230 research outputs found

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    On the Shape of the General Error Locator Polynomial for Cyclic Codes

    Get PDF
    General error locator polynomials were introduced in 2005 as an alternative decoding for cyclic codes. We now present a conjecture on their sparsity, which would imply polynomial-time decoding for all cyclic codes. A general result on the explicit form of the general error locator polynomial for all cyclic codes is given, along with several results for specific code families, providing evidence to our conjecture. From these, a theoretical justification of the sparsity of general error locator polynomials is obtained for all binary cyclic codes with t <= 2 and n < 105, as well as for t = 3 and n < 63, except for some cases where the conjectured sparsity is proved by a computer check. Moreover, we summarize all related results, previously published, and we show how they provide further evidence to our conjecture. Finally, we discuss the link between our conjecture and the complexity of bounded-distance decoding of the cyclic codes

    The Weight Distributions of a Class of Cyclic Codes with Three Nonzeros over F3

    Full text link
    Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic form and exponential sum but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sum to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic form but also MacWilliams' identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.Comment: 10 pages, 3 table

    A STUDY OF LINEAR ERROR CORRECTING CODES

    Get PDF
    Since Shannon's ground-breaking work in 1948, there have been two main development streams of channel coding in approaching the limit of communication channels, namely classical coding theory which aims at designing codes with large minimum Hamming distance and probabilistic coding which places the emphasis on low complexity probabilistic decoding using long codes built from simple constituent codes. This work presents some further investigations in these two channel coding development streams. Low-density parity-check (LDPC) codes form a class of capacity-approaching codes with sparse parity-check matrix and low-complexity decoder Two novel methods of constructing algebraic binary LDPC codes are presented. These methods are based on the theory of cyclotomic cosets, idempotents and Mattson-Solomon polynomials, and are complementary to each other. The two methods generate in addition to some new cyclic iteratively decodable codes, the well-known Euclidean and projective geometry codes. Their extension to non binary fields is shown to be straightforward. These algebraic cyclic LDPC codes, for short block lengths, converge considerably well under iterative decoding. It is also shown that for some of these codes, maximum likelihood performance may be achieved by a modified belief propagation decoder which uses a different subset of 7^ codewords of the dual code for each iteration. Following a property of the revolving-door combination generator, multi-threaded minimum Hamming distance computation algorithms are developed. Using these algorithms, the previously unknown, minimum Hamming distance of the quadratic residue code for prime 199 has been evaluated. In addition, the highest minimum Hamming distance attainable by all binary cyclic codes of odd lengths from 129 to 189 has been determined, and as many as 901 new binary linear codes which have higher minimum Hamming distance than the previously considered best known linear code have been found. It is shown that by exploiting the structure of circulant matrices, the number of codewords required, to compute the minimum Hamming distance and the number of codewords of a given Hamming weight of binary double-circulant codes based on primes, may be reduced. A means of independently verifying the exhaustively computed number of codewords of a given Hamming weight of these double-circulant codes is developed and in coiyunction with this, it is proved that some published results are incorrect and the correct weight spectra are presented. Moreover, it is shown that it is possible to estimate the minimum Hamming distance of this family of prime-based double-circulant codes. It is shown that linear codes may be efficiently decoded using the incremental correlation Dorsch algorithm. By extending this algorithm, a list decoder is derived and a novel, CRC-less error detection mechanism that offers much better throughput and performance than the conventional ORG scheme is described. Using the same method it is shown that the performance of conventional CRC scheme may be considerably enhanced. Error detection is an integral part of an incremental redundancy communications system and it is shown that sequences of good error correction codes, suitable for use in incremental redundancy communications systems may be obtained using the Constructions X and XX. Examples are given and their performances presented in comparison to conventional CRC schemes

    On Decoding of Quadratic Residue Codes

    Get PDF
    A binary Quadratic Residue(QR) code of length n is an (n, (n+1)/2) cyclic code over GF(2m) with generator polynomial g(x) where m is some integer. The length of this code is a prime number of the form n = 8l + 1 where l is some integer. The generator polynomial g(x) is defined by g(x)=∏_(i∈Q_n) (x-βi ) where β is a primitive nth root of unity in the finite field GF(2m) with m being the smallest positive integer such that n|2m-1 and Qn is the collection of all nonzero quadratic residues modulo n given by Qn={i│i≡j2 mod n for 1≤j≤n-1}. Algebraic approaches to the decoding of the quadratic residue (QR) codes were studied in [2], [3], [4], [5], [6] and [13]. Here, in this thesis, some new more general properties are found for the syndromes of the subclass of binary QR codes of length n = 8m + 1 or n = 8m - 1. A new algebraic decoding algorithm for the (41, 21, 9) binary QR code is presented by having the unknown syndrome S3 which is a necessary condition for decoding the (41, 21, 9) QR code
    corecore