−7 7.5× 10−7 1.4× 10−6 1236 180 1.7× 10−7 1.6× 10−7 1.8× 10−7

Mathematics 2021, 9, 2618 9 of 30

0 10 20 30 40

t

-0.2

0

0.2

0.4

0.6

0.8

1

x
(t

)

0 10 20 30 40

t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
(t

)

Figure 1. Mass spring: solution in time for the mass position x on the left and the control u on the
right. Final time T = 20 (blue line) and T = 40 (red dash-dot line).

First, we point out that the results presented in Table 2 clearly show that the mesh
selection based on conditioning allows the solution of the problem using a reduced number
of mesh points and vectorial function evaluations. To gain the convergence for the other
codes, it can be sufficient, in some cases, to increase the number of points in the initial
mesh. To this aim, in Table 3 we show the numerical results obtained for bvp5c using 501
or 1001 initial equidistant points and T = 2 · 104. This strategy is advantageous for bvp5c,
not yet for bvp4c, that needs an initial mesh of 2501 mesh points to reach the convergence.
However, we observe that bvp5c is not able to reach convergence if we use an initial mesh
of 2501 mesh points. For the other classes of methods increasing the number of mesh points
is not advantageous in terms of computational cost and time execution.

Table 3. Nonlinear Mass spring, initial mesh (IM) with 501, 1001 and 2501 equidistant points and
T = 2 · 104: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors
for x, v, u.

IM fM NVF Error x Error v Error u

bvp4c 2501 421 57 9.5× 10−6 1.1× 10−5 1.0× 10−5

bvp5c 501 261 7200 4.2× 10−6 4.9× 10−6 4.8× 10−6

bvp5c 1001 641 13,088 4.1× 10−6 4.7× 10−6 4.6× 10−6

tol = 10−6

bvp4c 2501 471 71 1.4× 10−7 1.4× 10−7 1.5× 10−7

bvp5c 501 333 7578 3.9× 10−8 5.7× 10−8 6.1× 10−8

bvp5c 1001 512 13,880 3.9× 10−8 5.7× 10−8 6.1× 10−8

To improve the performance of all considered codes, the BVP (3) is reformulated using
a variable transformation. Let τ = t/T with τ ∈ [0, 1], we solve the following BVP

x′ = Tv

v′ = −T(x + x3 + µ)

λ′ = T
(
−x + µ(1 + 3x2)

)
(4)

µ′ = −T(v + λ)

x(0) = 1, v(0) = 0, x(1) = 0.75, v(1) = 0.

Now, we set the perturbation parameter ε = 1/T, so that we can run for parameters
less than 1 the codes acdc and acdcc that use an automatic continuation strategy. For all the
other codes, we can adopt a continuation strategy starting with an initial value of ε0 that
guarantees the convergence, in our case we use ε0 = 1/20 and we change this value up to
reach the required value. To this aim we consider the perturbation parameter changing
in the interval [ε0, ε] among the values 0.5 · 10−j, j = −2, . . . ,−6. This means that we

Mathematics 2021, 9, 2618 10 of 30

discretize the interval with Nε = 3 and Nε = 5 respectively for T = 2 · 104 and T = 2 · 106.
In Table 4 we show the results obtained applying this successful continuation strategy. All
the methods converge for all the values of T using a low computational cost. In this case,
the codes based on automatic continuation strategy are very efficient, using acdc/acdcc the
users do not need to decide how to change the continuation parameters, even if in some
cases the automatic continuation could fail to reach the final desired value.

More information about this problem could be obtained by analyzing the conditioning
parameters given in output by the codes twpbvpc_m and tomc, reported in Table 5. As we
can see the stiffness parameter σ grows with the width of the interval, and depends on this
last, moreover κ2 > κ1 shows that the problem could be ill posed, and γ1 tending to zeros
shows the presence of different time scales. The transformation of time interval in [0, 1]
does not change the stiffness of the problem, but the problem is well posed (see Table 6).

4.2. Completely Hypersensitive Control Problem

This example is a hypersensitive optimal control problem implemented in ICLOCS2,
defined as a problem “extremely difficult” to solve using an indirect method [42,44] and
given by 

min
x,u

∫ T

0
(x2 + u2) dt

x′ = −x3 + u
x(0) = 1, x(T) = 1.5.

(5)

Considered the Hamiltonian H(x, λ, u) = x2 + u2 + λ(−x3 + u), the first-order neces-
sary conditions for optimality leads to the following boundary value problem (BVP)

x′ = −x3 − λ

2
λ′ = −2x + 3λx2 (6)

x(0) = 1, x(T) = 1.5,

where the optimal control is u∗ = − λ
2 . We choose T = 104, T = 106 and an initial mesh of

11 equidistant points, the solution is plotted in Figure 2. Numerical results shown in Table 7
point out good performance of all the codes except bvp4c and bvp5c, which are not suitable
for stiff problems, indeed we underline as they converge to the solution respectively up to
T = 38 and T = 29.

In Table 8 the approximations of the conditioning constants show the dependence of
the stiffness on the width of the interval. Moreover, the numerical results underline the
necessity of adopting a good mesh selection strategy for computing the solution.

0 2,000 4,000 6,000 8,000 10,000

t

0

0.5

1

1.5

x
(t

)

0 2,000 4,000 6,000 8,000 10,000
t

-2

0

2

4

6

8

u
(t

)

Figure 2. Hypersensitive: solution in time for the mass position x on the left and the control u on the
right, final time T = 104.

Mathematics 2021, 9, 2618 11 of 30

Table 4. Nonlinear Mass spring using the variable τ = t/T, initial mesh with starting mesh with 11 equidistant points and continuation strategy on ε = 1/T, final mesh (fM), total number
of vectorized function evaluation (NVF) and mixed errors for x, v, u.

tol = 10−4

T = 20 T = 2 · 104 T = 2 · 106

fM NVF Error x Error v Error u fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 78 45 6.3× 10−6 9.6× 10−6 2.8× 10−5 199 178 4.3× 10−4 4.5× 10−4 5.9× 10−4 2093 334 2.5× 10−3 3.5× 10−3 3.5× 10−3

bvp5c 38 220 1.6× 10−6 1.1× 10−6 9.5× 10−7 148 1658 3.3× 10−6 7.1× 10−6 8.4× 10−6 1784 11,712 3.0× 10−6 4.5× 10−6 4.8× 10−6

twpbvp_m 24 56 1.4× 10−6 9.2× 10−7 1.3× 10−6 137 233 6.8× 10−5 8.2× 10−5 9.2× 10−5 163 358 2.6× 10−6 2.9× 10−6 2.9× 10−6

twpbvpc_m 39 81 3.2× 10−6 1.9× 10−6 2.3× 10−6 421 221 3.5× 10−6 2.6× 10−6 2.0× 10−6 141 335 2.5× 10−5 4.8× 10−5 6.8× 10−5

twpbvp_l 28 51 6.3× 10−6 9.6× 10−6 2.8× 10−5 76 346 1.1× 10−5 1.4× 10−5 1.9× 10−5 83 557 1.1× 10−5 1.4× 10−5 1.9× 10−5

twpbvpc_l 28 51 6.3× 10−6 9.6× 10−6 2.8× 10−5 102 237 6.0× 10−6 9.4× 10−6 1.1× 10−5 139 343 6.0× 10−6 9.4× 10−6 1.1× 10−5

tom 156 16 7.3× 10−7 1.2× 10−6 1.5× 10−6 481 49 1.1× 10−5 6.7× 10−6 1.1× 10−5 711 73 7.0× 10−7 6.9× 10−7 8.1× 10−7

tomc 141 16 1.6× 10−6 1.1× 10−6 2.6× 10−6 681 31 1.6× 10−6 2.1× 10−6 2.4× 10−6 1356 49 9.0× 10−8 1.7× 10−7 2.4× 10−7

acdc 25 155 2.8× 10−5 2.7× 10−5 3.0× 10−5 66 485 2.6× 10−6 4.0× 10−6 6.2× 10−6 110 749 2.9× 10−6 1.6× 10−6 3.3× 10−6

acdcc 25 155 2.8× 10−5 2.7× 10−5 3.0× 10−5 106 375 2.3× 10−5 1.4× 10−5 1.5× 10−5 176 501 2.3× 10−5 3.0× 10−5 3.7× 10−5

tol = 10−6

bvp4c 296 57 2.6× 10−8 2.5× 10−8 2.8× 10−8 319 160 1.6× 10−6 2.0× 10−6 2.6× 10−6 374 280 1.5× 10−5 1.6× 10−5 1.7× 10−5

bvp5c 87 464 1.2× 10−8 9.3× 10−9 4.9× 10−9 203 3535 1.4× 10−8 1.9× 10−8 2.7× 10−8 1305 19,524 2.5× 10−8 4.0× 10−8 4.4× 10−8

twpbvp_m 39 83 8.2× 10−8 8.7× 10−8 9.5× 10−8 178 341 7.0× 10−8 8.8× 10−8 9.2× 10−8 497 459 5.4× 10−9 7.1× 10−9 8.3× 10−9

twpbvpc_m 50 83 8.2× 10−8 8.7× 10−8 9.5× 10−8 190 255 7.9× 10−8 5.5× 10−8 6.4× 10−8 423 375 8.1× 10−9 8.1× 10−9 8.9× 10−9

twpbvp_l 50 90 9.8× 10−9 1.1× 10−8 1.2× 10−8 114 284 1.9× 10−8 2.5× 10−8 1.0× 10−7 103 446 1.0× 10−8 1.1× 10−8 1.7× 10−8

twpbvpc_l 61 90 9.8× 10−9 1.1× 10−8 1.2× 10−8 120 246 2.4× 10−8 2.2× 10−8 3.3× 10−8 127 350 2.4× 10−8 2.2× 10−8 3.3× 10−8

tom 161 17 8.0× 10−7 1.3× 10−6 1.6× 10−6 426 62 5.8× 10−7 7.6× 10−7 9.4× 10−7 751 95 2.1× 10−7 2.6× 10−7 2.9× 10−7

tomc 186 19 2.1× 10−7 4.1× 10−7 4.5× 10−7 831 36 2.4× 10−7 2.0× 10−7 2.5× 10−7 826 56 2.2× 10−7 2.3× 10−7 2.6× 10−7

acdc 50 158 1.4× 10−8 1.8× 10−8 2.1× 10−8 95 382 1.0× 10−8 1.8× 10−8 2.0× 10−8 89 581 2.7× 10−8 3.8× 10−8 4.4× 10−8

acdcc 50 158 1.4× 10−8 1.8× 10−8 2.1× 10−8 183 371 1.8× 10−7 2.0× 10−7 2.1× 10−7 184 513 1.8× 10−7 2.0× 10−7 2.1× 10−7

Mathematics 2021, 9, 2618 12 of 30

Table 5. Nonlinear Mass spring: conditioning parameters computed using tol = 10−6 and initial
mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 20

twpbvpc_m 1.90× 101 1.33× 101 4.72× 100 8.57× 100 2.16× 10−1

tomc 2.04× 101 1.33× 101 4.79× 100 8.61× 100 5.28× 10−1

T = 2 · 104

twpbvpc_m 1.97× 104 1.34× 101 4.73× 100 8.65× 100 5.09× 10−4

tomc 2.08× 104 1.66× 101 5.42× 100 1.12× 101 2.11× 10−4

T = 2 · 106

twpbvpc_m 1.90× 106 1.34× 101 4.75× 100 8.61× 100 5.28× 10−6

tomc 2.03× 106 1.66× 101 5.45× 100 1.11× 101 2.17× 10−6

Table 6. Nonlinear Mass spring using the variable τ = t/T: conditioning parameters computed
using tol = 10−6 and initial mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 20

twpbvpc_m 1.90× 101 5.15× 100 4.72× 100 4.31× 10−1 5.28× 10−1

tomc 2.06× 101 5.18× 100 4.75× 100 4.30× 10−1 2.12× 10−1

T = 2 · 104

twpbvpc_m 1.90× 104 4.73× 100 4.73× 100 4.30× 10−4 5.26× 10−4

tomc 2.08× 104 4.75× 100 4.75× 100 4.31× 10−4 2.10× 10−4

T = 2 · 106

twpbvpc_m 1.90× 106 4.75× 100 4.75× 100 4.31× 10−6 5.28× 10−6

tomc 2.09× 106 4.75× 100 4.75× 100 4.31× 10−6 2.09× 10−6

Table 7. Hypersensitive problem solved with an initial mesh with 11 equidistant points: final mesh (fM), total number of vectorized
function evaluation (NVF) and mixed errors for x, v, u.

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

twpbvp_m 117 239 1.5× 10−6 3.1× 10−6 1.5× 10−6 1821 394 1.9× 10−5 3.8× 10−5 1.9× 10−5

twpbvpc_m 140 237 1.7× 10−6 3.4× 10−6 1.7× 10−6 650 456 3.3× 10−5 6.7e−5 5.0× 10−5

twpbvp_l 105 224 7.0× 10−6 2.7× 10−5 1.7× 10−5 * * * * *
twpbvpc_l 91 286 6.6× 10−9 1.3× 10−8 6.6× 10−9 1176 425 8.2× 10−9 3.0× 10−8 1.9× 10−8

tom 691 33 2.8× 10−9 5.5× 10−9 2.8× 10−9 636 169 2.5× 10−6 2.3× 10−5 2.1× 10−5

tomc 681 46 5.7× 10−7 1.1× 10−6 5.7× 10−7 1941 134 4.0× 10−9 8.0× 10−9 4.0× 10−9

tol = 10−6

twpbvp_m 357 245 9.8× 10−9 2.0× 10−8 1.3× 10−8 1859 392 2.6× 10−8 5.3× 10−8 2.6× 10−8

twpbvpc_m 265 239 3.2× 10−7 6.4× 10−7 3.2× 10−7 536 475 4.4× 10−8 8.8× 10−8 4.4× 10−8

twpbvp_l 94 248 5.3× 10−8 1.1× 10−7 5.3× 10−8 * * * * *
twpbvpc_l 91 286 6.6× 10−9 1.3× 10−8 6.6× 10−9 1176 425 8.2× 10−9 3.0× 10−8 1.9× 10−8

tom 691 33 2.8× 10−9 5.5× 10−9 2.8× 10−9 691 172 8.8× 10−8 2.5× 10−7 2.3× 10−7

tomc 681 46 5.7× 10−7 1.1× 10−6 5.7× 10−7 1941 134 4.0× 10−9 8.0× 10−9 4.0× 10−9

Mathematics 2021, 9, 2618 13 of 30

Table 8. Hypersensitive problem: conditioning parameters computed using tol = 10−6 and initial
mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 10

twpbvpc_m 5.94× 101 3.09× 101 2.67× 101 4.23× 100 5.51× 10−1

twpbvpc_l 5.95× 101 3.09× 101 2.67× 101 4.23× 100 5.49× 10−1

tomc 6.83× 101 3.09× 101 2.67× 101 4.23× 100 3.90× 10−1

T = 104

twpbvpc_m 6.34× 104 3.09× 101 2.66× 101 4.23× 100 5.24× 10−4

twpbvpc_l 5.80× 104 3.09× 101 2.67× 101 4.23× 100 5.61× 10−4

tomc 6.74× 104 3.09× 101 2.66× 101 4.23× 100 3.96× 10−4

T = 106

twpbvpc_m 6.44× 106 3.09× 101 2.66× 101 4.23× 100 5.11× 10−6

twpbvpc_l 5.97× 106 3.09× 101 2.67× 101 4.23× 100 5.54× 10−6

tomc 6.92× 106 4.70× 101 9.15× 100 3.78× 101 3.85× 10−6

For the purpose of improving the performance and overcoming some drawbacks, we
propose, as already done for the test problem in Section 4.1, to use the transformation of
the variable τ = t/T, such that the BVP (6) can be reformulated for τ ∈ [0, 1] as

x′ = T
(
−x3 − λ

2

)
λ′ = T

(
−2x + 3λx2

)
(7)

x(0) = 1, x(1) = 1.5.

The advantage of this formulation is that considering ε = 1/T as a perturbation
parameter, we can apply the continuation strategy on that parameter. In Table 9 we report
the results using as starting value ε0 = 1/10 and changing the continuation parameters in
the interval [ε0, ε] among the value of the set 10−2, 10−3, 10−4. We remember that acdc and
acdcc, using an automatic continuation strategy, needs only to insert the desired value of ε
and uses as ε0 the default value 0.5. The numerical tests and the conditioning parameters in
Tables 8 and 10 clearly show that for this class of problems, if we cannot use a continuation
of parameters, the codes able to give a solution are the ones suited for stiff problems that
work still better if also the mesh selection is appropriate for this class of problems.

Table 9. Hypersensitive problem using the variable τ = t/T, initial mesh with 11 equidistant points and continuation
strategy on T: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x,v,u.

T = 104

tol = 10−4 tol = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 107 198 1.1× 10−4 4.5× 10−4 3.8× 10−4 242 170 1.1× 10−6 4.6× 10−6 3.6× 10−6

bvp5c 70 1277 8.5× 10−7 1.7× 10−6 8.5× 10−7 132 2874 4.9× 10−9 9.8× 10−9 4.9× 10−9

twpbvp_m 59 266 2.2× 10−5 4.4× 10−5 2.2× 10−5 124 311 4.9× 10−6 8.1× 10−6 4.9× 10−6

twpbvpc_m 101 210 9.1× 10−5 1.8× 10−4 9.1× 10−5 190 226 9.5× 10−8 1.9× 10−7 9.5× 10−8

twpbvp_l 45 389 3.5× 10−6 1.9× 10−5 1.8× 10−5 63 306 4.9× 10−8 1.9× 10−7 1.8× 10−7

twpbvpc_l 76 229 1.3× 10−5 2.6× 10−5 1.3× 10−5 79 234 4.7× 10−8 9.4× 10−8 4.7× 10−8

tom 571 56 7.9× 10−7 1.8× 10−7 1.2× 10−7 746 59 1.1× 10−8 2.6× 10−8 2.1× 10−8

tomc 951 46 4.9× 10−9 7.2× 10−9 5.8× 10−9 1231 52 1.2× 10−8 3.7× 10−9 2.3× 10−9

acdc 56 491 4.0× 10−6 1.5× 10−5 1.4× 10−5 60 425 5.7× 10−8 1.9× 10−7 1.7× 10−7

acdcc 130 672 2.1× 10−5 5.6× 10−5 3.6× 10−5 144 478 5.2× 10−8 1.8× 10−7 1.2× 10−7

Mathematics 2021, 9, 2618 14 of 30

Table 10. Hypersensitive problem using the variable τ = t/T: conditioning parameters computed
using tol = 10−6 and initial mesh with 11 equidistant points.

σ κ κ1 κ2 γ1

T = 10

twpbvpc_m 5.94× 101 2.71× 101 2.67× 101 4.23× 10−1 5.51× 10−1

twpbvpc_l 5.95× 101 2.71× 101 2.67× 101 4.23× 10−1 5.49× 10−1

tomc 6.86× 101 2.71× 101 2.66× 101 4.23× 10−1 3.88× 10−1

T = 104

twpbvpc_m 6.34× 104 2.66× 101 2.66× 101 4.23× 10−4 5.24× 10−4

twpbvpc_l 5.80× 104 2.67× 101 2.67× 101 4.23× 10−4 5.61× 10−4

tomc 6.74× 104 2.66× 101 2.66× 101 4.23× 10−4 3.95× 10−4

T = 106

twpbvpc_m 6.52× 106 2.66× 101 2.66× 101 4.23× 10−6 5.06× 10−6

twpbvpc_l 5.72× 106 2.67× 101 2.67× 101 4.23× 10−6 5.72× 10−6

tomc 6.87× 106 2.66× 101 2.66× 101 4.23× 10−6 3.88× 10−6

5. Bang-Bang Optimal Control Problem

The bang-bang optimal control problem [45] is among the more challenging ones.
It arises from a model in which a point unit mass m subjects to a limited force in one-
dimensional space, i.e., mx′′(t) = u(t) and u(t) ≤ 1. The main feature of optimal control
problem of moving the mass from x = 0 to the maximum distance x in one second can be
formulated as follows

min−x(1) =
∫ 1

0
(−v)dt,

x′ = v,

v′ = u, t ∈ [0, 1], (8)

x(0) = v(0) = v(1) = 0,

|u| ≤ 1,

The associated Hamiltonian function is defined as

H(x, v, λ, µ, u) = −v + λv + µu

and the optimal control is given by

u∗ = arg min
|u|≤1

H(x, v, λ, µ, u) = −sign(µ).

Now, by applying the indirect method the solution of the optimal control Problem (8)
is equivalent to solve the following BVP problem

x′ = v,

v′ = u,

λ′ = 0, (9)

µ′ = 1− λ,

x(0) = v(0) = v(1) = λ(1) = 0.

Mathematics 2021, 9, 2618 15 of 30

We observe that the optimal control is defined as

u(t) = −sign(µ) =


1 µ < 0,
−1 µ > 0,
any value in [−1,1] µ = 0,

and the exact solution is given by

x(t) =


t2

2
t < 1/2

t− t2

2
− 1

4
t > 1/2

, v(t) =

t t < 1/2

1− t t > 1/2
,

u(t) =

1 t < 1/2,

−1 t > 1/2,
, λ(t) = 0, µ(t) = t− 1

2
.

The discontinuity of the switching function is overcome by a smoothing technique
that can be executed by different strategies. We choose two of them in particular. The first
strategy, given a small parameter ε, consists of using the approximation

sign(µ) ≈ 2
π

arctan
(µπ

2ε

)
.

The exact bang-bang solution is better approximated when ε becomes smaller; how-
ever, this for value around smaller than 10−4 can give ill-conditioning problems. Table 11
contains all the results obtained using the Matlab codes, the solution is plotted in Figure 3.
Only bvp5c fails, and for getting the solution is necessary to use the continuation strategy.
To this regard we consider as initial perturbation parameter ε0 = 1 and then we change
it choosing Nε = 10 logarithmically equispaced points between 1 and the value required
ε. When tol = 10−4 bvp5c converges using 19 points for both ε equal to 10−3 and 10−6,
instead when tol = 10−4 bvp5c gets the solution with 36 and 28 points respectively for
ε = 10−3 and ε = 10−6.

Table 11. Bang-Bang optimal control Problem (9): final mesh (fM), total number of vectorized function evaluation (NVF)
and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 25 51 3.2× 10−4 1.8× 10−3 0 27 97 3.2× 10−7 4.0× 10−6 0
twpbvp_m 16 11 3.0× 10−4 7.5× 10−4 0 16 11 2.1× 10−5 7.5× 10−7 0
twpbvp_l 16 13 2.5× 10−4 7.5× 10−4 0 16 13 7.6× 10−5 7.5× 10−7 0

tom 111 10 3.2× 10−4 1.0× 10−3 0 31 16 1.8× 10−4 8.8× 10−4 0
tomc 121 10 3.2× 10−4 1.0× 10−3 0 31 28 1.8× 10−4 8.8× 10−4 0

acdc 9 157 3.2× 10−4 8.7× 10−4 0 9 221 3.2× 10−7 1.5× 10−6 0

tol = 10−6

bvp4c 79 57 3.2× 10−4 2.0× 10−3 0 47 93 3.2× 10−7 4.0× 10−6 0
twpbvp_m 10 32 3.3× 10−4 1.0× 10−3 0 10 32 5.1× 10−6 1.0× 10−6 0
twpbvp_l 17 66 3.2× 10−4 1.3× 10−3 0 15 130 3.2× 10−7 2.1× 10−6 0

tom 231 19 3.2× 10−4 1.1× 10−3 0 281 32 3.3× 10−7 1.1× 10−6 0
tomc 201 19 3.2× 10−4 1.1× 10−3 0 231 40 3.3× 10−7 1.1× 10−6 0

acdc 20 170 3.2× 10−4 1.3× 10−3 0 17 242 3.2× 10−7 2.2× 10−6 0

Mathematics 2021, 9, 2618 16 of 30

0 0.2 0.4 0.6 0.8 1

t

0

0.05

0.1

0.15

0.2

0.25

x
(t

)

0 0.2 0.4 0.6 0.8 1

t

0

0.1

0.2

0.3

0.4

0.5

v
(t

)

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

u
(t

)

Figure 3. Bang-Bang, ε = 10−3: solution in time for the mass position x on the (left), for the velocity in the (center) and the
control u on the (right).

For the second smoothing technique we can add a barrier or a penalty function. In
this regard, we consider a piecewise quadratic penalty function defined as in [45]

P(u; ε, σ) =
ε

2
u2 +

1
σ2

{
(|u| − 1 + σ)2 |u| > 1− σ,
0 otherwise

where the parameter σ gives the distance from the border where the penalty changes fast.
Consequently, the Problem (8) is reformulated without inequality constraint as follows

min
∫ 1

0
P(u; ε, σ)− v dt,

x′ = v,

v′ = u, t ∈ [0, 1], (10)

x(0) = v(0) = v(1) = 0.

The optimal control u, obtained as a solution of the equation

Pu(u; ε, σ) + µ = 0,

is equal to

u =


2− 2σ− σ2µ

εσ2 + 2
u ≥ 1− σ

−2 + 2σ− σ2µ

εσ2 + 2
u < σ− 1

0 otherwise.

In Table 12 we show the numerical results obtained for σ = 10−4 and ε = 10−4, 10−6,
starting with an initial mesh of 16 equidistant points and a null initial solution. It is
clear that all the codes have a good performance, we do not report the results for bvp4c
and bvp5c because they fail. To overcome this drawback in Table 13 we consider the
continuation strategy, this means that the codes bvp4c and bvp5c are run for different
values of ε starting from ε0 = 10 up to the desired value ε. In particular, we choose Nε = 10
values logarithmically equispaced.

Mathematics 2021, 9, 2618 17 of 30

Table 12. Bang-Bang optimal control problem-solving (8) using a piecewise quadratic penalty function with σ = 10−4: final
mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

twpbvp_m 16 11 9.8× 10−6 3.2× 10−5 5.0× 10−5 16 11 9.8× 10−6 3.2× 10−5 5.0× 10−5

twpbvp_l 16 13 6.4× 10−5 3.2× 10−5 5.0× 10−5 16 13 6.4× 10−5 3.2× 10−5 5.0× 10−5

tom 111 10 2.2× 10−5 6.3× 10−5 5.0× 10−5 31 27 1.9× 10−4 8.5× 10−4 5.0× 10−5

tomc 126 9 2.1× 10−5 6.6× 10−5 5.0× 10−5 31 20 1.9× 10−4 8.5× 10−4 5.0× 10−5

tol = 10−6

twpbvp_m 8 32 2.4× 10−5 3.3× 10−5 5.0× 10−5 8 32 2.4× 10−5 3.3× 10−5 5.0× 10−5

twpbvp_l 9 93 2.0× 10−5 3.3× 10−5 5.0× 10−5 8 130 2.0× 10−5 3.7× 10−5 5.0× 10−5

tom 231 19 2.0× 10−5 3.4× 10−5 5.0× 10−5 381 51 2.0× 10−5 3.3× 10−5 5.0× 10−5

tomc 261 20 2.0× 10−5 3.3× 10−5 5.0× 10−5 241 56 2.0× 10−5 3.3× 10−5 5.0× 10−5

Table 13. Bang-Bang optimal control problem-solving (8) using a piecewise quadratic penalty function with σ = 10−4 and
the continuation strategy: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x,
v, u.

tol = 10−4

ε = 10−3 ε = 10−6

Nε fM NVF Error x Error v Error u Nε fM NVF Error x Error v Error u

bvp4c 10 12 1899 2.0× 10−5 3.3× 10−5 5.0× 10−5 5 13 1214 2.0× 10−5 2.0× 10−5 5.0× 10−5

bvp5c 10 9 1551 2.0× 10−5 3.3× 10−5 5.0× 10−5 10 13 1442 2.0× 10−5 3.3× 10−5 5.0× 10−5

acdc 4 326 1.5× 10−5 3.3× 10−5 5.0× 10−5 4 326 1.5× 10−5 3.3× 10−5 5.0× 10−5

tol = 10−6

bvp4c 10 16 3168 2.0× 10−5 3.3× 10−4 5.0× 10−5 10 19 3421 2.0× 10−5 2.0× 10−5 5.0× 10−5

bvp5c 10 13 3235 2.0× 10−5 3.3× 10−5 5.0× 10−5 100 14 21747 2.0× 10−5 3.3× 10−5 5.0× 10−5

acdc 9 380 2.0× 10−5 6.7× 10−5 5.0× 10−5 9 380 2.0× 10−5 3.3× 10−5 5.0× 10−5

We also report the results of acdc and acdcc that use an automatic continuation
strategy. The results point out the suitability and efficiency of the strategy in solving this
kind of problems, also for bvp4c and bvp5c when the nonlinear solution is approximated
using a continuation strategy. The conditioning parameters reported in Tables 14 and 15
show that the problem is not stiff since σ is of moderate size, indeed the main difficulty
is caused by the convergence of the nonlinear discretization schemes. In this regard we
highlight as the results of the codes twpbvpc_m and twpbvpc_l are the same of those gained
by the codes twpbvp_m and twpbvp_l, confirming the non-necessity of these codes to use a
mesh selection strategy based on conditioning for this non-stiff problem.

Mathematics 2021, 9, 2618 18 of 30

Table 14. Bang-Bang optimal control problem: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 1.8 3.3 2.0 1.3 1.6
twpbvpc_l 1.4 3.3 2.0 1.3 1.6

tomc 1.5 3.3 2.0 1.2 1.0

ε = 10−6

twpbvpc_m 2.0 3.2 2.0 1.2 1.6
twpbvp_l 2.0 3.3 2.0 1.3 1.7

tomc 2.1 3.3 2.0 1.2 1.0

Table 15. Bang-Bang optimal control problem with penalty: conditioning parameters computed
using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 1.8 3.2 2.0 1.2 1.6
twpbvpc_l 1.4 3.3 2.0 1.3 1.7

tomc 1.4 3.3 2.0 1.2 1.0

ε = 10−6

twpbvpc_m 2.0 3.2 2.0 1.2 1.6
twpbvpc_l 2.0 3.3 2.0 1.3 1.7

tomc 1.3 3.3 2.0 1.2 1.0

6. Longitudinal Dynamics of a Vehicle

We consider an example of nonlinear optimal control problem derived from a model of
the longitudinal dynamics of a vehicle with the aerodynamic down-force [2]. In particular,
a vehicle, supposed to be a point mass, is moved in a fixed time T from an initial zero
velocity to a final zero velocity

min{x(0)− x(T)} = min
(
−
∫ T

0
v dt
)

x′ = v,

v′ = u− k0 − k1v− k2v2, t ∈ [0, T], (11)

x(0) = v(0) = v(T) = 0,

|u| ≤ g + k3v2.

The Hamiltonian function associated with this problem is

H(x, v, λ, µ, u) = −v + λv + µ
(

u− k0 − k1v− k2v2
)

and the optimal control is given by

u∗ = arg min
|u|≤g+k3v2

H(x, v, λ, µ, u) = −(g + k3v2)sign(µ).

Now, applying the indirect method the global optimal control problem is reduced to
the boundary value problem

Mathematics 2021, 9, 2618 19 of 30

x′ = v,

v′ = u− k0 − k1v− k2v2,

λ′ = 0, (12)

µ′ = 1− λ + µ(k1 + 2vk2),

x(0) = v(0) = v(T) = λ(T) = 0.

We observe that the optimal control problem has a theoretical solution given by

u = −sign(µ)(g + k3v2)

that can be approximated using a barrier function defined as

u = − 2
π
(g + k3v2) arctan

(
2µ

πε

)
.

Let g+ = g + k0 and g− = g− k0, if ts =
1
k1

ln
g− + g+ek1T

2g
is the switching time, then

the solution for the optimal control is defined as

u(t) =

{
1 t ≤ ts,
−1 t > ts.

Moreover, the exact solution for the space and the velocity is expressed by

x(t) =

k−2
1 g−

(
k1t + e−k1t − 1

)
t ≤ ts,

k−2
1

(
g+ + e−k1t

(
g− − 2gek1ts

)
+ k1(2gts − tg+)

)
t > ts,

and

v(t) =

k−1
1 g−

(
1− e−k1t

)
t ≤ ts,

k−1
1 g+

(
ek1(T−t) − 1

)
t > ts,

while the multipliers assume the form

λ(t) = 0, µ(t) =
1
k1

(
2gek1(t−T)

g−e−k1t + g+
− 1

)
.

In Table 16 are shown all the numerical results obtained using all the Matlab codes
considered starting with an initial mesh of 11 equispaced points and an initial approxima-
tion with null elements, the solution is plotted in Figure 4. For this problem only the codes
of the bvptwp package are able to give a solution for ε = 10−6, so for the other codes we
have used a continuation strategy with a starting value ε0 = 10−3 and Nε = 10 logarithmic
equispaced intermediate points. In Table 16 all the results obtained are shown in order that
the symbol c in bracket labels those computed using the continuation strategy. Moreover,
the results emphasize that not always the automatic continuation is advantageous and
cheaper from a computational cost of view, since it is evident that the total number of
vectorial functions evaluation is much greater for acdc than for twpbvp_m and twpbvp_l.
Remember that they use the same numerical scheme. The conditioning parameters in
Table 17 are all moderate size, hence the problem is not stiff.

Mathematics 2021, 9, 2618 20 of 30

Table 16. Longitudinal dynamics of a vehicle T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g, k2 = 0, k3 = 0: final mesh (fM),
total number of vectorized function evaluation (NVF) and mixed errors for x, v, u.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error x Error v Error u fM NVF Error x Error v Error u

bvp4c 38 125 4.4× 10−4 1.8× 10−3 0 32(c) 242 4.4× 10−7 3.1× 10−6 0
bvp5c 18 270 4.4× 10−4 1.7× 10−3 0 18(c) 662 4.4× 10−7 2.1× 10−6 0

twpbvp_m 38 54 4.4× 10−4 1.6× 10−3 0 13 146 4.0× 10−7 5.2× 10−4 0
twpbvp_l 38 57 4.4× 10−4 2.0× 10−3 0 28 134 4.0× 10−7 7.4× 10−4 0

tom 176 23 4.4× 10−4 1.6× 10−3 0 176(c) 50 4.7× 10−7 4.0× 10−5 0
tomc 131 20 4.4× 10−4 1.6× 10−3 0 131(c) 48 1.1× 10−6 2.3× 10−4 0

acdc 15 320 4.4× 10−4 1.1× 10−3 0 8 550 2.0× 10−6 1.1× 10−6 0

Table 17. Longitudinal dynamics of a vehicle T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g, k2 = 0,
k3 = 0: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 3.04× 100 4.88× 101 1.11× 101 4.36× 101 7.22× 100

twpbvpc_l 3.11× 100 4.89× 101 1.11× 101 4.36× 101 7.15× 100

tomc 3.78× 100 2.94× 102 7.43× 101 2.20× 102 4.02× 100

ε = 10−6

twpbvpc_m 3.81× 100 4.84× 101 1.10× 101 4.33× 101 6.47× 100

twpbvpc_l 3.83× 100 4.84× 101 1.10× 101 4.33× 101 6.47× 100

tomc 3.86× 100 2.99× 102 7.48× 101 2.24× 102 4.02× 100

0 2 4 6 8 10

t

-10

-5

0

5

10

u
(t

)

Figure 4. Longitudinal dynamics of a vehicle, ε = 10−3, T = 10, g = 9.81, k0 = 0.02 g, k1 = 10−5g,
k2 = 0, k3 = 0: theoretical (dash-dot line) and numerical (dot line) solution in time for the control u.

Mathematics 2021, 9, 2618 21 of 30

7. Gottard Rocket

Now, we consider an example of optimal control problem with a singular arc [46]. A
rocket of mass m lifts off vertically at time t = 0 with (normalized) altitude h(0) = 1 and
velocity v(0) = 0. Known the initial mass, the fuel mass and the drag characteristics of the
rocket, the aim is to choose the thrust u(t) and the final time T to maximize the altitude
h(T) at the final time T. The optimal control problem is given by

min
T,v

∫ T

0
(−v)dt,

h′ = v,

v′ =
u− D(h, v)

m
− g(h), (13)

m′ = −u
c

,

0 ≤u ≤ umax,

h(0) = 1, v(0) = 0, m(0) = 1, m(T) = 0.6.

Given the constants Dc and hc, the aerodynamic drag is defined by

D(h, v) = Dcv2e−hc

(
h−h(0)

h(0)

)
.

Moreover, if g0 is the gravitational force at the earth’s surface, then the gravitational
force is given by

g(h) = g0

(
h(0)

h

)2

.

The equation is scaled choosing the model parameters m(0), h(0) and g0, which allows
management of dimension-free equations. As in [46], we consider

umax = 3.5g0m(0), Dc =
1
2

vc
m(0)

g0
, c =

1
2
(g0h(0))1/2,

where g0 = 1, hc = 500, mc = 0.6 and vc = 620.
Since the problem (13) has a free final time, we fix the time interval using the variable

transformation t(τ) := τT, with τ ∈ [0, 1]. A new state variable T satisfying the differential
constrain Ṫ = 0 is added to the problem and a penalty function P(u; ε, σ̄) is used as
smoothing technique, so that the problem can be reformulated as follows

min
T,v,u

∫ 1

0
(−Tv + TP(u; ε, σ̄)) dτ,

h′ = Tv,

v′ =
T
m

(
u− 1

2
vcv2ehc(1−h)

)
− T

h2 , (14)

m′ = −T
u
c

,

T′ = 0,

h(0) = 1, v(0) = 0, m(0) = 1, m(1) = 0.6.

As in Section 5, P(u; ε, σ̄) is a piecewise quadratic penalty function defined as

P(u; ε; σ̄) =
ε

2

(
u− umax

2

)2
+

1
σ̄2


(u− umax + σ̄)2 u > umax − σ̄
(σ̄− u)2 u < σ̄
0 otherwise.

Mathematics 2021, 9, 2618 22 of 30

Now, the Hamiltonian formulation of the problem (14) gives as a result the follow-
ing BVP

h′ = Tv,

v′ =
T
m

(
u− 1

2
vcv2ehc(1−h)

)
− T

h2 ,

m′ = −T
u
c

,

T′ = 0,

λ′1 = −Tλ2

(
1

2m
hcvcv2ehc(1−h) +

2
h3

)
, (15)

λ′2 = −T

(
λ1 − λ2

vcvehc(1−h)

m
− 1

)
,

λ′3 =
T

m2 λ2

(
u− 1

2
vcv2ehc(1−h)

)
,

λ′4 = v− P(u; ε, σ̄)− λ1v− λ2

(
u− 1

2 vcv2ehc(1−h)

m
− 1

h2

)
+ λ3

u
c

,

h(0) = 1, v(0) = 0, m(0) = 1, m(1) = 0.6,

λ1(1) = 0, λ2(1) = 0, λ4(0) = 0, λ4(1) = 0,

where the thrust u, computed by solving the equation

Pu(u; ε, σ̄) +
λ2

m
− λ3

c
= 0,

is equivalent to

u =



1
εσ̄2 + 2

(
εσ̄2 umax

2
+ 2umax − 2σ̄ + σ̄2

(
λ2

m
− λ3

c

))
u > umax − σ̄

σ̄

εσ̄2 + 2

(
εσ̄

umax

2
+ 2− σ̄

(
λ2

m
− λ3

c

))
u < σ̄

1
ε

(
ε

umax

2
− λ2

m
+

λ3

c

)
otherwise.

Since the problem is highly nonlinear, it is chosen as starting approximation of the
solution h = λ1 = λ2 = λ3 = 1, λ4 = 0, v(τ) = τ(1− τ), m(τ) = (m(1)−m(0))τ + m(0)
and T = 0.01. The choice of a good initial approximation is the main matter when the
parameters of the penalty function σ̄ and ε become extremely small. In this case, it is
helpful to apply a continuation strategy for the parameter ε, changing the value of this
parameter from ε0 = 10−1 to the desired value of ε. To highlight the advantages of this
strategy, we solve the optimal control problem (15) choosing σ̄ = 10−4 and two different
values of ε = 10−3, 10−6, the solution is plotted in Figure 5.

In Table 18 the results are computed without applying the continuation strategy, hence
we observe that if on one hand only the codes bvp5c, tom and tomc fail for ε = 10−3,
on the other all the codes do not converge for ε = 10−6. Consequently, in Table 19 we
run the codes using the continuation strategy. All the numerical tests use an initial mesh
of 16 equidistant points. For the continuation strategy in Table 19, except for acdc and
acdcc, the parameter ε is initially set to ε0 = 10−1 (ε0 = 1 for tom and tomc), and then it is
changed using Nε = 10 logarithmically equispaced values up to reach the value required ε.
However, to obtain the convergence of bvp4c for ε = 10−6, we put the value of Nε = 100
when tol = 10−4 and Nε = 20 when tol = 10−6 and for tom/tomc we put the value of
Nε = 55. The conditioning parameters reported in Table 20 show that the problem is not
stiff, but it is ill conditioned since κ1 > κ2.

Mathematics 2021, 9, 2618 23 of 30

0 0.05 0.1 0.15 0.2

t

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014
h

(t
)

0 0.05 0.1 0.15 0.2

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

v
(t

)

0 0.05 0.1 0.15 0.2

t

0.6

0.7

0.8

0.9

1

m
(t

)

0 0.05 0.1 0.15 0.2

t

0

0.5

1

1.5

2

2.5

3

3.5

u
(t

)

Figure 5. Goddard rocket, ε = 10−3, σ̄ = 10−4: from left to right solutions in time for altitude h and mass m (on the top), for
velocity v and thrust u (on the bottom).

Table 18. Goddard Rocket problem (15) solved using a piecewise quadratic penalty function with
σ̄ = 10−4 and ε = 10−3: final mesh (fM), total number of vectorized function evaluation (NVF) and
mixed errors for h, v, m, T and u.

tol = 10−4

fM NVF Error h Error v Error m Error T Error u
bvp4c 1388 8058 8.9× 10−10 4.9× 10−7 4.7× 10−9 4.6× 10−8 3.0× 10−5

twpbvp_m 31 86 6.0× 10−7 3.8× 10−5 4.0× 10−5 1.1× 10−5 1.0× 10−3

twpbvp_l 31 91 1.0× 10−6 6.9× 10−5 7.5× 10−5 1.2× 10−5 1.7× 10−3

tol = 10−6

bvp4c 1466 20,898 4.9× 10−12 2.7× 10−9 2.6× 10−9 3.1× 10−10 1.7× 10−7

twpbvp_m 32 142 4.6× 10−9 1.6× 10−6 1.5× 10−6 1.4× 10−7 9.8× 10−5

twpbvp_l 33 169 3.7× 10−10 6.8× 10−8 6.5× 10−8 3.3× 10−9 3.9× 10−6

Mathematics 2021, 9, 2618 24 of 30

Table 19. Goddard Rocket Problem (15) solved using a piecewise quadratic penalty function with σ̄ = 10−4 and the continuation strategy: final mesh (fM), total number of vectorized
function evaluation (NVF) and mixed errors for h, v, m, T and u. ∗ Observe that acdc for tol = 10−4, ε = 10−6 obtains a solution for ε = 3.98 · 10−6.

tol = 10−4

ε = 10−3 ε = 10−6

fM NVF Error h Error v Error m Error T Error u fM NVF Error h Error v Error m Error T Error u

bvp4c 47 2823 3.2× 10−9 1.2× 10−6 1.1× 10−6 1.2× 10−7 7.9× 10−5 138 46,507 5.0× 10−9 3.8× 10−7 4.1× 10−7 4.4× 10−8 2.3× 10−3

twpbvp_m 16 268 7.0× 10−7 4.0× 10−5 4.4× 10−5 4.6× 10−6 8.5× 10−4 93 484 4.5× 10−9 3.4× 10−5 3.3× 10−5 2.4× 10−7 9.4× 10−2

twpbvp_l 16 304 1.1× 10−6 7.3× 10−5 7.9× 10−5 9.4× 10−6 1.7× 10−3 225 627 3.2× 10−9 5.2× 10−7 4.9× 10−7 5.6× 10−8 1.5× 10−3

tom 401 66 1.4× 10−7 6.8× 10−5 6.7× 10−5 1.7× 10−7 4.2× 10−3 541 224 1.6× 10−8 3.7× 10−5 3.2× 10−5 1.7× 10−7 4.2× 10−2

tomc 291 62 5.4× 10−8 3.9× 10−5 3.7× 10−5 8.7× 10−7 2.1× 10−3 286 210 1.1× 10−8 9.5× 10−5 9.2× 10−5 8.7× 10−7 1.2× 10−1

acdc 17 341 7.2× 10−7 8.2× 10−5 8.4× 10−5 9.3× 10−6 5.1× 10−3 24∗ 2066 3.8× 10−9 8.7× 10−7 7.1× 10−7 9.2× 10−8 4.8× 10−3

tol = 10−6

bvp4c 148 9189 3.8× 10−11 7.7× 10−9 6.9× 10−9 9.1× 10−11 8.2× 10−7 1385 52,028 5.2× 10−11 2.9× 10−9 3.5× 10−9 7.9× 10−10 1.9× 10−5

twpbvp_m 29 593 2.3× 10−8 2.3× 10−6 2.3× 10−6 3.4× 10−9 1.4× 10−4 149 681 1.8× 10−10 2.9× 10−7 2.8× 10−7 8.0× 10−9 8.2× 10−4

twpbvp_l 32 646 4.5× 10−9 2.3× 10−6 2.2× 10−6 2.1× 10−7 1.4× 10−4 119 969 8.9× 10−10 2.9× 10−6 2.5× 10−6 1.1× 10−8 6.9× 10−3

tom 551 80 1.6× 10−8 1.4× 10−5 1.4× 10−5 3.0× 10−8 7.3× 10−4 661 279 6.3× 10−9 1.7× 10−5 1.5× 10−5 3.0× 10−8 3.5× 10−2

tomc 321 74 1.1× 10−7 1.7× 10−5 1.6× 10−5 2.4× 10−8 7.7× 10−4 731 286 7.3× 10−10 5.6× 10−6 5.4× 10−6 2.4× 10−8 1.2× 10−2

acdc 28 496 4.5× 10−9 2.3× 10−6 2.2× 10−6 2.1× 10−7 1.4× 10−4 58 942 2.3× 10−10 3.5× 10−7 3.4× 10−7 3.5× 10−9 9.7× 10−4

Mathematics 2021, 9, 2618 25 of 30

Table 20. Goddard Rocket problem: conditioning parameters computed using tol = 10−6.

σ κ κ1 κ2 γ1

ε = 10−3

twpbvpc_m 4.8 9.1× 102 7.3× 102 1.8× 102 2.2× 102

twpbvpc_l 4.9 9.0× 102 7.2× 102 1.8× 102 2.2× 102

tomc 5.4 9.0× 102 7.3× 102 1.8× 102 1.7× 102

ε = 10−6

twpbvpc_m 5.3 1.0× 103 8.2× 102 2.0× 102 2.0× 102

twpbvpc_l 5.2 1.0× 103 8.1× 102 2.0× 102 2.0× 102

tomc 5.5 1.0× 103 8.1× 102 2.0× 102 1.7× 102

8. Minimization of the Fuel Cost in the Operation of a Train

As in [2,47] an optimal control problem in transportation is to minimize fuel cost in the
operation of a train. To simplify the track is supposed to be straight. Let x be the position
along the track measured from a fixed reference point and v the velocity of the train, such
that the minimization problem is equivalent to solve the optimal control problem

min
v,ua

∫ 4.8

0
ua v dt,

x′ = v,

v′ = h(x)− F(v) + ua − ub, (16)

0 ≤ ua ≤ 10, 0 ≤ ub ≤ 2,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6,

where F(v(t)) models the friction due to the rolling of the wheels and the air resistance and
h(x) is the active component of the gravitational force due to hill slopes that are respectively
defined as

h(x) =
2
π

(
tan−1

(
x− 2

δ

)
+ tan−1

(
x− 4

δ

))
, δ = 0.05,

F(v) = 0.3 + 0.14|v|+ 0.16v2.

Moreover, the control variables ua and ub represent respectively the acceleration
provided by the engine and the deceleration from applying the brakes.

First, as smoothing technique let us consider piecewise quadratic penalty functions
defined as

Pa(ua; ε; τ) =
ε

2
(ua − 5)2 +

1
τ2


(ua − 10 + τ)2 ua > 10− τ
(τ − ua)2 ua < τ
0 otherwise,

Pb(ub; ε; τ) =
ε

2
(ub − 1)2 +

1
τ2


(ub − 2 + τ)2 ub > 2− τ
(τ − ub)

2 ub < τ
0 otherwise.

so that the Problem (16) can be written as

min
v,ua

∫ 4.8

0

(
ua v + Pa(ua; ε, τ) + Pb(ub; ε, τ)

)
dt,

x′ = v, (17)

v = h(x)− F(v) + ua − ub,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6.

Mathematics 2021, 9, 2618 26 of 30

From the Hamiltonian formulation we obtain the following BVP

x′ = v,

v′ = h(x)− F(v) + ua − ub,

λ′ = −µhx(x), (18)

µ′ = −λ + µFv(v)− ua,

x(0) = v(0) = v(4.8) = 0, x(4.8) = 6,

where ua and ub, computed by solving the equations

Pa
ua(ua; ε, τ) + µ + v = 0, Pa

ub
(ub; ε, τ)− µ = 0,

are respectively

ua =



5ετ2 + 20− 2τ − τ2(µ + v)
ετ2 + 2

ua > 10− τ

τ(5ετ + 2− τ(µ + v))
ετ2 + 2

ua < τ

5ε− (µ + v)
ε

otherwise,

ub =



ετ2 + 4− 2τ + τ2µ

ετ2 + 2
ub > 2− τ

τ(ετ + 2 + τµ)

ετ2 + 2
ub < τ

ε + µ

ε
otherwise.

As shown in Table 21, all the methods, starting with an initial mesh of 16 equidistant
points and initial solution x = v = λ = µ = 1, converge when ε = 1, 0.5 and tol = 10−4.

Table 21. Minimization of the fuel cost in the operation of a train (18) using a piecewise quadratic penalty function with
τ = 10−2: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed errors for x, v, ua, ub.

tol = 10−4

ε = 1 ε = 0.5

fM NVF Error x Error v Error ua Error ub fM NVF Error x Error v Error ua Error ub
bvp4c 121 1747 3.0× 10−6 6.7× 10−6 3.4× 10−5 1.7× 10−5 116 2414 1.4× 10−6 1.8× 10−6 5.1× 10−5 6.3× 10−5

bvp5c 52 3259 9.8× 10−7 5.9× 10−6 3.3× 10−5 1.8× 10−5 56 4295 5.3× 10−7 4.8× 10−6 1.4× 10−4 1.5× 10−4

twpbvp_m 34 132 5.6× 10−6 2.3× 10−5 2.0× 10−4 9.1× 10−5 52 124 2.6× 10−2 3.3× 10−2 1.5× 10−2 6.1× 10−3

twpbvpc_m 47 132 5.7× 10−6 2.3× 10−5 2.0× 10−4 9.1× 10−5 55 104 2.6× 10−2 3.3× 10−2 1.5× 10−2 6.2× 10−3

twpbvp_l 33 136 9.0× 10−6 2.8× 10−5 4.3× 10−4 1.0× 10−4 223 124 2.2× 10−2 2.6× 10−2 9.9× 10−3 8.7× 10−4

twpbvpc_l 46 136 9.0× 10−6 2.8× 10−5 4.3× 10−4 1.0× 10−4 115 104 2.2× 10−2 2.6× 10−2 9.9× 10−3 8.7× 10−4

tom 1471 44 5.9× 10−5 3.9× 10−4 4.0× 10−4 1.4× 10−4 1091 45 4.9× 10−6 2.6× 10−5 1.1× 10−4 8.9× 10−5

tomc 1406 148 4.0× 10−7 1.5× 10−6 2.2× 10−5 8.7× 10−6 2896 93 1.2× 10−7 3.7× 10−6 3.5× 10−5 1.5× 10−5

Now, decreasing the value of ε, all these methods fail, since the Problem (18) is highly
ill conditioned and strongly depends on perturbations. However, these methods can reach
the convergence using a continuation strategy on the parameter ε. As initial ε we can
choose 1 or 0.5, since we know that all the methods converge for those values. Moreover,
we need to define the discretization for the perturbation parameter, namely we consider
Nε logarithmically equispaced points in the range ε0, ε. Since the continuation depends on
the choice of Nε and the initial value ε0, in Table 22 we show the results obtained using
ε0 = 1 and Nε = 5, except for tom/tomc for which we need to consider for the convergence
Nε = 10. Our interest is to analyze the performance of the codes for small perturbation
parameters, as ε = 10−2, 10−3, requiring an exit tolerance tol = 10−3. In Figure 6 we
show the solution for ε = 10−2. The conditioning parameters in Table 23 suggest that the
problem is ill conditioned but not stiff, in fact κ, κ1, κ2, γ1 are all much greater than 1. The

Mathematics 2021, 9, 2618 27 of 30

condition number of the matrix of the last step of the integration procedure (last column of
Table 23) is very high and confirms the ill-conditioning of the problem.

Table 22. Minimization of the fuel cost in the operation of a train (18) using a piecewise quadratic penalty function with
τ = 10−2 and continuation strategy: final mesh (fM), total number of vectorized function evaluation (NVF) and mixed
errors for x, v, ua, ub.

tol = 10−4

ε = 10−2 ε = 10−3

fM NVF Error x Error v Error ua Error ub fM NVF Error x Error v Error ua Error ub

bvp4c 69 6055 1.1× 10−5 3.4× 10−5 2.1× 10−3 1.9× 10−2 78 8213 1.3× 10−5 3.4× 10−5 5.2× 10−3 1.9× 10−1

bvp5c 39 7180 6.0× 10−6 6.0× 10−5 5.5× 10−4 1.6× 10−2 59 8012 1.3× 10−6 5.0× 10−5 6.2× 10−5 1.6× 10−2

twpbvp_m 415 432 4.0× 10−6 7.8× 10−6 1.2× 10−3 4.8× 10−8 589 319 4.1× 10−6 9.0× 10−5 2.0× 10−3 2.4× 10−8

twpbvpc_m 132 359 5.5× 10−5 3.8× 10−4 4.2× 10−3 2.4× 10−2 589 319 4.1× 10−6 9.0× 10−5 2.0× 10−3 2.4× 10−8

twpbvp_l 202 312 4.3× 10−5 3.9× 10−4 2.8× 10−3 9.0× 10−3 589 332 3.3× 10−6 8.1× 10−5 1.9× 10−3 1.6× 10−8

twpbvpc_l 202 312 4.3× 10−5 3.9× 10−4 2.8× 10−3 9.0× 10−3 589 332 3.3× 10−6 8.1× 10−5 1.9× 10−3 1.6× 10−8

tom 2201 99 1.5× 10−6 1.2× 10−4 1.7× 10−4 1.3× 10−3 2166 102 3.7× 10−5 6.8× 10−4 1.8× 10−2 1.4× 10−1

tomc 2211 218 4.8× 10−6 1.2× 10−4 1.1× 10−3 5.2× 10−3 2886 230 6.3× 10−6 5.9× 10−5 4.2× 10−3 2.2× 10−1

acdc 36 723 2.2× 10−6 1.2× 10−5 3.6× 10−4 9.4× 10−3 40 1219 9.4× 10−7 1.7× 10−5 7.6× 10−4 5.2× 10−9

0 1 2 3 4 5

t

0

1

2

3

4

5

6

x
(t

)

0 1 2 3 4 5

t

0

0.5

1

1.5

2

2.5

3

3.5

v
(t

)

0 1 2 3 4 5

t

-2

0

2

4

6

8

10

u
a
(t

)-
u

b
(t

)

Figure 6. Minimization of the fuel cost in the operation of a train ε = 10−2: from left to right solutions in time for the position x, the
velocity v and the difference between the control variables representing the acceleration and the deceleration ua − ub.

Table 23. Minimization of the fuel cost in the operation of a train: conditioning parameters computed
using tol = 10−6, cond is the condition number of the matrix associated with the last nonlinear
iteration.

σ κ κ1 κ2 γ1 cond

ε = 10−3

twpbvpc_m 6.6× 105 9.9× 1012 9.9× 1012 1.1× 103 1.5× 107 9.9× 1025

twpbvpc_l 5.8× 107 7.3× 109 7.3× 109 7.3× 102 1.6× 102 5.3× 1019

tomc 6.6× 100 2.8× 103 1.5× 103 1.3× 103 2.0× 102 2.4× 1015

ε = 10−6

twpbvpc_m 1.1× 108 5.0× 1010 5.0× 1010 4.7× 102 4.9× 102 2.5× 1021

twpbvpc_l 8.6× 107 7.1× 109 7.1× 109 4.7× 102 1.1× 102 5.1× 1019

tomc 3.2× 100 1.4× 103 5.1× 102 8.9× 102 1.4× 102 2.8× 1014

Mathematics 2021, 9, 2618 28 of 30

9. Conclusions

In this paper, after a review of general-purpose codes for solving boundary value prob-
lems we have solved some challenging optimal control problems derived using the indirect
method. The presented results show that this approach could be a good alternative to the
direct methods for the solution of this kind of problems, especially if the mesh selection
strategy adopted is suitable for stiff problems in the case of hypersensitive problems, or an
appropriate initial condition is computed for the nonlinear iteration using a continuation
strategy. All these techniques can sometimes require the application of some regularization
procedure, as in the presence of singular arc. Our goal with this paper is to give some
indications useful to handle the input parameters of a BVP code to achieve an accurate
solution, since the default values assigned usually works for very simple regular problems.
Moreover, some codes give in output information about the stiffness and the conditioning
of the problems, which could be used in choosing the correct solution method.

Author Contributions: Writing—original draft, F.M. and G.S. All authors contributed equally to this
work. All authors have read and agreed to the published version of the manuscript.

Funding: The research of Francesca Mazzia has been funded by the PON “Ricerca e Innovazione
2014–2020”, project “RPASInAir: Integrazione dei Sistemi Aeromobili a Pilotaggio Remoto nello
spazio aereo non segregato per servizi”, n. ARS01_00820 and the research of Giuseppina Settanni
by the INdAM-GNCS 2020 Research Project “Numerical algorithms in optimization, ODEs, and
applications” (the authors are members of the INdAM Research group GNCS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, New York, NY, USA, 1957.
2. Biral, F.; Bertolazzi, E.; Bosetti, P. Notes on Numerical Methods for Solving Optimal Control Problems, IEEE J. Ind. Appl. 2016, 5,

154–166.
3. Rao, A. V. A Survey of Numerical Methods for Optimal Control (AAS 09-334). In Astrodynamics 2009, Proceedings of the AAS/AIAA

Astrodynamics Specialist Conference, Pittsburgh, Pennsylvania, 9–13August 2009; American Astronautical Society by Univelt: San
Diego, CA, USA, 2010; pp. 497–528.

4. Soetaert K, Cash J, Mazzia F. Solving Differential Equations in R; Springer: Berlin/Heidelberg, Germany, 2012.
5. Ascher, U.; Christiansen, J.; Russell, R.D. Collocation software for boundary value odes. ACM Trans. Math. Softw. 1981, 7, 209–222.
6. Ascher, U. M.; Mattheij, R.M.M.; Russell, R.D. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations;

Classics in Applied Mathematics Series; SIAM: Philadelphia, PA, USA, 1995; Volume 13.
7. Cash, J. R; Wright, M. H. A Deferred Correction Method for Nonlinear Two-Point Boundary Value Problems: Implementation

and Numerical Evaluation. SIAM J. Sci. Statist. Comput. 1991, 12, 971–989.
8. Bashir-Ali, Z.; Cash, J. R.; Silva, H.H.M. Lobatto deferred correction for stiff two-point boundary value problems. Comput. Math.

Appl. 1998, 36, 59–69.
9. Cash, J. R.; Moore, G.; Wright, R. An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary

value problems. ACM Trans. Math. Softw. 2001, 27, 245–266.
10. Ascher, U.M.; Spiteri, R.J. Collocation software for boundary value differential-algebraic equations. SIAM J. Sci. Comput. 1994, 15,

938–952.
11. Enright, W.H.; Muir, P.H. Runge-Kutta software with defect control for boundary value odes. SIAM J. Sci. Comput. 1996, 17,

479–497.
12. Boisvert, J.J.; Muir, P.H.; Spiteri, R.J. A Runge-Kutta BVODE solver with global error and defect control. ACM Trans. Math. Softw.

2013, 39, 11.
13. Boisvert, J.J.; Muir, P.H.; Spiteri, R.J. BVP_SOLVER-2. Available online: https://cs.stmarys.ca/~muir/BVP_SOLVER_Webpage.

shtm (accessed on 25 May 2021).
14. Mazzia. F. Cash J. R. A Fortran test set for boundary value problem solvers. AIP Conf. Proc. 2015, 1648, 020009, https:

//doi.org/10.1063/1.4912313.
15. Test Set for BVP Solver. Available online: https://archimede.dm.uniba.it/~bvpsolvers/testsetbvpsolvers/?page_id=27 (accessed

on 26 February 2021)
16. Kierzenka, J.; Shampine, L. F. A BVP solver based on residual control and the MATLAB pse. ACM Trans. Math. Softw. 2001 27,

299–316.

https://cs.stmarys.ca/~muir/BVP_SOLVER_Webpage.shtm
https://cs.stmarys.ca/~muir/BVP_SOLVER_Webpage.shtm
https://doi.org/10.1063/1.4912313
https://doi.org/10.1063/1.4912313
https://archimede.dm.uniba.it/~bvpsolvers/testsetbvpsolvers/?page_id=27

Mathematics 2021, 9, 2618 29 of 30

17. Kierzenka, J.; Shampine, L. F. A BVP solver that controls residual and error. J. Numer. Anal. Ind. Appl. Math. 2008 3, 27–41.
18. Cash, J. R.; Hollevoet, D.; Mazzia, F.; Nagy, A. M. Algorithm 927: The MATLAB Code bvptwp.m for the Numerical Solution of

Two Point Boundary Value Problems. ACM Trans. Math. Softw. 2013, 39, 15.
19. Mazzia, F.; Sestini, A.; Trigiante, D. The continous extension of the B-spline linear multistep metods for BVPs on non-uniform

meshes. Appl. Numer. Math. 2009, 59, 723–738.
20. Amodio, P.; Settanni, G. A finite differences MATLAB code for the numerical solution of second order singular perturbation

problems. J. Comput. Appl. Math. 2012, 236, 3869–3879.
21. Auzinger, W.; Fallahpour,M.; Koch,O.; Weinmüller,E.B. Implementation of a pathfollowing strategy with an automatic step-length

control: New MATLAB package bvpsuite2.0. Tech. Rep. ASC 2019. Available online: https://www.asc.tuwien.ac.at/~ewa/
software_development5.htm/ (accessed on 25 May 2021).

22. Auzinger, W.; Kneisl, G.; Koch, O.; Weinmüller, E.B. A Collocation Code for Boundary Value Problems in Ordinary Differential
Equations. Numer. Algorithm. 2003, 33, 27–39.

23. Mazzia, F.; Cash, J.R.; Soetaert, K. Solving boundary value problems in the open source software R: package bvpSolve. Opuscula
Math. 2014, 34, 387–403.

24. scipy.integrate.solve_bvp. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.
html (accessed on 25 May 2021)

25. De Marinis, A.; Iavernaro, F.; Mazzia F. A minimum-time obstacle-avoidance path planning algorithm for UAVs. Numer. Algor.
2021 https://doi.org/10.1007/s11075-021-01167-w

26. Zong, L.; Luo, J.; Wang, M. Optimal Concurrent Control for Space Manipulators Rendezvous and Capturing Targets under
Actuator Saturation. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4841–4855.

27. Zong, L.; Emami, M.R. Concurrent base-arm control of space manipulators with optimal rendezvous trajectory. Aerosp. Sci.
Technol. 2020, 100, 105822.

28. Putkaradze, V.; Rogers, S. Constraint Control of Nonholonomic Mechanical Systems. J. Nonlinear Sci. 2018, 28, 193–234.
29. Gerdts, M. Optimal Control of ODEs and DAEs; De Gruyter Textbook: Berlin, Germany, 2012.
30. Bader, G.; Ascher, U. A New Basis Implementation for a Mixed Order Boundary Value ODE Solver. SIAM J. Sci. Stat. Comput.

1987, 8, 483–500.
31. Capper, S.; Cash, J.; Mazzia, F. On the development of effective algorithms for the numerical solution of singularly perturbed

two-point boundary value problems. Int. J. Comput. Sci. Math. 2007, 1, 42–57.
32. Cash, J.R., Mazzia, F. Efficient global methods for the numerical solution of nonlinear systems of two point boundary value

problems In: Simos T. (eds) Recent Advances in Computational and Applied Mathematics. Springer, Dordrecht. 2011, 23–39.
https://doi.org/10.1007/978-90-481-9981-5_2

33. Kierzenka, J. Tutorial on solving BVPs with BVP4C. MATLAB Central File Exchange. Available online: https://www.mathworks.
com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c) (accessed on 25 February 2021)

34. bvp5c. Help MATLAB. Available online: https://www.mathworks.com/help/matlab/ref/bvp5c.html (accessed on
25 February 2021).

35. Brugnano, L.; Trigiante, D.; Differential Problems by Multistep Initial and Boundary Value Methods; Gordon and Breach Science
Publishers: Amsterdam, The Netherland, 1998.

36. Mazzia, F.; Trigiante, D. A hybrid mesh selection strategy based on conditioning for boundary value ODE problems. Numer.
Algorithms 2004, 36, 169–187.

37. Cash, J.R., Mazzia, F. Conditioning and hybrid mesh selection algorithms for two-point boundary value problems Scalable Comput.
2009, 10, 347–361.

38. Amodio, P.; Budd, C. J.; Koch, O.; Settanni, G.; Weinmüller, E. B. Asymptotical computations for a model of flow in satured
porous media. Appl. Math. Comput. 2014, 237, 155–167.

39. Amodio, P.; G. Settanni, G. Variable-step finite difference schemes for the solution of Sturm-Liouville problems. Commun.
Nonlinear Sci. 2015, 20 , 641–649.

40. Amodio, P.; Settanni, G. Numerical Strategies for Solving Multiparameter Spectral Problems. In Proceedings of the Numerical
Computations: Theory and Algorithms, NUMTA 2019, Crotone, Italy, 15–21 June 2019, Lecture Notes in Computer Science;
Sergeyev Y., Kvasov D., Eds.; 2020; Volume 11974, pp. 298–305.

41. Pulverer, G.; Söderlind, G.; Weinmüller, E. Automatic grid control in adaptive BVP solvers. Numer. Algorithm. 2011, 56,61–92.
42. Rao, A.V.; Mease, K.D. Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems,

Optim. Control Appl. Methods 2000, 21, 1–19.
43. Aykutlug, E.; Topcu, U.; Mease, K.D. Manifold-Following Approximate Solution of Completely Hypersensitive Optimal Control

Problems. J. Optim. Theory Appl. 2016, 170, 220–242.
44. ICLOCS2 (Version 2.5). Imperial College London Optimal Control Software. Available online: http://www.ee.ic.ac.uk/ICLOCS/

default.htm (accessed on 2 February 2021).
45. Bertolazzi, E.; Biral, F. Approximating Bang–Bang solutions in optimal control with indirect methods. In Proceedings of the

Multibody Dynamics 2007, ECCOMAS Thematic Conference, Milan, Italy, 25–28 June 2007.

https://www.asc.tuwien.ac.at/~ewa/software_development5.htm/
https://www.asc.tuwien.ac.at/~ewa/software_development5.htm/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
https://doi.org/10.1007/s11075-021-01167-w
https://doi.org/10.1007/978-90-481-9981-5_2
https://www.mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c)
https://www.mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c)
https://www.mathworks.com/help/matlab/ref/bvp5c.html
http://www.ee.ic.ac.uk/ICLOCS/default.htm
http://www.ee.ic.ac.uk/ICLOCS/default.htm

Mathematics 2021, 9, 2618 30 of 30

46. Dolan, E. D.; Moré, J. J.; Munson, T. S. Benchmarking Optimization Software with COPS 3.0. In Argonne National Laboratory,
Mathematica and Computer Science, Division; Technical Memorandum ANL/MCS-TM-273; 2004, United States.

47. Vanderbei, R. J. Cases Studies in Trajectory Optimization: Trains, Planes, and other Pastimes. Optim. Eng. 2001, 2, 215–243.

	Introduction
	Optimal Control Problems: Indirect Methods
	Codes for Bvps
	Fortran Codes
	Matlab Codes
	R Codes
	Experiments

	Hypersensitive Optimal Control Problems
	Nonlinear Mass Spring System with Quadratic Cost
	Completely Hypersensitive Control Problem

	Bang-Bang Optimal Control Problem
	Longitudinal Dynamics of a Vehicle
	Gottard Rocket
	Minimization of the Fuel Cost in the Operation of a Train
	Conclusions
	References

