486 research outputs found

    Highly Deforming Computational Meshes for CFD Analysis of Twin-Screw Positive Displacement Machines

    Get PDF
    Commercial flow solvers can be used to obtain flow solutions in applications with deforming domains, but, in general, are not suitable for screw machine flow calculations. This is due to the large magnitude of deformation of the domain and the geometrical complexity of helical rotors. In this chapter, the governing equations for deforming domains and three methods of obtaining mesh movement, commonly used by FVM solvers, have been analysed. A comparative study of customised methods of grid generation for screw machines, using algebraic and differential approaches, is shown to help in the selection of techniques that can improve grid quality, robustness and speed of grid generation. The analysis of an oil-injected twin-screw compressor is included as a test case to demonstrate the application of SCORG, a deforming grid generator, as a means of predicting performance

    Boundary-Conforming Finite Element Methods for Twin-Screw Extruders using Spline-Based Parameterization Techniques

    Full text link
    This paper presents a novel spline-based meshing technique that allows for usage of boundary-conforming meshes for unsteady flow and temperature simulations in co-rotating twin-screw extruders. Spline-based descriptions of arbitrary screw geometries are generated using Elliptic Grid Generation. They are evaluated in a number of discrete points to yield a coarse classical mesh. The use of a special control mapping allows to fine-tune properties of the coarse mesh like orthogonality at the boundaries. The coarse mesh is used as a 'scaffolding' to generate a boundary-conforming mesh out of a fine background mesh at run-time. Storing only a coarse mesh makes the method cheap in terms of memory storage. Additionally, the adaptation at run-time is extremely cheap compared to computing the flow solution. Furthermore, this method circumvents the need for expensive re-meshing and projections of solutions making it efficient and accurate. It is incorporated into a space-time finite element framework. We present time-dependent test cases of non-Newtonian fluids in 2D and 3D for complex screw designs. They demonstrate the potential of the method also for arbitrarily complex industrial applications
    corecore