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On the shape of the general error locator
polynomial for cyclic codes

Fabrizio Caruso, Emmanuela Orsini, Massimiliano Sala, Claudia Tinnirello

Abstract—General error locator polynomials were in-
troduced in 2005 as an alternative decoding for cyclic
codes. We present now a conjecture on their sparsity
which would imply polynomial-time decoding for all
cyclic codes. A general result on the explicit form of the
general error locator polynomial for all cyclic codes is
given, along with several results for specific code families,
providing evidence to our conjecture. From these, a
theoretical justification of the sparsity of general error
locator polynomials is obtained for all binary cyclic codes
with t ≤ 2 and n < 105, as well as for t = 3 and n < 63,
except for some cases where the conjectured sparsity is
proved by a computer check. Moreover, we summarize
all related results, previously published, and we show
how they provide further evidence to our conjecture.
Finally, we discuss the link between our conjecture and
the complexity of bounded-distance decoding of cyclic
codes.

Index Terms—Cyclic codes, bounded-distance decod-
ing, general error locator polynomial, symmetric func-
tions, computational algebra, finite fields, Groebner basis.

I. INTRODUCTION

This paper focuses primarily on some issues con-
cerning the efficiency of bounded-distance decod-
ing for cyclic codes. Cyclic codes form a large
class of widely used error correcting codes. They
include important codes such as the Bose-Chaudhuri-
Hocquenghem (BCH) codes, quadratic residue (QR)
codes and Golay codes. In the last fifty years many
efficient bounded-distance decoders have been devel-
oped for special classes, e.g. the Berlekamp-Massey
(BM) algorithm ([1]) designed for the BCH codes.
Although BCH codes can be decoded efficiently, it
is known that their decoding performance degrades
as the length increases ([2]). Cyclic codes are not
known to suffer from the same distance limitation,
but no efficient bounded-distance decoding algorithm
is known for them (up to their actual distance).
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On the other hand, the BM algorithm can also be
applied to some cyclic codes, if there are enough
consecutive known syndromes; namely, 2t consecutive
syndromes are needed to correct a corrupted word with
at most t errors. Unfortunately, for an arbitrary cyclic
code the number of consecutive known syndromes
is less than 2t. When few unknown syndromes are
needed to get 2t consecutive syndromes, it is some-
times possible to determine expressions of unknown
syndromes in terms of known syndromes. In [3] Feng
and Tzeng proposed a matrix method which is based
on the existence of a syndrome matrix with a particular
structure. This method depends on the weight of the
error pattern, so it leads to a step-by-step decoding
algorithm, and hence the error locator polynomial
may not be determined in one step. In [4] He et
al. developed a modified version of the Feng-Tzeng
method, and used it to determine the needed unknown
syndrome and to decode the binary QR code of length
47. In [5], [6], [7] Chang et al. presented algebraic de-
coders for other binary QR codes combining the Feng-
He matrix method and the BM algorithm. Another
method used to yield representations of unknown syn-
dromes in terms of known syndromes is the Lagrange
interpolation formula (LIF)[8]. This method has two
limitations: it can be applied only to codes generated
by irreducible polynomials and its computational time
grows substantially as the number of errors increases.
The first problem was overcome by Chang et al. in
[9]. Here the authors introduced a multivariate inter-
polation formula (MVIF) over finite fields and used
it to get an unknown syndrome representation method
similar to that in [8]. They also apply the MVIF to
obtain the coefficients of the general error locator
polynomial of the [15, 11, 5] Reed-Solomon (RS) code.
Later, trying to overcome the second problem, Lee
et al.[10] presented an algorithm which combines the
syndrome matrix search and the modified Chinese
remainder theorem (CRT). Compared to the Lagrange
interpolation method, this substantially reduces the
computational time for binary cyclic codes generated
by irreducible polynomials.

Besides the unknown syndrome representation
method, other approaches have been proposed to de-
code cyclic codes. In 1987 Elia [11] proposed a semi-
nal efficient algebraic decoding algorithm for the Go-
lay code of length 23. Orsini and Sala [12] introduced



the general error locator polynomials and presented
an algebraic decoder which permits to determine the
correctable error patterns of a cyclic code in one step.
They constructively showed that a general error locator
polynomial exists for any cyclic code (this locator
polynomial is shown to exist in a Gröbner basis of
the syndrome ideal), and they gave some theoretical
results on the structure of such polynomials in [13],
without the need to actually compute a Gröbner basis.
In particular, for all binary cyclic codes with length
less than 63 and correction capability less or equal than
2, they provided a sparse implicit representation, and
showed that most of these codes may be grouped in a
few classes, each allowing a theoretical interpretation
for an explicit sparse representation. In any case,
direct computer computations show that the general
error locator polynomial for all these codes is actually
sparse.

The efficiency of the decoding based on general
error locator polynomials depends on their sparsity.
There is no (known) theoretical proof that any cyclic
code admits a sparse general locator, but there is some
experimental evidence in the binary case. The proof
of its sparsity in the general case may be of interest
in complexity theory, since it would imply that the
complexity of the bounded-distance decoding problem
for cyclic codes (allowing unbounded preprocessing) is
polynomial-time in the code length. Yet, no published
article contains a formal definition for this sought-after
sparsity, therefore the link with complexity theory is
unclear.

In [13] the authors also provide a structure theorem
for the general error locator polynomials of a class
of binary cyclic codes. A generalization of this result
is given in [8]. The low computational complexity
of the general error locator polynomial for the two
error-correctable cyclic codes has motivated the studies
for variations on this polynomial [14], [15], [16]. We
note that Gröbner bases could also be used for online
decoding. In [17] Augot et al. proposed an online
Gröbner basis decoding algorithm which consists of
computing for each received word a Gröbner basis
of the syndrome ideal with the Newton identities, in
order to express the coefficients of the error locator
polynomial in terms of the syndromes of the received
word.

Our results
In what follows, we list the main original contribu-

tions of this paper.
• We introduce the notion of functional density

for a general locator, which allows to formalize
the notion of sparse general locator. Thanks
to this formalization, we can present a rigorous
conjecture on the locator sparsity and its first
consequence on complexity theory.

• We give a general result on the structure of the
general error locator polynomial for all cyclic
codes, which generalizes Theorem 1 of [8].

• We provide some results on the general error
locator polynomial for several families of binary
cyclic codes with t ≤ 3, adding theoretical evi-
dence to the sparsity of the general error locator
polynomial for infinite classes of codes.

• As a first direct consequence to t = 2, we
theoretically justify the sparsity of the general
error locator polynomial for all the five remaining
cases which were not classified in [13].

• As a second direct consequence to t = 3, we
classify the cyclic codes with n < 63 and t = 3
according to the shape of their general error loca-
tor polynomial, justifying theoretically the results
for all cases except three. For the remaining three
cases, the general error locator polynomial can be
computed explicitly.

• Finally, we provide some more results on the
complexity of bounded-distance decoding of
some classes of cyclic codes. Some results are
conditioned to our conjecture and others hold
unconditionally.

Paper organization

The remainder of the paper is organized as follows.
In Section II we review some definitions concerning
cyclic codes: we recall Cooper’s philosophy, the notion
of general error locator polynomial for cyclic codes
and how this polynomial can be use to decode. In
Section III we state our conjecture on the sparsity of
locators and we identify a first link with the complexity
of decoding cyclic codes. In Section IV we show our
main result, Theorem 19 which provides a general
structure of the error locator polynomial for all cyclic
codes. In Section V we present an infinite class of
binary cyclic codes along with an explicit formula to
represent a sparse general error locator polynomial for
any code in this family. This single family covers 4195
codes out of the 4810 codes with t = 2 and length
< 105. For the remaining 615 codes, explicit sparse
general locators have been computed. As a compari-
son, observe that [13] dealt with t = 2 and n < 63,
that is, with a total of only 952 codes. In Section
VI we provide a general error locator polynomials for
all binary cyclic codes with t = 3 and n < 63. A
sparse explicit representation is theoretically justified
for all cases, except three. We also give new results
on the structure of the general error locator polynomial
for some infinite classes of binary cyclic codes with
t = 3. In Section VII we analyze more deeply the
links between our conjecture, some related results by
other authors and complexity theory. In Section VIII,
we draw some conclusions.
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II. PRELIMINARIES

In this section we review standard notation. The
reader is referred to [18], [19] and [20] for general
references on coding theory.
Throughout the paper we adopt the following conven-
tions. n denotes an odd number n ≥ 3. For any two
integers a and b, (a, b) denotes their greatest common
divisor (written as a non-negative integer). Vectors are
denoted by bold lower-case letters.

A. Some algebraic background and notation

Let q = ps , where p ≥ 2 is any prime and s ≥ 1
is any positive integer. In this paper, Fq denotes the
finite field with q elements.

Sometimes we will deal with rational expressions
of the kind f

g , with f , g ∈ Fq[x1, . . . , x`] for some
` ≥ 1. When we evaluate this expression at any point
P ∈ (Fq)` it is possible that g(P) = 0. However, our
rational expressions are evaluated only in points such
that if g(P) = 0 then also f (P) = 0, and when this
happens we always use the convention that f (P)

g(P) = 0.

B. Cyclic codes

A linear code C is a cyclic code if it is invariant
under any cyclic shift of the coordinates. Cyclic codes
have been extensively studied in coding theory for their
useful algebraic properties. We only consider [n, k, d]q
cyclic codes with (n, q) = 1, that is n and q are co-
prime. Let R = Fq[η]/(ηn−1), each vector c ∈ (Fq)n is
associated to a polynomial c0+c1η+· · ·+cn−1η

n−1 ∈ R,
and it is easy to prove that cyclic codes of length n
over Fq are ideals in R. Let Fqm be the splitting field
of ηn−1 over Fq , and let α be a primitive n-th root of
unity over Fq , then it holds ηn−1 =

∏n−1
i=0 (η−α

i). For
the rest of the paper, we assume that, given q and n, the
primitive root α is fixed. Let g(η) ∈ Fq[η] be the gener-
ator polynomial of an [n, k, d]q-cyclic code C, i.e. the
monic polynomial of degree n−k such that 〈g(η)〉 = C.
It is well-known that g(η) divides ηn − 1 and the set
S̃C = {i1, . . . , in−k | g(αi j ) = 0, j = 1, . . . , n − k} is
called the complete defining set of C. Also, the roots
of unity {αi | i ∈ S̃C} are called the zeros of the cyclic
code C. Notice that the complete defining set permits
to specify a cyclic code. By this fact, we can write
a parity-check matrix for C as an (n − k) × n matrix
H = {hj`}j,` over Fqm such that hj` = α`i j , where
ij ∈ S̃C and ` = 0, . . . , n − 1. This H is called the
standard parity-check matrix. As the complete defining
set is partitioned into cyclotomic classes, any subset of
S̃C containing at least one element per cyclotomic class
is sufficient to specify the code. We call such a set a
defining set of C. We will use SC to denote a defining
set which is not necessarily a complete defining set.

C. Cooper’s philosophy

In this section we describe the so-called Cooper’s
philosophy approach to decode cyclic codes up to their
true error correction capability [21]. The high-level
idea here is to reduce the decoding problem to that of
solving a polynomial system of equations where the
unknowns are the error locations and the error values.

Given an [n, k, d]q code C, we recall that the error
correction capability of C is t = b(d − 1)/2c, where
bxc denotes the greatest integer less than or equal to
x. Let c, r, e ∈ (Fq)n be, respectively, the transmitted
codeword, the received vector and the error vector,
then r = c + e. If we apply the standard parity-
check matrix H to r, we get Hr = H(c + e) =
He = s ∈ (Fqm )n−k . The vector s is called syndrome
vector and its components s1, . . . , sn−k are called the
syndromes. Recall that a correctable syndrome vector
is a syndrome vector corresponding to an error vector
e with Hamming weight µ ≤ t. If there is an error
vector e of weight µ ≤ t, then we can write it as

e = (0, . . . , 0︸  ︷︷  ︸
l1−1

, el1
↑
l1

, 0, . . . , 0, elk
↑
lk

, 0, . . . , 0, elµ
↑
lµ

, 0, . . . , 0︸  ︷︷  ︸
n−1−lµ

) .

We say that the set L = {l1, . . . , lµ} ⊂ {0, . . . , n − 1}
is the set of the error positions, the set {αl | l ∈ L} is
the set of the error locations, and {el1, . . . , elµ } is the
set of the error values. With this notation, the relation
He = s becomes the well-known equations

sj =
µ∑

h=1
elh (α

lh )i j =
∑
l∈L

el(αl)i j , 1 ≤ j ≤ n − k .

(1)
The classical error locator polynomial associated to
the error e is the polynomial σe(z) =

∏
l∈L(1−zαl), i.e.

the polynomial having as zeros the inverses of the error
locations; whereas the plain error locator polynomial
is the polynomial Le(z) =

∏
l∈L(z − αl), i.e. the poly-

nomial having as zeros the error locations. Obviously,
the knowledge of σe(z) is equivalent to the knowledge
of Le(z), since one polynomial is the reciprocal of the
other. It is well-known that finding Le(z) or σ(z) is the
hard part of the decoding. Indeed, once Le(z) is found,
the decoding proceeds by applying the Chien search
[22] to find the error locations, from which the error
positions are immediately established, and concludes
by determining the error values via solving an easy
linear system.

Traditional decoding methods, such as those based
on the Berlekamp-Massey algorithm and its numerous
variations, start from the received vectors, compute the
syndromes and then iteratively calculate a univariate
polynomial, whose degree grows until it reaches µ (as-
suming µ ≤ t), and they have a termination condition
that ensures that the last obtained polynomial is indeed
σ(z).
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The so-called Cooper’s philosophy takes a completely
different approach since it uses multivariate polynomi-
als, as we elaborate below. Associating variables Z =
(z1, . . . , zt ) to the error locations, X = (x1, . . . , xn−k)
to the syndromes {si}1≤i≤n−k , and Y = (y1, . . . , yt )
to the error values, we would like to write a system
of polynomial equations, useful for decoding. The
starting point are the equations (1), which can be
rewritten in terms of variables Z , X and Y as

xj =
µ∑

h=1
yh(zh)i j , 1 ≤ j ≤ n − k .

A first problem here is that obviously we do not know
µ when we start correcting. To solve this problem, it
is convenient to assume that the last t − µ Z variables
take the value 0. This allows us to write equations

xj =
t∑

h=1
yh(zh)i j , 1 ≤ j ≤ n − k . (2)

which have at least the following common solution,
which is of interest for us:

xj = sj, 1 ≤ j ≤ n − k

yh = elh , zh = αlh , 1 ≤ h ≤ µ, (3)
yh = 1, zh = 0, µ + 1 ≤ h ≤ t .

Remark 1: We note that, at least in the case of affine-
variety codes (constructed by evaluating multivariate
polynomials at the rational ponits of a variety, often
a curve), when we have a variable that should corre-
spond to a location but that it is allowed to take also a
different value which cannot be a valid location, such
as the zj in our case, then this value is called a ghost
error location.
If we want to use (2) to decode, once a vector is re-
ceived we would compute the syndromes and substitue
them in equations (2), which become a system of n− k
equations in the indeterminates Y and Z . Assuming we
can solve it, we would need to identify our interesting
solution (3). However, it is easy to see that this system
has an infinite number of solutions and so this naive
approach would not work. Instead, we aim at adding
equations such that, at the same time, they are satisfied
by (3) and they discard other uninteresting solutions.
To do that, we observe that the syndromes lie in Fqm ,
that the valid error locations are powers of α, and thus
are n-th roots of unity, and that the error values lie in
Fq but are non-zeros, so that we can safely consider
the following equations

xq
m

j − xj, zn+1
h − zh, y

q−1
h
− 1, (4)

for 1 ≤ h ≤ t, 1 ≤ j ≤ n − k. Indeed, ηq
m
− η = 0 is

just the field equation for Fqm , ηn+1−η = η(ηn−1) = 0
is equivalent to η = 0 or ηn = 1, and ηq−1 − 1 = ηq−η

η

is the field equation for non-zero elements of Fq .
There are other equations that we can safely add, but
their justification is more involved and can be found
in [12]). These equations are

zh · zh′ · ph,h′, (5)

where

ph,h′ = (znh − znh′)/(zh − zh′), 1 ≤ h < h′ ≤ t,

and they guarantee that the locations (if not zero)
are all distinct. We can finally consider the system
obtained by putting together (2), (4), (5). This system
can be used to unambigously decode, by evaluating
the X variables at the syndromes and obtaining our
solution (3), plus its permutations (the system is obvi-
ously invariant by any permutation of the Z , provided
we apply the same permutation to the Y ), or similar
solutions: any solution will be sufficient to decode.
However, this decoding relies on solving a system
every time a vector is received and so its complexity is
difficult to estimate, although experimentally it is very
high. The approach presented in [12] is more radical.
Orsini and Sala consider the ideal generated by the
(2), (4), (5) (without evaluating any syndrome) and use
advanced commutative algebra to prove the existence
of a special polynomial, called general error locator
polynomial, for every cyclic code (with (q, n) = 1).
In more details, a general error locator polynomial
L for an [n, k, d]q cyclic code C is a polynomial in
Fq[X, z], with X = (x1, . . . , xn−k) such that
• L(X, z) = zt + at−1(X)zt−1 + · · · + a0(X), with

aj ∈ Fq[X], 0 ≤ j ≤ t − 1;
• given a correctable syndrome s = (s1, . . . , sn−k), if

we evaluate the X variables at s, then the t roots of
L(s, z) are the µ error locations plus zero counted
with multiplicity t − µ.

Remark 2: The above second property is equivalent
to L(s, z) = zt−µLe(z), where e is the error associated
to syndrome s.
Note that the general error locator polynomial L does
not depend on the errors actually occurred, but it is
computed in a preprocessing fashion once and for all
and depends only on the code itself. As a consequence,
the decoding algorithm proposed in [12], which needs
L, performs the following steps:
• Compute the syndrome vector s corresponding to

the received vector r;
• Evaluate L at the syndromes s;
• Apply the Chien search on L(s, z) to compute the

error locations {αl | l ∈ L} ;
• Deduce the error positions L from the error loca-

tions.
• Compute the error values {el | l ∈ L}.

This approach is efficient as long as the evaluation of
L is efficient (see Section VII).
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D. General error locator polynomials for some binary
cyclic codes

Here we recall some techniques used in [13] to
efficiently compute a general error locator polynomial
for binary cyclic codes without using Gröbner bases.
In this section we only deal with binary cyclic codes
and we will often shorten “binary cyclic (linear) code”
to “code” when it is clear from the context.

If we want to compute the general error locators for
a range of codes (such that for example t = 2 and
n < 63 as in [13]), our first problem is to reduce the
cases we must consider. The following theorem shows
that there are two facts in our help. The former is that
if we can decode a code then we can decode any of its
equivalent codes. The latter is that if code contains a
subcode with the same correction capability, then we
can use the general locator of the larger code to correct
also the smaller code.

Theorem 3 ([13]): Let C,C ′ and C ′′ be three codes
with the same length and the same correction capa-
bility. Let LC ,LC′ and LC′′ denote their respective
general error locator polynomials.

If C is a subcode of C ′, then we can assume LC =

LC′ .
If C is equivalent to C ′′ via the coordinate permu-

tation function φ : (F2)
n → (F2)

n, then we can decode
C using LC′′ (via φ).

So the first thing to do is to group all codes under
consideration in sets such that the computation of one
locator per set would allow the decoding of all codes.
Then we need to identify in each set a specific code
for which the computation of the general locator is
realively easier. For example, in [13] we presented
a classification result where all binary cyclic codes
up with t = 2 and 7 ≤ n < 63, which are 952 in
total, would fall in five classes, plus their equivalent
codes and subcodes (with the same t). Each of the
first four classes contains an infinite number of codes
(considering all possible lengths), while the fifth is
just a list of five given codes. For each code of the
fifth class, a computer computation provided a general
locator. For three of the other classes, an explicit
representation of the general locator was given, while
for the remaining class an implicit representation was
given. The implicit representation allows in practice
an efficient evaluation of the general locator, but it
is theoretically unpleasant, because an explicit sparse
representation would be preferred and makes formal
complexity estimations easier.

Given a class, the method followed to identify a
better code started from two observations. The first
observation is that if 1 ∈ SC , then its corresponding
syndrome x1 satisfies the relation x1 = z1+z2. The sec-
ond observation requires more explanation, provided
below. Let C be a code with error capability t = 2,

s a correctable syndrome, and ẑ1 and ẑ2 the (possibly
ghost) error locations corresponding to the syndrome
s. Then, by definition we know that

L(X, z) = z2 + az + b = (z − ẑ1)(z − ẑ2) ,

where a, b ∈ F2[X], and b(s) = ẑ1 ẑ2, a(s) = ẑ1 + ẑ2.
Moreover, there are exactly two errors if and only if
b(s) , 0, and there is exactly one error if and only if
b(s) = 0 and a(s) , 0 (in this case the error location is
a(s)). Therefore, if 1 ∈ SC , we can write a = x1 and
so only b needs to be found, that is,

L(X, z) = z2 + x1z + b, if 1 ∈ SC

Which means that if we can find a class representative
with 1 ∈ SC , it is preferrable to use it to derive the
general locator. Fortunately, in [13] it was proved that
given a binary cyclic codes C1 with t = 2 and 7 ≤ n <
105, then C1 is equivalent to a code C2 with 1 ∈ SC2 .
Therefore, since when we search for general locators
we proceed modulo code equivalence, we could always
assume that 1 ∈ SC .

Definition 4: We denote by Vµ the set of syndrome
vectors corresponding to µ errors, with 0 ≤ µ ≤ t.
The set of correctable syndromes V is given by
the (disjoint) union of sets Vµ for µ = 0, . . . , t
(corresponding to 0, . . . , t errors, respectively), i.e.
V = V0 tV1 t · · · t V t .

Remark 5: When the defining set is not complete,
the general error locator polynomial will not contain
n − k X variables, but a smaller number. If the
defining set is given as small as possible, then there
is only one syndrome per cyclotomic class and we
call such syndromes primary syndromes. Although
we can keep only the primary syndromes to build a
locator, sometimes it is convenient to keep also other
syndromes in order to arrive at a general formula for
a code class with infinite members. Given a specific
code, if desired, we can trivially convert our polyno-
mial into a polynomial with only primary syndromes
as variables.

From now on, we reserve the letter r to denote the
number of syndromes we are actually working on and
so r will be at least the number of primary syndromes
and at most n − k. In particular, we will assume V ⊂
(Fqm )r and X = (x1, . . . , xr ).

1

III. A CONJECTURE AND ITS FIRST LINK TO THE
COMPLEXITY OF DECODING CYCLIC CODES

In this section we present a conjecture on the spar-
sity of general error locator polynomials along with an
estimate of the complexity of the decoding approach
presented in Section II for any cyclic code. In order
to do that, first we need to provide a rigorous notion
of sparsity that is appropriate for these polynomials.
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Definition 6: Let K be any field and let f be any
(possibly multivariate) polynomial with coefficients in
K, that is, f ∈ K[a1, . . . ,aN ] for a variable set A =
{a1, . . . ,aN }. We will denote by | f | the number of
terms (monomials) of f .

Definition 7: Let A = {a1, . . . ,aN } and B =

{b1, . . . ,bM } be two variable sets. Let K be a field and
let F be a rational function in K(A). Let F ∈ K[B],
f1, . . . , fM ∈ K[A] and g1, . . . , gM ∈ K[A]. We say that
the triple (F, { f1 . . . , fM }, {g1 . . . , gM }) is a rational
representation of F if

F = F( f1/g1, . . . , fM/gM ) .

We say that the number

|F | +
M∑
i=1
(| fi | − 1) +

M∑
j=1,g j<K

|gj |

is the rational density of the rational representation
(F, { f1 . . . , fM }, {g1 . . . , gM }).
Given a rational function F , the concept behind the
rational density of a rational representation is to mea-
sure the complexity of evaluating it when we think to
have a clever way to write it. For example, if we have
F ∈ F2[x, y],

F =
x7 + x6y + x5y2 + x4y3 + x3y4 + x2y5 + xy6 + y7

x5 + x4y2 + xy8 + y10 ,

one might observe that F = (x+y)7

(x+y2)5
, so it is convenient

first to evaluate f1 = x + y and g1 = (x + y2), and then
to compute F

(
f1
g1

)
=

f1
7

g15 . In other words, f1 and g1
represents intermediate evaluations that are convenient
to perform as first steps, while F =

b1
7

b2
5 is the

last evaluation, that uses the intermediate evaluations
obtained previously to compute the (global) evaluation
of F .

However, there could always be a more clever way
to write a function, in order to minimize the monomials
we must compute. To provide an unambiguous value,
albeit very difficult to determine precisely, we propose
the following defintion.

Definition 8: Let A = {a1, . . . ,aN } and let F be a
rational function in K(A). Then, we define the func-
tional density of F , | |F | |, as the minimum among the
rational densities of all rational representations of F .
With the notation of Definition 6 and 8, we have the
following result, that shows their interlink and how
natural Definition 8 is.

Theorem 9: Let A = {a1, . . . ,aN }. If F is a
polynomial, i.e. F ∈ K[A] , then

| |F | | ≤ |F | .

Moreover, if F = a1 + a2 then | |F | | = |F | = 2.
Proof: Let F ∈ K[A] and let ρ = |F |. Then F =∑ρ

i=1 hi , where any hi is a monomial for 1 ≤ i ≤ ρ.

Let us consider the following rational representation
for F

B = {b1, . . . ,bρ} , F =
ρ∑
i=1

bi , fi = hi , gi = 1, ,

where 1 ≤ i ≤ ρ, then the rational density of

(F, { f1, . . . , fρ}, {g1, . . . , gρ})

is

|F | +
ρ∑
i=1
(| fi | − 1) +

ρ∑
j=1,g j<K

|gj | = ρ + 0 + 0 = ρ,

which implies | |F | | ≤ ρ, as claimed. To prove the case
F = a1 + a2, we argument by contradiction assuming
| |F | | = 1. Let us consider any rational representation
of F providing

| |F | | = |F | +
M∑
i=1
(| fi | − 1) +

M∑
j=1,g j<K

|gj | = 1 .

Since |F | ≥ 1, we must have |F | = 1,
∑M

i=1(| fi | −1) =
0 and

∑M
j=1,g j<K

|gj | = 0.
Therefore, M = 1, | f1 | = 1 and g1 = ν ∈ K. From
M = 1 and |F | = 1 we have F = λbµ1 for λ ∈ K \ {0}
and µ ≥ 1, and so F = F( f1/g1) = λ

( f1
ν

)µ. Recalling
that F = a1 + a2, we finally have a contradiction

| f1 | = 1 =⇒
���λ( f1

ν

)µ ��� = 1 , but |F | = |a1+a2 | = 2 .

For example, let us consider a possible locator
F2[z, x1, x2, x3, x4, x5] for a code with t = 2, with b
of the form:

b =
(

x2x4 + x5
x3

) l+
, L = z2 + x1z + b,

where 1 ≤ l+ ≤ n. Its functional density satisfies
| |L|| ≤ 6 thanks to the following rational represen-
tation

L = F( f1/g1, f2/g2, f3/g3),

where F ∈ F2[b1,b2,b3], f1, f2, f3, g1, g2, g3 ∈

F2[z, x1, x2, x3, x4, x5] and

F = b2
1 + b1b2 + bl

+

3 , f1 = z, g1 = 1,
f2 = x1, g2 = 1, f3 = x2x4 + x5, g3 = x3 .

Remark 10: The apparently-trivial result | |a1+a2 | | =
|a1 + a2 | in Theorem 9 is essential to show that our
notion of functional density is meaningful. Indeed, it is
straightforward to provide easier alternative definitions
enjoying | |F | | ≤ |F | for any F but which will give
| |a1 + a2 | | = 1.
Now that we have provided a rigorous notion, we can
finally write Sala’s conjecture, which was presented
orally at the conference MEGA2005 in 2005 together
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with the first experiments in the computation of general
locators.

Conjecture 11 (Sala, MEGA2005):
Let p ≥ 2 be a prime, m ≥ 1 a positive integer and
let q = pm. There is an integer ε = ε(q) such that, for
any cyclic code C over the field Fq with n ≥ q4 − 1,
gcd(n, q) = 1, 3 ≤ d ≤ n − 1,
C admits a general error locator polynomial Lc whose
functional density is bounded by

| |Lc | | ≤ nε .

Moreover, for binary codes we have ε = 3, that is,
ε(2) = 3.

Remark 12: There are some indications that ε(q)
may grow with q and so we do not believe in just one
ε for all finite fields. For example, we will see that
properties of the univariate interpolation in Theorem
37 suggest denser locators for larger fields.
Thanks to this conjecture, we can now formally define
a sparse locator, as follows.
Let C be a cyclic code over Fq of length n. Let d
be its distance, t its correction capability and SC =
{i1, . . . , ir } a defining set of C. Let LC be a general
error locator polynomial of C.

Definition 13: If LC ∈ F2[x1, . . . , xr ], then we say
that LC is sparse if | |LC | | ≤ n3.
If Conjecture 11 holds and LC ∈ Fq[x1, . . . , xr ], then
we say that LC is sparse if | |LC | | ≤ nε .
The decoding procedure developed by Orsini and Sala
in [13] consists of five steps:

1) Computation of the r syndromes s1, . . . , sr corre-
sponding to the received vector.

2) Evaluation of LC(x1, . . . , xr, z) at s = (s1, . . . , sr ).
3) Computation of the roots of LC(s, z), which are

the valid locations and the ghost locations. The
number of valid locations immediately gives µ.

4) Computations of the error positions from the
(valid) locations.

5) Computation of the error values el1, . . . , elµ .
By analyzing the above decoding algorithm, we ob-
serve that the main computational cost is the evalu-
ation of the polynomial LC(x1, . . . , xr, z) at s, which
reduces to the evaluation of its z-coefficients. Indeed,
the computation of the r syndromes s1, . . . , sr and
of the roots of LC(s, z) cost, respectively, O(t

√
n)

and max(O(t
√

n),O(t log(log(t)) log(n))) ([23]), while
the computation of the error values using Forney’s
algorithm costs O(t2) ([24]). Therefore, we can bound
the total cost of steps 1, 3 and 4 with O(n2).
The following theorem is then clear and should be
compared with the results in [25], which suggest that
for linear codes an extension of Conjecture 11 is very
unlikely to hold.

Theorem 14: Let us consider all cyclic codes over
the same field Fq with gcd(n, q) = 1 and d ≥ 3.

If Conjecture 11 holds, they can be decoded in poly-
nomial time in n, once a preprocessing has produced
sparse general error locator polynomials.

Proof: The only special situations not tackled by
Conjecture 11 are the finite cases when n < q4 − 1,
which of course do not influence the asymptotic com-
plexity, and the degenerate case when d = n, which
can be decoded in polynomial time without using the
general error locator algorithm.

Remark 15: In assessing the plausibility of Con-
jecture 11 it is important to keep in mind that Sala
claimed the existence of at least one sparse locator
per code. It is possible that for a specific code only
one such locator exists and that its computation is
extremely difficult. This is the reason why Theorem
14 allows for unbounded preprocessing time. However,
readers familiar with results in [25] will know that for
linear codes the decoding problem remains difficult
even allowing for unbounded preprocessing time and
so they will appreciate the potential impact of Theorem
14.

Although all reported experiments (especially in the
binary case) confirm Conjecture 11, we are far from
having a formal proof of it. In the next sections we will
give theoretical and experimental results that provide
some evidence to Conjecture 11. In Section VII we
will discuss complexity issues more in depth and we
will make comparison with previous results by other
authors.

IV. A GENERAL DESCRIPTION FOR THE LOCATOR
POLYNOMIAL

In this section we give a new general result on the
structure of the error locator polynomial for all cyclic
codes over Fq .

Let Rn = {α
i | i = 0, . . . , n − 1}. Let us denote with

Tn,t the following set (compare with [8, p. 131] and
Def. 13 of [13])

Tn,t = {(α
l1, . . . , αlµ, 0, . . . , 0) | 0 ≤ l1 < · · · < lµ < n,

0 ≤ µ ≤ t} ⊂ (Rn ∪ {0})t .

Let C be a cyclic code over Fq , with length n and
correction capability t, defined by SC = {i1, . . . , ir }
and let xj be the syndrome corresponding to ij for
j ∈ {1, . . . r}. The following theorem (Theorem 19)
generalizes Theorem 1 of [8], which dealt with the
case where the code could be defined by only one
syndrome. Here we provide a description of the shape
of the coefficients of a general error locator polyno-
mial for cyclic codes over Fq . We recall that these
coefficients are polynomials in the syndrome variables
X . When they are evaluated at a correctable syndrome,
corresponding to an error of weight µ ≤ t, they can
be expressed as the elementary symmetric functions
on the roots of the general error locator polynomials,
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which are exactly the error locations z1, . . . , zµ and
zero (with multiplicity t− µ). By definition of elemen-
tary symmetric functions, they can then be expressed
as elementary symmetric polynomials in µ variables
on the z1, . . . , zµ. We will need the existence of a
polynomial representation for arbitrary functions from
(Fq)

n to Fq . This is not unique and can be obtained
in several ways, including multivariate interpolation
([9]). We report a standard formulation in the following
lemma.

Lemma 16 ( [26, p. 26]): Let f : (Fq)n →
Fq . Then f can be represented by a polynomial
in Fq[x1, . . . , xn], i.e. there is a polynomial P ∈

Fq[x1, . . . , xn] such that P(b1, . . . , bn) = f (b1, . . . , bn)
for all (b1, . . . , bn) ∈ (Fq)n. In particular, the polyno-
mial∑
a∈Fnq

f (a1, . . . , an)[1 − (x1 − a1)
q−1] · · · [1 − (xn − an)q−1],

where a = (a1, . . . , an), represents f .
The next two lemmas clarify some links between
syndromes and error locations which will be essential
in our proof of Theorem 19.

Lemma 17: Let σ ∈ Fq[y1, . . . , yt ] be a symmetric
function. Then there exists a ∈ Fq[X] such that for
(x̄1, . . . , x̄r ) ∈ Vµ

a(x̄1, . . . , x̄r ) = σ(z1, . . . , zµ, 0 . . . , 0)

with z1, . . . zµ the error locations corresponding to
x̄1 . . . , x̄r .

Proof: We claim that the statement is obvious
for elementary symmetric functions, as follows. Let
σ1 . . . σt be the elementary symmetric functions in
Fq[y1, . . . , yt ]. The existence of a general error locator
polynomial for any cyclic code guarantees that, for any
1 ≤ i ≤ t, for any σi there is ai ∈ Fq[x1, . . . , xr ] such
that for (x̄1, . . . , x̄r ) ∈ Vµ

ai(x̄1, . . . , x̄r ) = σi(z1, . . . , zµ, 0 . . . , 0)

with z1, . . . zµ the error locations corresponding to
x̄1 . . . , x̄r .

For the more general case of any symmetric func-
tion σ ∈ Fq[y1, . . . , yt ], we need the fundamental
theorem on symmetric functions, which shows the
existence of a polynomial H ∈ Fq[y1 . . . , yt ] such that
σ(y1, . . . , yt ) = H(σ1(y1, . . . , yt ), . . . , σt (y1 . . . , yt )).
We can define a = H(a1, . . . , at ) ∈ Fq[X]. So for
(x̄1, . . . , x̄r ) ∈ Vµ and the corresponding locations
z1, . . . zµ, we have

σ(z1, . . . , zµ, 0, . . . , 0) =
= H(σ1(z1, . . . , zµ, 0, . . . , 0), . . . , σt (z1, . . . , zµ, 0, . . . , 0))
= H(a1(x̄1, . . . , x̄r ), . . . , at (x̄1 . . . , x̄r )) =

= a(x̄1, . . . , x̄r ) .

Lemma 18: Let h ∈ Fq[X] with degxi
h < q for

all i = 1, . . . , r , and h(x̄1, x̄2, . . . , x̄r ) = 0 for all
(x̄1, . . . , x̄r ) ∈ (Fq)r with x̄1 , 0. Let l ∈ Fq[X] and
g(x2 . . . , xr ) ∈ Fq[x2, . . . , xr ] such that

h(X) = x1l(x1, x2, . . . , xr ) + g(x2, . . . , xr ) .

Then

h = 0 or h = (1 − xq−1
1 ) · g(x2, . . . , xr ).

Proof: Clearly, for any h the two polynomials l
and g are uniquely determined.
If h(X) ∈ Fq[x2 . . . , xr ], trivially, we have that h(X) =
g(x2, . . . , xr ). But then h = 0 since the value of h does
not depend on x̄1 and h must vanish any time that
x̄1 , 0.

So we can suppose that h(X) < Fq[x2 . . . , xr ] and
we can define a polynomial h̄(X) = (1 − xq−1

1 ) ·

g(x2, . . . , xr ). Note that degxi
h̄ < q for all i = 1, . . . , r .

We claim that h = h̄. Since the degree w.r.t. each
variable xi of both the polynomials h and h̄ is less
than q, to prove our claim it is sufficient to show that
h(X̂) = h̄(X̂) for all X̂ ∈ (Fq)r . Let us distinguish the
cases x̂1 = 0 and x̂1 , 0.
If x̂1 = 0 then h(X̂) = 0 · l(0, x̂2, . . . , x̂r ) +
g(x̂2, . . . , x̂r ) = g(x̂2, . . . , x̂r ) and h̄(X̂) = (1 − 0) ·
g(x̂2, . . . , x̂r ) = g(x̂2, . . . , x̂r ). So, in this case h(X̂) =
h̄(X̂).
Otherwise, let x̂1 , 0. By hypothesis, h(X̂) = 0. On
the other hand, h̄(X̂) = (1 − 1) · g(x̂2, . . . , x̂r ) = 0. So,
also in this case h(X̂) = h̄(X̂).

Theorem 19: Let C be a cyclic code over Fq , with
length n and correction capability t, defined by SC =
{i1, . . . , ir } and let xj be the syndrome corresponding
to ij for j ∈ {1, . . . r}. Let σ ∈ Fq[y1, . . . , yt ] be a
symmetric homogeneous function of total degree δ,
with δ a multiple of i1, and let λ be a divisor of n. Then
there exist polynomials a ∈ Fq[X], g ∈ Fq[x2, . . . , xr ],
some non-negative integers δ2, . . . , δr and some uni-
variate polynomials Fh2,...,hr ∈ Fq[y] such that for any
0 ≤ µ ≤ t, for any (x̄1, x̄2, . . . , x̄r ) ∈ Vµ and the
corresponding error locations z1, . . . , zµ, we have

a(x̄1, x̄2, . . . , x̄r ) = σ(z1, . . . , zµ, 0, . . . , 0) (6)

and

a(X) = xδ/i11 · (7)

·

δr∑
hr=0

©­«
(

xr
xir1

)hr
· · ·

δ2∑
h2=0

©­«
(

x2

xi21

)h2

Fh2,...,hr (x
λ
1 )

ª®¬ · · · ª®¬+
+ (1 − xq

m−1
1 ) · g(x2, . . . , xr ) ,

where δi ≤ qm − 1, deg Fh2,...,hr ≤ (q
m − 1)/λ.

Proof: We observe that (6) is immediate by
Lemma 17. To prove (7) we first show the case x̄1 , 0
and then the general case.
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Case x̄1 , 0
Let us consider the following map A : {X ∈ V | x1 ,
0} → Fqm defined by

A(x̄1, x̄2, . . . , x̄r ) =
σ(z1, . . . , zµ, 0, . . . , 0)

x̄δ/i11

, (8)

where (z1, . . . , zµ, 0, . . . , 0) is the element of Tn,t as-
sociated to the syndrome vector (x̄1, x̄2, . . . , x̄r ). We
claim that A depends only on (x̄λ1 , x̄2/x̄

i2
1 , . . . , x̄r/x̄

ir
1 ).

If our claim is true, then we have that

A(x̄1, x̄2, . . . , x̄r ) = f (x̄λ1 , x̄2/x̄
i2
1 , . . . , x̄r/x̄

ir
1 ) (9)

for a function f : (Fqm )r → Fqm , and so, by Lemma
16, we can view f as a polynomial in Fqm [x1, . . . , xr ].
Since V ⊂ (Fqm )r , we can also view A as a (non-
unique) polynomial A(X) ∈ Fqm [X]. On the other
hand, (8) and Lemma 17 show that A(X)xδ/i11 ∈

Fqm [X] equals a polynomial a ∈ Fq[X] and so also
A(X) can be chosen in Fq[X]. Therefore, by (9) also
f can be chosen in Fq[X].
Let δ2 = degx2

( f ), . . . , δr = degxr
( f ). Then, by

collecting the powers of xr in f , we will have f =∑δr
h=0 xhr fh , for some fh’s, which are polynomials in
Fq[x1, . . . , xr−1]. We observe that for any 2 ≤ i ≤ r−1
we have that, for any 0 ≤ h ≤ δr , degxi

( fh) ≤
degxi

( f ) = δi and there is at least one h such that
degxi

( fh) = δi . Note that, since we are interested in the
values of f only at the points of Fqm , we can assume
δi ≤ qm − 1 due to the field equation. We can repeat
this argument on all fh’s by collecting powers of xr−1
and iterate on the other X variables, x1 excluded, until
we obviously obtain the following formal description

f (x1, x2, . . . , xr ) = (10)

=

δr∑
hr=0

xhrr

δr−1∑
hr−1=0

xhr−1
r−1 · · ·

δ2∑
h2=0

xh2
2 Fh2,...,hr (x1) ,

where any Fh2,...,hr is a univariate polynomial in
Fq[x1].
From (8), (9) and (10) we directly obtain the restriction
of (7) to the case x1 , 0, considering that xq

m

j = xj
implies (1−xq

m−1
j ) = 0, δi ≤ qm−1 and deg Fh1,...hr ≤

(qm − 1)/λ.
We now prove our claim that gives (9). Let us take
(x̃1, . . . , x̃r ) and (x̄1, . . . , x̄r ) such that x̃λ1 = x̄λ1 , and
x̃j/x̃

i j
1 = x̄j/x̄

i j
1 , for j = 2, . . . , r .

The first relation implies

x̃1 = β x̄1, (11)

for some β such that βλ = 1.
Substituting x̃1 for β x̄1 in the second relation for j =
2, . . . , r , we obtain

x̃j

x̃i j1

=
x̄j

x̄i j1

=⇒
x̃j
(β x̄1)i j

=
x̄j

x̄i j1

=⇒ x̃j = βi j x̄j .

(12)

Suppose that (x̃1, . . . , x̃r ) ∈ Vµ and (x̄1, . . . , x̄r ) ∈
Vµ′ , with µ, µ′ ≤ t. From (11), we get ỹ1 z̃i11 + · · · +
ỹµ z̃i1µ = β(ȳ1 z̄i11 + · · ·+ ȳµ′ z̄

i1
µ′) = β ȳ1 z̄i11 + · · ·+ β ȳµ′ z̄

i1
µ′ ,

where z̄i’s and ȳi’s are the locations and the error
values, respectively, associated to (x̄1, . . . , x̄r ); and
similarly for z̃i’s and ỹi’s. Also, from (12) we get
ỹ1 z̃i j1 + · · · + ỹµ z̃i jµ = βi j (ȳ1 z̄i j1 + · · · + ȳµ′ z̄

i j
µ′), for

j = 2, . . . , r .
Let us now take ŷj = ȳj and ẑj = βz̄j , for j = 1, . . . , µ′.
Since the ẑj are distinct valid error locations (i.e.
ẑnj = 1, for j = 1, . . . , µ′) we have that their syndromes
are

x̂j = ŷ1 ẑi j1 + · · · + ŷµ′ ẑ
i j
µ′ =

= βi j ȳ1 z̄i j1 + · · · + β
i j ȳµ′ z̄

i j
µ′ =

= βi j (ȳ1 z̄i j1 + · · · + ȳµ′ z̄
i j
µ′) =

= ỹ1 z̃i j1 + · · · + ỹµ z̃i jµ = x̃j, for j = 1, . . . , r .

Hence (x̂1, . . . , x̂r ) = (x̃1, . . . , x̃r ), which implies that
their corresponding locations and values must be the
same and unique, because µ, µ′ ≤ t. Therefore µ =
µ′, { z̃1, . . . , z̃µ} = {βz̄1, . . . , βz̄µ}, and { ỹ1, . . . , ỹµ} =
{ ȳ1, . . . , ȳµ}, from which, using the fact that σ is a
symmetric homogeneous function of degree δ, we have

A(x̃1, . . . , x̃r ) =
σ(z̃1, . . . , z̃µ, 0, . . . , 0)
(ỹ1 z̃i11 + · · · + ỹµ z̃i1µ )δ/i1

=

σ(βz̄1, . . . , βz̄µ, 0, . . . , 0)
(ȳ1(βz̄1)i1 + · · · + ȳµ(βz̄µ)i1 )δ/i1

=

βδσ(z̄1, . . . , z̄µ, 0, . . . , 0)
βδ(ȳ1 z̄i11 + · · · + ȳµ z̄i1µ )δ/i1

=

σ(z̄1, . . . , z̄µ, 0, . . . , 0)
(ȳ1 z̄i11 + · · · + ȳµ z̄i1µ )δ/i1

= A(x̄1, . . . , x̄r ) .

General case
Let us consider the map A and the polynomial a intro-
duced in the case x̄1 , 0. Both enjoy a representation
as polynomials in Fq[X]. Since we are only interested
in their evaluations at points of Fqm , we can assume
that degxi

(A) < qm and degxi
(a) < qm.

Now, let us define the polynomial a∗(X) as a∗(X) =
a(X) − xδ/i11 A(X). Thanks to what we proved in the
case x1 , 0, we have that a∗(X) satisfies the hypoth-
esis of Lemma 18. Indeed, by construction, trivially
a∗ ∈ Fq[X], degxi

(a∗) < q for any 1 ≤ i ≤ r .
Since h(X) < Fqm [x2, . . . , xr ], by Lemma 18, we

have that h(X) = (1 − xq
m

1 ) · g(x2, . . . , xr ) for some
g(x2, . . . , xr ) ∈ Fqm . So a(X) = xδ/i11 A(X)+ (1− xq

m

1 ) ·
g(x2, . . . , xr ).
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Corollary 20: Let C be a cyclic code over Fq as in
Theorem 19. Then the coefficients of the general error
locator polynomial can be written in the form given
by the previous theorem.

Corollary 21: Let C be a code with t = 2 defined by
SC = {i1, . . . , ir }, with i1 = 1, and let L = z2 + x1z + b
be a general error locator polynomial for C. If C is
a primitive code, i.e. n = qm − 1, then b = x2

1 A with
A ∈ Fq[x2/x

i2
1 , . . . , xr/x

ir
1 ].

Proof: Since t = 2, x1 is zero if and only
if there are no errors. Then, applying the previous
theorem to C, we get that b = x2

1 A with A ∈

Fq[xn1 , x2/x
i2
1 , . . . , xr/x

ir
1 ]. On the other hand, since C

is primitive, xn1 is zero when x1 is zero, and it is 1
when x1 is not zero. So for µ ∈ {1, 2}, xn1 = 1 and
b = x2

1 Ā with Ā = A|xn1 =1. We claim that b∗ = x2
1 Ā is

a valid location product also for the case µ = 0, which
follows from the fact that µ = 0 if and only if x1 = 0.

The previous corollary basically shows that in the case
t = 2 the term of the form (1−xq

m−1
1 )g does not appear

in the expression of the locator coefficients.

A. Complexity of the proposed decoding approach

Now that we have Theorem 19 and Corollary 20, we
can estimate the cost of evaluating the polynomial LC

(at the syndrome vector s) in the more general case.
First, we observe that we can always choose λ = n,

neglect the cost of computing the values xh

x
ih
1

and

consider polynomials in the new obvious variables.
Second, we recall that in [27] Ballico, Elia and
Sala describe a method to evaluate a polynomial in
Fq[x1, . . . , xr ] of total degree δ with a complexity
O(δr/2).
Finally, we can estimate our δ by observing that,
thanks to Corollary 20, we have a bound on the degree
of each z-coefficient of LC in any new variable, so that
its total degree is easily shown to be at most

δ ≤

(
(qm − 1)(r − 1) +

qm − 1
n

)
,

then, using the method in [27], the evaluation of (the
z-coefficients of) LC at s costs at most

O

(
t
(
(qm − 1)(r − 1) +

qm − 1
n

)r/2)
. (13)

So, we get that the cost of the decoding approach we
are proposing is upper bounded by

O

(
n2 + t

(
(qm − 1)(r − 1) +

qm − 1
n

)r/2)
. (14)

We conclude this section showing that there are infinite
families of codes for which this approach is competi-
tive with more straightforward methods (even for low
values of t).

Let us fix the number of syndromes r , and let γ be
an integer γ ≥ 1. Let Cqr,γ be the set of all codes over
Fq with length n such that the splitting field of xn − 1
over Fq is qm − 1 = O(nγ) (and gcd(n, q) = 1).
For codes in Cqr,γ, the complexity (14) of this decoding
is at most

r ≥ 2, O
(
rtnγr/2

)
, r = 1, O(n2+ tn

γ−1
2 ) .

(15)
So, any family Cqr,γ provides a class containing infinite
codes which can be decoded in polynomial time, with
infinite values of distance and length (r and γ are
fixed). These classes extend widely the classes which
are known to be decodable in polynomial time up to
the actual distance.

V. ON SOME CLASSES OF BINARY CODES WITH
t = 2

In this section we treat the case of 2-error correcting
codes, vastly expanding and generalizing previous
results in [13] (and obtaining simpler descriptions).

In [13] all codes with t = 2 and n < 63 were
analyzed, which is a total of 952 codes. For each
code (except for 5 cases), it was shown that either
it belongs to one of four given classes, which have
a sparse representation for their general error locator
polynomials, or it is an equivalent code/subcode that
could be decoded with the same locator (see Section
II-D). However, one of these four classes enjoyed
only an implicit representation for the general error
locator polynomial, which would make the evaluation
still efficient, but whose explicit representation might
be non-sparse. We now present our improvement:
we show that all codes with t = 2 and n < 105
can be grouped in one class, enjoying an explicit
sparse general error locator polynomial, except for
some cases, whose (sparse) locator can be determined
easily with computer-assisted calculations. The codes
spanned by this unified representation are now 4195
out of 4810.

To write our results in a more readable way, we
adopt here a different notation for syndromes. Instead
of writing xj for the j-th syndrome, which corresponds
to the number ij in the defining set, we will write Xi j .
In other words,

Xh = zh1 + zh2 , for any 0 ≤ h ≤ n ,

where z1 and z2 are the two error locations, which are
different from zero and distinct only when µ = t.
The main proposition of this section is the following.

Proposition 22: Let C be a code with {λ, s, s−λ, s−
λ − l, λ − l, s − 2l} ⊂ SC and let t = 2. Then

Xs−λXλ + Xs = (z1z2)
l(Xs−λ−lXλ−l + Xs−2l) (16)

10



Proof: Let us start considering the left-hand side
of the equality:

Xs−λXλ + Xs = (zs−λ1 + zs−λ2 )(zλ1 + zλ2 ) + zs1 + zs2 =

zs−λ1 zλ2 + zλ1 zs−λ2 = (z1z2)
l(zs−λ−l1 zλ−l2 + zλ−l1 zs−λ−l2 ) .

Now we consider the right-hand side:

Xs−λ−lXλ−l + Xs−2l

= (zs−λ−l1 + zs−λ−l2 )(zλ−l1 + zλ−l2 ) + zs−2l
1 + zs−2l

2

= zs−λ−l1 zλ−l2 + zλ−l1 zs−λ−l2 ,

proving relation (16).
From Proposition 22, we can easily derive a sparse
general locator for an ample class of codes, as de-
scribed in the following corollary.

Corollary 23: Let C be a code with t = 2, {1, λ, s, s−
λ, s−λ−l, λ−l, s−2l} ⊂ SC , (l, n) = 1 and (s−2λ, n) =
1. Let l+ be the inverse of l modulo n. Then the locator
polynomial is

L = z2 + X1z +
(

Xs−λXλ + Xs

Xs−λ−lXλ−l + Xs−2l

) l+
. (17)

Proof: Since 1 ∈ SC , L can be written as L =
z2 + X1z + b, where b must satisfy b(s) = ẑ1 ẑ2 when
µ = 2 and b(s) = 0 when µ = 1.
µ = 2. From (16) we have

(z1z2)
l =

Xs−λXλ + Xs

Xs−λ−lXλ−l + Xs−2l

and from the fact that (l, n) = 1 we immediately have
(passing to the evaluations at mathb f s)

ẑ1 ẑ2 =

(
Xs−λXλ + Xs

Xs−λ−lXλ−l + Xs−2l

) l+
However, the numerator or the denominator might be
zero (once evaluated at s). Since the eveluation of
their ratio is ẑ1 ẑ2, which is nonzero when µ = 2,
then in this case Xs−λXλ + Xs , 0 if and only if
Xs−λ−lXλ−l+Xs−2l , 0. Therefore, it is enough to prove
Xs−λXλ+Xs , 0 (when evaluated at a syndrome vector
corresponding to an error of weight 2). We must then
prove that

(ẑ1
s−λ + ẑ2

s−λ)(ẑ1
λ + ẑ2

λ) + (ẑ1
s + ẑ2

s) , 0

which is (ẑ1 ẑ2)
λ(ẑ1

s−2λ + ẑ2
s−2λ) , 0. Since ẑ1 ẑ2 , 0,

we must only show that ẑ1
s−2λ , ẑ2

s−2λ. Since ẑ1
n =

ẑ2
n = 1, if by contradiction we have ẑ1

s−2λ = ẑ2
s−2λ,

we would also have ẑ1
(s−2λ,n) = ẑ1

(s−2λ,n), i.e. ẑ1 =
ẑ2, which is impossible (µ = 2).
µ = 1. When there is only one error, the evaluation

of Xs−λXλ + Xs is zero, as well as the evaluation of
Xs−λ−lXλ−l+Xs−2l , and so by our convention their ratio
is zero, that is, b(s) = 0 when µ = 1, as claimed.
The code family defined in the previous corollary con-
tains nearly all codes with t = 2 and 7 ≤ n < 105, but

some codes are outside it (and they are not equivalent
codes/subcodes with the same t).

Definition 24: Let C be a code such that:
• C satisfies the hypotheses of Corollary 23,
• or C is equivalent to a code satisfying them,
• or C is a subcode of a code satisfying them.

Then we call C a class-λ code.
There are not so many codes outside, at least for n <
105. To be more precise, a computer MAGMA check
shows the following

Proposition 25: Let C be a 2-error correcting binary
cyclic code with length 7 ≤ n < 105 and n odd. If C
is not a class-λ code, then
• either its defining set is one of the following list

n Defining set
25 {1}
31 {1, 5}
39 {0, 1}
51 {0, 1, 5}

63 {1, 5, 21}, {1, 21, 31}, {1, 15, 27}, {1, 9, 31},
{0, 1, 5, 13}, {0, 1, 7, 13}, {1, 7, 27}

69 {0, 1}
85 {1, 5}, {1, 15}, {1, 9}
87 {0, 1}
91 {1, 13, 39}
93 {1, 21}, {0, 1, 5}, {1, 9}, {0, 1, 11}, {1, 15}, {1, 45}

• or C is equivalent to one of the previous list,
• or C is equivalent to a subcode of one of the

previous list.
For each code in the list is possible to determine a
general locator with functional density at most 15.

We observe that for some of these codes a sparse
general locator was already provided in [13] and that
we could group all them in a few classes, but we prefer
not to do it.

A. Sparsity

Thanks to Corollary 23 and Proposition 25, we can
derive the following theorem.

Theorem 26: For all codes in Corollary 23 the func-
tional density of their presented locator is constant.
In particular, these locators are sparse according to
Conjecture 11. Moreover, the functional density for
the general error locator polynomial of all codes with
t = 2 and n < 105 does not exceed 15.

VI. ON SOME CLASSES OF BINARY CODES WITH
t = 3

In this section we provide explicit sparse represen-
tations for some infinite classes of binary codes with
correction capability t = 3. We also consider all binary
codes with t = 3 and n < 63, showing that they can
be regrouped in few classes and we provide a general
error locator polynomial for all these codes. In [28]
Chen produced a table of the minimum distances of
binary cyclic codes of length at most 65. This table
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was extended to length at most 99 by Promhouse and
Tavares [29].

The following theorem lists binary cyclic codes with
t = 3 and n < 63 up to equivalence and subcodes
that we obtain with MAGMA computer algebra system
[30].

Theorem 27: Let C be an [n, k, d] code with d ∈
{7, 8} and 15 ≤ n < 63 (n odd). Then there are only
three cases.

1) Either C is one of the following:
n = 15, SC = {1, 3, 5}, n = 21, SC =

{1, 3, 5}, SC = {1, 3, 7, 9}, SC = {0, 1, 3, 7};
n = 23, SC = {1}, n = 31, SC = {1, 3, 5}, SC =
{0, 1, 7, 15};
n = 35, SC = {1, 3, 5}, SC = {1, 5, 7}, n =
45, SC = {1, 3, 5}, SC = {1, 5, 9, 15};
n = 49, SC = {1, 3}, n = 51, SC =

{1, 3, 9}, n = 55, SC = {0, 1};
2) or C is a subcode of one of the codes of case 1);
3) or C is equivalent to one of the codes of the above

cases.
Subcodes and equivalences are described in Table VII
in the Appendix A. By Theorem 12 [13], we need
to find a general error locator polynomial only for
the codes in 1). For our purposes, it is convenient to
regroup the codes as showed in the following theorem.

Theorem 28: Let C be an [n, k, d] code with d ∈
{7, 8} and 15 ≤ n < 63 (n odd). Then there are six
cases

1) either C is a BCH code, i.e. SC = {1, 3, 5},
2) or C admits a defining set containing {1, i, i+1, i+

2, i+3, i+4} where i and i+2 are not zero modulo
n,

3) or C admits a defining set containing {1, 3, 2i +
2j, 2j − 2i, 2j − 2i+1} with i ≥ 0 and j ≥ i + 2,

4) or C admits a defining set containing {1, 3, 9} and
(n, 3) = 1,

5) or C is one of the following:
• n = 21, SC = {0, 1, 3, 7};
• n = 51, SC = {1, 3, 9};
• n = 55, SC = {0, 1}.

6) or C is a subcode of one of the codes of the above
cases,

7) or C is equivalent to one of the codes of the above
cases.
Proof: It is enough to inspect Case 1) of Theorem

27
Corollary 29: Let C be a code with length n < 63

and distance d ∈ {7, 8}. Then C is equivalent to a code
D s.t 1 ∈ SD .

Proof: It is an immediate consequence of Theo-
rem 27.

Let C be a code with t = 3, s a correctable syndrome
and z̄1, z̄2, z̄3 the error locations. Then L(X, z) = z3 +
az2+bz+c, where a, b, c ∈ F2[X], and a(s) = z̄1+z̄2+z̄3,

b(s) = z̄1 z̄2+ z̄1 z̄3+ z̄2 z̄3, c(s) = z̄1 z̄2 z̄3. Moreover, there
are three errors if and only if c(s) , 0, there are two
errors if and only if c(s) = 0 and b(s) , 0, and there is
one error if and only if c(s) = b(s) = 0 and a(s) , 0.
Note that from the previous corollary any code with
t = 3 and n < 63 is equivalent to a code with 1 in
the defining set. This means that for all our codes the
general error locator polynomial is of the form

L(X, z) = z3 + x1z2 + bz + c,

where x1 is the syndrome corresponding to 1 ∈ SC .
So we are left with finding the coefficients b and
c. Of course, b in the t = 3 case should not be
confused with b in the case of t = 2 case. Also,
when 3 ∈ SC , actually we need to find only one of
the two coefficients because in this case by Newton’s
identities [18] we get c = x3

1 + x3+ x1b, which involves
only known syndromes, so from one coefficient we
can easily obtain the other. In the following, Σl,m will
denote all the six terms of the type zli z

m
j , i, j ∈ {1, 2, 3},

and Σl,m,r denotes all the six terms of the type zli z
m
j zr

k
,

i, j, k ∈ {1, 2, 3}.
Let us consider the codes in 1) of Theorem 28. We

have the following well-known result.
Theorem 30: Let C be a BCH code with t = 3. Then
L(X, z) = z3 + x1z2 + bz + c with

b =
(x2

1 x3 + x5)

(x3
1 + x3)

, c =
(x3

1 x3 + x6
1 + x2

3 + x1x5)

(x3
1 + x3)

Proof: It enough to apply Newton’s identities.
The next theorem provides a general error locator

polynomial for codes in 2) of Th. 28.
Theorem 31: Let C be a code with t = 3 and SC

containing {1, i, i+1, i+2, i+3, i+4} where i and i+2
are not zero modulo n. Then L(X, z) = z3+x1z2+bz+c
with

b =
xiU + xi+1V

W
, c =

xi+1U + xi+2V
W

where U = xi+4 + x1xi+3, V = xi+3 + x1xi+2 and
W = x2

i+1 + xi xi+2.
Proof: Let us suppose that three errors occur, that

is, e has weight three, and let s be its syndrome vector.
It is a simple computation to show, using the Newton’s
identities {

xi+4 = x1xi+3 + bxi+2 + cxi+1

xi+3 = x1xi+2 + bxi+1 + cxi

that b = xiU+xi+1V
W , and c = xi+1U+xi+2V

W , where W =
x2
i+1 + xi xi+2 = Σi,i+2 which cannot be zero because i

and i + 2 are not zero modulo n. Then, when µ = 3,
L(s, z) is the error locator polynomial for C.
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Let us show that it is actually a general error locator
polynomial for C. We have that

xi+1U + xi+2V = (zi+1
1 + zi+1

2 + zi+1
3 ) · (18)

·

(
zi+4

1 + zi+4
2 + zi+4

3 + (z1 + z2 + z3)(zi+3
1 + zi+3

2 + +zi+3
3 )

)
+ (zi+2

1 + zi+2
2 + zi+2

3 )·

·

(
zi+3

1 + zi+3
2 + zi+3

3 + (z1 + z2 + z3)(zi+2
1 + zi+2

2 + zi+2
3 )

)
= Σ1,i+1,i+3,

and

xiU + xi+1V = (zi1 + zi2 + zi3) · (19)

·

(
zi+4

1 + zi+4
2 + zi+4

3 + (z1 + z2 + z3)(zi+3
1 + zi+3

2 + zi+3
3 )

)
+ (zi+1

1 + zi+1
2 + zi+1

3 )(
zi+3

1 + zi+3
2 + zi+3

3 + (z1 + z2 + z3)(zi+2
1 + zi+2

2 + zi+2
3 )

)
= Σ1,i,i+3 + Σ1,i+1,i+2 + Σi+1,i+3,

Let us suppose that µ = 2. In this case, W = zi1zi+2
2 +

zi+2
1 zi2, which is again different from zero. Further-

more, xi+1U+ xi+2V = Σ1,i+1,i+3 is zero because µ = 2.
Finally, xiU + xi+1V is different from zero because
xiU+ xi+1V = Σ1,i,i+3+Σ1,i+1,i+2+Σi+1,i+3 and Σi+1,i+3
cannot be zero. When µ = 1, W = zi1zi+2

2 + zi+2
1 zi2 = 0

and xiU + xi+1V = Σi+1,i+3 = 0.
To obtain a general error locator polynomial for

codes in 3) of Theorem 28, we need the following
lemma.

Lemma 32: Let σk =
∑

1≤i1< · · ·<ik ≤3 zi1 · · · zik be the
kth elementary symmetric polynomial in the variables
z1, z2, z3 over F2, where k ∈ {1, 2, 3}, and let xh =∑3

l=1 zh
l
∈ F2[z1, z2, z3] be the power sum polynomial

of degree h, with h ≥ 0. Then, for i ≥ 0 and j ≥ i+2,

x2i+2 j

1 + x2i+2 j = σ2i
2 x2 j−2i + σ

2i
3 x2 j−2i+1

Proof: x2i+2 j

1 = (z1 + z2 + z3)
2i+2 j

= (z1 +

z2 + z3)
2i (z1 + z2 + z3)

2 j
= x2i+2 j + Σ2i,2 j . On the

other hand, σ2i
2 x2 j−2i = (z1z2 + z1z3 + z2z3)

2i (z2 j−2i
1 +

z2 j−2i
2 + z2 j−2i

3 ) = Σ2i,2 j +Σ2i,2i,2 j−2i and σ2i
3 x2 j−2i+1 =

(z1z2z3)
2i (z2 j−2i+1

1 + z2 j−2i+1

2 + z2 j−2i+1

3 ) = Σ2i,2i,2 j−2i .
So x2i+2 j

1 = x2i+2 j + σ2i
2 x2 j−2i + σ

2i
3 x2 j−2i+1 .

Theorem 33: Let C be a code with t = 3 and SC
containing {1, 3, 2i + 2j, 2j − 2i, 2j − 2i+1} with i ≥ 0
and j ≥ i + 2. Then L(X, z) = z3 + x1z2 + bz + c with

b =
(

x2 j−2i+1U + V
W

) (2i )+
, c =

(
x2 j−2iU + x2i

1 V

W

) (2i )+
where U = (x3

1 + x3)
2i , V = x2i+2 j

1 + x2i+2 j , W =

x2 j−2i+x2i
1 x2 j−2i+1 and (2i)+ is the inverse of 2i modulo

n.

Proof: Since the syndrome x1 is a known
syndrome, that is, 1 ∈ SC , we have that a = x1. From
the Newton identity c = x3

1 + x3 + x1b we get that

c2i = x3×2i
1 + x2i

3 + x2i
1 b2i (20)

On the other hand, by the previous lemma, we have
that

x2i+2 j

1 + x2i+2 j = b2i x2 j−2i + c2i x2 j−2i+1 (21)

Taking into account (20) and (21), a few computa-
tions lead to the equalities b2i =

(
x2 j−2i+1U+V

W

)
and

c2i =

(
x2 j−2iU+x

2i
1 V

W

)
. Suppose that µ = 3. Then

W = (z2 j−2i
1 +z2 j−2i

2 +z2 j−2i
3 )+(z2i

1 +z2i
2 +z2i

3 )(z
2 j−2i+1

1 +

z2 j−2i+1

2 + z2 j−2i+1

3 ) = Σ2i,2 j−2i+1 . Since j is an integer, it
is not possible that 2i = 2j − 2i+1, then W is different
from zero. Also x2 j−2iU+x2i

1 V = Σ2i,2i+1,2 j−2i+Σ2i,2i,2 j

and x2 j−2i+1U + V = Σ2i,2i+1,2 j−2i+1 + Σ2i+1,2 j−2i . From
the previous computations we get that if µ = 2 then
W , 0, x2 j−2iU+ x2i

1 V = 0, and x2 j−2i+1U+V , 0. The
last equality is because Σ2i+1,2 j−2i , 0. Furthermore, if
µ = 1, then x2 j−2i+1U + V = 0.

Finally, let us consider the codes in 4) of Theorem
28. In [11] Elia presents an algebraic decoding for
the (23, 12, 7) Golay code providing the error locator
polynomials for µ errors, for µ from one to three. In
[16] Lee proves that the error locator polynomial L(3)

corresponding to three errors is actually a weak error
locator polynomial for this code. Notice that L(3) is
a weak error locator polynomial for all cyclic codes
C with t = 3, SC containing {1, 3, 9} and (n, 3) = 1.
Next theorem proves that one can obtain a general
error locator polynomial for these codes by slightly
modifying L(3).

Theorem 34: Let C be a code with t = 3 and SC
containing {1, 3, 9} with (n, 3) = 1. Then L(X, z) =
z3 + x1z2 + bz + c with

b = (x2
1 + Dl∗ )h, c = (x3 + x1Dl∗ )h,

where D =
(
x9+x

9
1

x3+x
3
1

)
+ (x3

1 + x3)
2, h =

(x3
1+x3)

(x1x2+x3)
, l = 3

and l∗ is the inverse of l modulo 2m − 1 with F2m the
splitting field of xn − 1 over F2.

Proof: Since 1 ∈ SC , we have that a = x1. From
the following Newton identities

x9 = x1x8 + bx7 + cx6

x7 = x1x6 + bx5 + cx4

x5 = x1x4 + bx3 + cx2

x3 = x1x2 + bx1 + c

using the equalities x6 = x2
3 , and x2i = x2i

1 for i ≥ 0,
we get
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(
x9 + x9

1

x3 + x3
1

)
+ (x3

1 + x3)
2 = (b + x2

1)
3 (22)

So b = x2
1 + Dl∗ . From x3 = x1x2 + bx1 + c, we find

c = x3 + x1Dl∗ . Let us prove that L is a general error
locator polynomial. By Lemma 1 and Lemma 2 in
[16], it is enough to note that when there is one error
h = 0, while when there are two or three errors h = 1.

In Tables I, II we list binary cyclic codes, up to
equivalence and subcodes, with length less than 121
which are covered by Theorem 31 and Theorem 33
respectively. We observe that in each table we also
report BCH codes.

Table III shows a general error locator polynomial
for each code in Case 1) of Theorem 27 with n < 55.
Since the codes in Cases 2) and 3) of Theorem 27
are equivalent or subcodes of the codes in Case 1), so
(Theorem 3) their general error locator polynomial is
the same or can be easily deduced from one of the
general error locator polynomials in the table.
In Table III the codes are grouped according to in-
creasing lengths and are specified with defining sets
containing only primary syndromes. For each of these
codes, the coefficients b and c of the general error
locator polynomial is reported respectively in the sec-
ond column and in the third column; The value in the
fourth column explains which point of Theorem 28 has
been used to describe the corresponding code family.
In all cases except case 4 and for the codes with length
n = 49 and n = 51, b and c are expressed in terms
of primary syndromes: if the defining set in the last
column is SC = {i1, i2, . . . , ij} with i1 < i2 < · · · < ij ,
then xk denotes the syndrome corresponding to ik ,
for k = 1, 2, . . . , j. When 0 belongs to the defining
set, it will be treated as if it were an n, with n the
length of the code. For instance, for the code with
length n = 21 and defining set {0, 1, 3, 7} the syndrome
corresponding to 0 is x4.

Codes described by the point 4 of Theorem 28
maintain the notation of Proposition 34, so xi denotes
the syndrome corresponding to i. In the case of the
code with n = 49, x1, x2, x3 denote the syndromes cor-
responding to 1, 3, 5 respectively, while for the codes
with length 51, x1, x2, x3, x4, x5 denote the syndromes
corresponding to 1, 3, 9, 13, 15 respectively. The coef-
ficient a of the general error locator polynomial is not
reported in Table III because any code in Case 1) of
Theorem 27 has 1 in its defining set, so in all cases
a = x1. A general error locator for the codes with t = 3
and n = 55 is showed in Table VIII in the Appendix
A.

A. Sparsity

An easy ispection of Theorem 31, 33, 34 provides
the following theorem.

Theorem 35: For all codes in the cases covered
by Theorem 31, 33, 34, the function density of their
presented locator is constant.
In particular, these locators are sparse according to
Conjecture 11.

VII. ON THE COMPLEXITY OF DECODING CYCLIC
CODES

In this section we complete the investigation of the
link between Conjecture 11 and the decoding problem
for cyclic codes.

A. Complexity of the proposed decoding approach:
t=2,3

Theorem 26 and Theorem 35 provide (infinite)
classes of codes with t = 2 and t = 3 for which
the evaluation of LC costs O(1), and so the decoding
process costs O(n2). For t = 2 and t = 3 exhaustive
searching method cost, respectively, O(n2) and O(n3).
For t = 2 we match the best-known complexity and
for t = 3 our method is better.

B. Comparison with other approaches

In the last years, several methods were proposed
for decoding binary quadratic residue (QR) codes gen-
erated by irreducible polynomials. In [8], Chang and
Lee propose three algebraic decoding algorithms based
on Lagrange Interpolation Formula (LIF) for these
codes. They introduce a variation for the general error
locator polynomial, which we may call fixed-weight
locator. A fixed-weight locator is a polynomial able to
correct all errors of a fixed weight via the evaluation of
the corresponding syndromes. They develop a method
to obtain a representation of the primary unknown
syndrome in terms of the primary known syndrome
and a representation of the coefficients of both fixed-
weight locator and general error locator polynomial for
these codes. These polynomials are explicitly obtained
for the (17, 9, 5), (23, 12, 7), (41, 21, 9) QR codes. In
Table IV we treat these three codes one per column
showing the number of terms relevant to the alternative
representations. For each code, the second row deals
with representation of the chosen primary unknown
syndrome, while the last deal with two locators.
Note that, for all the three codes, the general error
locator polynomials are sparse (even without using the
rational representation) as forseen in Conjecture 11. In
particular the (41, 21, 9) code has correction capability
t = 4 and the number of terms of its locator is less than
nε = 413 = 68921. Observe also that the evaluation of
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TABLE IV
NUMBER OF TERMS OF UNKNOWN SYNDROME, FIXED-WEIGHT

LOCATOR AND GENERAL ERROR LOCATOR

(17, 9, 5) (23, 12, 7) (41, 21, 9)
Splitting field F28 F211 F220

Unknown syndrome 5 17 1355
Fixed-weight locator 4 15 1270
General error locator 4 76 1380

the locators of the (23, 12, 7) code in Table III and in
[8] cost approximately the same.

In [31], Chang et al. propose to decode binary cyclic
codes generated by irreducible polynomials using, as
in [8], an interpolation formula in order to get the gen-
eral error locator polynomial but in a slightly different
way. The general error locators they obtain satisfy at
least one congruence relation, and they are explicitly
found for the (17, 9, 5) QR code, the (23, 12, 7) Golay
code, and one (43, 29, 6) cyclic code. Table V shows
the maximum number of terms for the coefficients of
these three polynomials. Also in this case, the locators

TABLE V
MAXIMUM NUMBER OF TERMS AMONG THE LOCATOR

COEFFICIENTS σi

(17, 9, 5) (23, 12, 7) (43, 29, 6)
Splitting field F28 F211 F214

General error locator 9 203 25

are sparse for the three codes.
In [32], Lee et al. extend the method proposed by

Chang and Lee in [8] for finding fixed-weight locators
and general error locators for binary cyclic codes
generated by irreducible polynomials to the case of
ternary cyclic codes generated by irreducible polyno-
mials. These polynomials are presented for two ternary
cyclic codes, one (11, 6, 5) code and one (23, 12, 8)
code. In Table VI we report the maximum number
of terms of the coefficients of the general error locator
for these two codes.

TABLE VI
MAXIMUM NUMBER OF TERMS AMONG THE LOCATOR

COEFFICIENTS σi

(11, 6, 5) (23, 12, 8)
Splitting field F35 F311

General error locator 232 15204

To discuss the sparsity of these cases one would
need to know ε(3) from Conjecture 11. Assuming
an optimistic stance, let us compare their sparsity
with ε(3) = 3, that is, let us assume the polynomial
exponent of the ternary codes to be the same as that

of binary codes (reasonably ε(3) ≥ ε(2)).
The first locator is definitely sparse, with |L| = 232 <
1331 = 113. For the second locator we have |L| =
15204 which compared to n3 = 233 = 12167 show
that the locator is not sparse (although the numbers
are close) and indeed we believe much sparser locators
exist for this code, still to be found.

In the same paper ([32]) the authors give also an
interesting upper bound on |L| which holds for any
irreducible ternary cyclic code, as follows.

Proposition 36 ([32]): Let C be a ternary cyclic
code of length n with defining set SC = {1}, and
error correction capability t. Each coefficient of a
general error locator polynomial can be expressed as
a polynomial in terms of the known syndrome x1 and
the number of terms of this polynomial is less than
b

∑t
ν=1 2ν(nν)

n c.
Indeed, we can generalize their result to the following
theorem holding over any finite field.

Theorem 37: Let C be any cyclic code over Fq of
length n with defining set SC = {1}, gcd(n, q) = 1
and error correction capability t. Each coefficient of a
general error locator polynomial can be expressed as
a polynomial in terms of the known syndrome x1 and
the number of terms of this polynomial is less than
b

∑t
ν=1(q−1)ν(nν)

n c.
Proof: By considering Corollary 20 and the fact

that to obtain any locator coefficient, one can use
simply (univariate) Lagrange interpolation on the set
of correctable syndromes, which are obviously 1 +∑t
ν=1(q − 1)ν

(n
ν

)
.

With q fixed, the codes covered by the previous
theorem are actually the component of our families
C
q
1,γ for γ ≥ 1. Depending on the actual considered

length we will have the correct determination of γ,
since this value strongly depends on the size of the
splitting field. By (14) case r = 1, the time complexity
of the decoding method for codes in Cq1,γ is

O
(
n2 + tn(γ−1)/2

)
. (23)

Using the estimation given by Proposition 36, the
complexity of the same decoding approach for these
codes becomes

O
(
n2 + tnt−1

)
. (24)

We observe that which of the two estimations is better
depends on the particular values of t and γ.

VIII. CONCLUSIONS

This paper provides additional theoretical arguments
supporting the sparsity of the general error locator
polynomial for infinite families of cyclic codes over
Fq . For infinite classes of binary codes with t = 2
and t = 3 a sparse general error locator polynomial
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is obtained. Furthermore, for all binary cyclic codes
with length less than 63 and correction capability 3,
we see that the number of monomials never exceeds
five times the code length.

We provide some argument showing the link be-
tween the locators’ sparsity and the bounded-distance
decoding complexity of cyclic codes, which might turn
out to be of interest.

APPENDIX A
SOME TABLES

Table VII report the codes with t = 3 and n < 63
grouped according to increasing lengths, and, within
the same length according to Theorem 27, i.e. if two
codes with the same length are equivalent or one is a
subcode of the other,then they are in the same group.
For each group there is a code in bold, which is the
one reported in Table III, i.e. the code for which we
determined a general error locator polynomial and that
can be used to obtain locators for all the codes of the
group.

In Table VIII we show the coefficients b and c of
a general error locator polynomial for binary cyclic
codes with t = 3 and n = 55. For the sake of
conciseness, both b and c are represented in the form
described in Theorem 19, where y1 stands for x55

1 .

ACKNOWLEDGEMENTS

Most results in this paper are from the last author’s
PHD thesis and so she would like to thank her su-
pervisor, the third author. The authors would like to
thank Matteo Bonini and Michela Ceria for helpful
suggestions and discussions.

REFERENCES

[1] J. L. Massey, “Shift-register synthesis and BCH decoding,”
Information Theory, IEEE Transactions on, vol. 15, no. 1,
pp. 122–127, 1969.

[2] S. Lin and E. Weldon, “Long BCH codes are bad,” Information
and Control, vol. 11, no. 4, pp. 445–451, 1967.

[3] G.-L. Feng and K. K. Tzeng, “A new procedure for decoding
cyclic and BCH codes up to actual minimum distance,” Infor-
mation Theory, IEEE Transactions on, vol. 40, no. 5, pp. 1364–
1374, 1994.

[4] R. He, I. S. Reed, T.-K. Truong, and X. Chen, “Decoding the
(47, 24, 11) quadratic residue code,” Information Theory, IEEE
Transactions on, vol. 47, no. 3, pp. 1181–1186, 2001.

[5] Y. Chang, T.-K. Truong, I. S. Reed, H. Cheng, and C.-
D. Lee, “Algebraic decoding of (71, 36, 11),(79, 40, 15), and
(97, 49, 15) quadratic residue codes,” IEEE transactions on
communications, vol. 51, no. 9, pp. 1463–1473, 2003.

[6] T.-K. Truong, P.-Y. Shih, W.-K. Su, C.-D. Lee, and Y. Chang,
“Algebraic decoding of the (89, 45, 17) quadratic residue
code,” Information Theory, IEEE Transactions on, vol. 54,
no. 11, pp. 5005–5011, 2008.

[7] T.-K. Truong, Y. Chang, Y.-H. Chen, and C.-D. Lee, “Algebraic
decoding of (103, 52, 19) and (113, 57, 15) quadratic residue
codes,” IEEE transactions on communications, vol. 53, no. 5,
pp. 749–754, 2005.

[8] Y. Chang and C.-D. Lee, “Algebraic decoding of a class
of binary cyclic codes via Lagrange interpolation formula,”
Information Theory, IEEE Transactions on, vol. 56, no. 1,
pp. 130–139, 2010.

[9] Y. Chang, C.-D. Lee, and K. Feng, “Multivariate interpolation
formula over finite fields and its applications in coding theory,”
arXiv preprint arXiv:1209.1198, 2012.

[10] C.-D. Lee, Y. Chang, M.-H. Jing, and J.-H. Miao, “New
method of predetermining unified unknown syndrome repre-
sentations for decoding binary cyclic codes,” IET Communi-
cations, vol. 6, no. 18, pp. 3339–3349, 2012.

[11] M. Elia, “Algebraic decoding of the (23, 12, 7) Golay code,”
Information Theory, IEEE Transactions on, vol. 33, no. 1,
pp. 150–151, 1987.

[12] E. Orsini and M. Sala, “Correcting errors and erasures via
the syndrome variety,” Journal of Pure and Applied Algebra,
vol. 200, no. 1, pp. 191–226, 2005.

[13] E. Orsini and M. Sala, “General error locator polynomials for
binary cyclic codes with t ≤ 2 and n < 63,” IEEE transactions
on information theory, vol. 53, no. 3, pp. 1095–1107, 2007.

[14] C. Marcolla, E. Orsini, and M. Sala, “Improved decoding of
affine-variety codes,” Journal of Pure and Applied Algebra,
vol. 216, no. 7, pp. 1533–1565, 2012.

[15] C.-D. Lee, Y. Chang, H.-H. Chang, and J.-H. Chen, “Unusual
general error locator polynomial for the (23, 12, 7) Golay
code,” IEEE Communications Letters, vol. 14, no. 4, pp. 339–
341, 2010.

[16] C.-D. Lee, “Weak general error locator polynomials for triple-
error-correcting binary Golay code,” IEEE communications
letters, vol. 15, no. 8, pp. 857–859, 2011.

[17] D. Augot, M. Bardet, and J.-C. Faugere, “On the decoding
of binary cyclic codes with the newton identities,” Journal of
Symbolic Computation, vol. 44, no. 12, pp. 1608–1625, 2009.

[18] F. J. MacWilliams and N. J. A. Sloane, The theory of error
correcting codes. I and II. Elsevier, 1977.

[19] W. W. Peterson and E. J. Weldon, Error-correcting codes. MIT
press, 1972.

[20] V. Pless, R. A. Brualdi, and W. C. Huffman, Handbook of
coding theory. Vol. I, II. Elsevier Science Inc., 1998.

[21] T. Mora and E. Orsini, “Decoding cyclic codes: the Cooper
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TABLE I
BINARY CYCLIC CODES WITH t = 3 AND LENGTH < 121 COVERED BY THEOREM 31

15, {1, 3, 5} 21, {1, 3, 5} 21, {1, 5, 9} 23, {0, 1} 31, {0, 1, 7, 15} 31, {1, 3, 5}
35, {1, 3, 5} 35, {1, 5, 7} 45, {1, 3, 5} 49, {1, 3} 63, {1, 3, 5} 63, {1, 3, 11, 23, 27, 31}
63, {1, 5, 9, 13, 21} 63, {1, 3, 11, 13, 23} 63, {1, 5, 11, 13, 15} 63, {1, 15, 23, 31} 63, {1, 5, 13, 15, 21} 63, {0, 1, 15, 31}
63, {1, 5, 9, 13, 15} 63, {1, 11, 13, 15, 23, 27} 69, {1, 3, 23} 69, {0, 1, 3} 75, {1, 3, 5} 75, {1, 3, 25}
77, {1, 3} 77, {1, 7, 33} 85, {1, 3, 5} 85, {1, 7, 13, 15, 17} 85, {1, 15, 29, 37} 85, {0, 1, 21, 37}
89, {0, 1, 3} 89, {0, 1, 11} 91, {1, 3} 91, {1, 9, 19} 91, {1, 7, 9, 11, 13} 93, {1, 5, 17, 33}
93, {1, 7, 9, 17} 93, {1, 15, 17, 31, 33} 93, {1, 11, 23, 45} 93, {1, 17, 23, 31, 33} 93, {1, 9, 17, 33} 93, {1, 3, 5}
105, {1, 3, 5} 105, {1, 3, , 13, 25} 105, {1, 5, 9, 17} 105, {1, 9, 13, 25} 105, {1, 5, 7, 9, 11} 105, {1, 3, 9, 17, 25}
105, {1, 3, 17, 21, 25} 105, {1, 3, 11, 17, 45} 105, {1, 5, 9, 49} 105, {1, 3, 17, 25, 49} 105, {1, 9, 11, 13, 15, 17} 105, {1, 9, 13, 45, 49}
105, {1, 9, 17, 25, 49} 105, {1, 9, 11, 13, 45} 105, {0, 1, 9, 13} 105, {1, 3, 17, 35} 113, {0, 1} 115, {1, 23, 25}
117, {0, 1, 3} 117, {0, 1, 21, 29} 119, {1, 3} 119, {1, 7, 17} 119, {1, 11, 13}

TABLE II
BINARY CYCLIC CODES WITH t = 3 AND LENGTH < 121 COVERED BY THEOREM 33

15, {1, 3, 5} 21, {1, 3, 5} 21, {1, 3, 7, 9} 31, {1, 3, 5} 35, {1, 3, 5} 45, {1, 3, 5} 49, {1, 3}
63, {1, 3, 5} 75, {1, 3, 5} 77, {1, 3} 85, {1, 3, 5} 91, {1, 3} 93, {1, 3, 15, 31, 33} 93, {1, 3, 7, 9}
93, {1, 3, 5} 105, {1, 3, 5} 117, {1, 3, 7} 119, {1, 3}

TABLE III
BINARY CYCLIC CODE WITH t = 3 AND n < 55

n b c Case Codes

15
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3, 5}

21
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3, 5}

x2
2 (x

3
1+x2)+(x

9
1+x4)

x3+x1x
2
2

x3(x
3
1+x2)+x1(x

9
1+x4)

x3+x1x
2
2

3 {1, 3, 7, 9}

x4x
2
1+x

3
3 x

2
1+x

2
3 x

3
2+x

2
3 x

2
2 x

3
1+x

2
3 x

9
1+x3x

3
2 x

28
1 +

x3x
2
2 x

10
1 + x3x2x

13
1 + x3x

37
1 + x

7
2 x

44
1 + x

7
2 x

23
1 +

x6
2 x

47
1 +x

6
2 x

5
1 +x

5
2 x

50
1 +x

4
2 x

53
1 +x

4
2 x

32
1 +x

3
2 x

56
1 +

x3
2 x

35
1 +x

2
2 x

59
1 +x

2
2 x

38
1 +x2x

41
1 +x2x

20
1 +x

23
1 +x

2
1

x3
1 + x2 + x1b 5 {0, 1, 3, 7}

23

©­«x2
1 +

(
x9 + x9

1

x3 + x3
1
+ (x3

1 + x3)
2

)1365ª®¬ ·
·
(x3

1 + x3)

(x1x2 + x3)

(x3
1 + x3 + bx1)

(x3
1+x3)

(x1x2+x3)
4 {1}

31
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3, 5}

x8
3 (x4+x1x

2
3 )+x

4
2 (x

2
3+x1x

4
3 )

(x12
3 +x

8
2 )

x4
2 (x4+x1x

2
3 )+x

4
3 (x

2
3+x1x

4
3 )

(x12
3 +x

8
2 )

2 {0, 1, 7, 15}

35
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3, 5}

x3(x
256
1 +x1x

2
2 )+x

8
1 (x

2
2+x11025)

x16
1 +x3x

1024
1

x8
1 (x

256
1 +x1x

2
2 )+x

1024
1 (x2

2+x11025)

x16
1 +x3x

1024
1

2 {1, 5, 7}

45
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3, 5},

x4(x1x
2
3+x

64
1 )+x

16
1 (x

2
3+x

513
1 )

x512
1 x4+x

32
1

x16
1 (x1x

2
3+x

64
1 )+x

512
1 (x2

3+x
513
1 )

x512
1 x4+x

32
1

2 {1, 5, 9, 15}

49
(x3

1 x2+x
6
1+x

2
2+x1x3)

(x3
1+x2)

(x2
1 x2+x3)

(x3
1+x2)

1 {1, 3}

51

x2
1 + (x

3
1 + x2)(

x2
3+x5x3
q1x1

+ (
x3+x

3
2

x4
5+x

3
2
+ 1)( x2

1
x3

1+x2
+

x4+x
4
2 x1

q2
))

q1 = (x3x
9
1 + x3x2x

6
1 + x

3
2 x

9
1 + x

2
3 + x3x

2
2 x

3
1 + x

4
2 x

6
1 + x3x

3
2 +

x5x
3
1 + x5x2 + x6

2 )

q2 = (x
16
1 + x4

2 x
4
1 + x4x2 + x5

2 x1)

x3
1 + x2 + x1b 5 {1, 3, 9}
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TABLE VII
BINARY CYCLIC CODES WITH t = 3 AND n < 63

n Codes
15 {1, 3, 5}, {3, 5, 7}, {0, 3, 5, 7}, {0, 1, 3, 5}
21 {1, 3, 5}, {1, 5, 9}, {1, 3, 5, 9}

{1, 3, 7, 9}, {3, 5, 7, 9}, {0, 3, 5, 7, 9}, {0, 1, 3, 7, 9}
{0, 1, 3, 7}, {0, 5, 7, 9}, {0, 1, 3, 7, 9}, {0, 3, 5, 7, 9}

23 {1}, {5}, {0, 1}, {0, 5}

31 {1, 3, 5}, {1, 5, 7}, {3, 5, 15}, {3, 11, 15}, {0, 1, 5, 7}, {0, 3, 5, 15}, {0, 1, 3, 5}, {1, 3, 11}, {1, 7, 11},
{0, 1, 7, 11}, {0, 1, 3, 11}, {5, 7, 15}, {0, 5, 7, 15}, {7, 11, 15}, {0, 3, 11, 15}
{0, 1, 7, 15}, {0, 1, 3, 15}, {0, 3, 7, 11}, {0, 5, 11, 15}, {0, 1, 5, 11}, {0, 3, 5, 7}

35 {1, 3, 5}, {1, 3, 15}, {1, 3, 5, 15}
{1, 5, 7}, {3, 7, 15} {0, 3, 5, 7, 15}, {0, 1, 5, 7, 15}, {0, 3, 7, 15}, {0, 1, 5, 7}, {3, 5, 7, 15}, {1, 5, 7, 15}

45

{1, 3, 5}, {1, 5, 21}, {5, 7, 21}, {3, 5, 7}, {0, 1, 3, 5, 9, 21}, {3, 5, 7, 9, 15}, {1, 3, 5, 9, 21}, {1, 5, 9, 21},
{1, 5, 15, 21}, {0, 1, 5, 9, 21}, {0, 1, 5, 15, 21}, {0, 3, 5, 7, 9, 15}, {1, 3, 5, 9}, {0, 3, 5, 7, 15, 21},
{0, 1, 3, 5, 9}, {3, 5, 7, 15, 21}, {0, 3, 5, 7, 21}, {1, 5, 9, 15, 21}, {3, 5, 7, 21}, {0, 3, 5, 7, 9, 15, 21},
{0, 1, 3, 5}, {5, 7, 9, 21}, {1, 3, 5, 9, 15}, {0, 5, 7, 9, 21}, {0, 1, 5, 9, 15, 21}, {0, 1, 3, 5, 9, 15},

{0, 1, 3, 5, 15, 21}, {3, 5, 7, 9, 15, 21}, {1, 3, 5, 15, 21}, {3, 5, 7, 15}, {0, 3, 5, 7, 15},{0, 1, 3, 5, 9, 15, 21},
{5, 7, 15, 21}, {1, 3, 5, 9, 15, 21},{0, 5, 7, 15, 21}, {0, 3, 5, 7, 9, 21}, {0, 1, 3, 5, 21}, {1, 3, 5, 15},

{3, 5, 7, 9, 21}, {5, 7, 9, 15, 21}, {3, 5, 7, 9}, {0, 1, 3, 5, 15}, {1, 3, 5, 21}, {0, 5, 7, 9, 15, 21}, {0, 1, 5, 21},
{0, 3, 5, 7, 9},

{0, 3, 5, 7}, {5, 7, 21}, {0, 5, 7, 21}
{1, 5, 9, 15}, {5, 7, 9, 15}, {3, 5, 7, 9, 15}, {0, 3, 5, 7, 9, 15}, {1, 5, 9, 15, 21}, {0, 3, 5, 7, 9, 15, 21},

{1, 3, 5, 9, 15}, {0, 1, 5, 9, 15, 21},{0, 5, 7, 9, 15}, {0, 1, 3, 5, 9, 15}, {3, 5, 7, 9, 15, 21}, {0, 1, 3, 5, 9, 15, 21},
{1, 3, 5, 9, 15, 21}, {0, 5, 7, 9, 15, 21}, {0, 1, 5, 9, 15}

49 {1, 3}

51
{1, 3, 9}, {3, 9, 11}, {3, 9, 19}, {3, 5, 9} {1, 3, 9, 17}, {0, 1, 3, 9}, {3, 5, 9, 17}, {0, 3, 5, 9, 17},

{3, 9, 11, 17}, {0, 3, 9, 11}, {3, 9, 17, 19}, {0, 3, 9, 11, 17}, {0, 3, 9, 17, 19}, {0, 3, 9, 19}, {0, 1, 3, 9, 17},
{0, 3, 5, 9}

55 {0, 1},{0, 3}

TABLE VIII
GENERAL ERROR LOCATOR FOR CYCLIC CODES WITH t = 3 AND n = 55

b

x2
1 ·

(
y475

1 +y472
1 +y470

1 +y469
1 +y468

1 +y463
1 +y462

1 +y461
1 +y460

1 +y458
1 +y457

1 +y455
1 +y454

1 +y452
1 +y449

1 +y448
1 +y446

1 +y444
1 +y443

1 +y440
1 +y436

1 +y434
1 +y427

1 +

y426
1 +y425

1 +y424
1 +y417

1 +y416
1 +y413

1 +y410
1 +y408

1 +y405
1 +y403

1 +y402
1 +y401

1 +y399
1 +y397

1 +y395
1 +y394

1 +y392
1 +y388

1 +y387
1 +y386

1 +y384
1 +y380

1 +y378
1 +

y377
1 +y376

1 +y375
1 +y374

1 +y372
1 +y370

1 +y369
1 +y368

1 +y364
1 +y363

1 +y361
1 +y360

1 +y359
1 +y358

1 +y357
1 +y355

1 +y350
1 +y347

1 +y345
1 +y343

1 +y340
1 +y338

1 +y336
1 +

y334
1 +y330

1 +y329
1 +y327

1 +y326
1 +y325

1 +y324
1 +y321

1 +y319
1 +y318

1 +y316
1 +y315

1 +y312
1 +y308

1 +y306
1 +y305

1 +y302
1 +y301

1 +y296
1 +y295

1 +y292
1 +y290

1 +y289
1 +y285

1 +

y284
1 +y278

1 +y277
1 +y276

1 +y275
1 +y274

1 +y273
1 +y272

1 +y271
1 +y265

1 +y261
1 +y260

1 +y256
1 +y255

1 +y250
1 +y249

1 +y248
1 +y247

1 +y243
1 +y242

1 +y240
1 +y239

1 +y235
1 +y234

1 +

y233
1 +y231

1 +y230
1 +y229

1 +y227
1 +y225

1 +y224
1 +y222

1 +y221
1 +y217

1 +y215
1 +y213

1 +y212
1 +y210

1 +y209
1 +y207

1 +y205
1 +y203

1 +y202
1 +y201

1 +y200
1 +y199

1 +y197
1 +y195

1 +

y189
1 +y187

1 +y183
1 +y182

1 +y181
1 +y180

1 +y179
1 +y178

1 +y175
1 +y172

1 +y169
1 +y167

1 +y165
1 +y164

1 +y163
1 +y160

1 +y159
1 +y157

1 +y155
1 +y154

1 +y145
1 +y141

1 +y137
1 +y133

1 +

y130
1 +y129

1 +y128
1 +y125

1 +y123
1 +y122

1 +y121
1 +y117

1 +y115
1 +y114

1 +y113
1 +y112

1 +y111
1 +y110

1 +y109
1 +y108

1 +y107
1 +y102

1 +y98
1 +y

96
1 +y

95
1 +y

90
1 +y

89
1 +y

88
1 +y

86
1 +

y84
1 +y

83
1 +y

81
1 +y

80
1 +y

78
1 +y

77
1 +y

76
1 +y

74
1 +y

72
1 +y

70
1 +y

68
1 +y

67
1 +y

65
1 +y

63
1 +y

62
1 +y

61
1 +y

55
1 +y

54
1 +y

53
1 +y

52
1 +y

51
1 +y

50
1 +y

49
1 +y

47
1 +y

46
1 +y

45
1 +y

43
1 +y

42
1 +

y40
1 +y

38
1 +y

36
1 +y

35
1 +y

33
1 +y

32
1 +y

31
1 +y

30
1 +y

29
1 +y

28
1 +y

24
1 +y

23
1 +y

22
1 +y

21
1 +y

20
1 +y

17
1 +y

15
1 +y

14
1 +y

13
1 +y

11
1 +y

12
1 +y

9
1 +y

7
1 +y

6
1 +y

4
1 +y

3
1 +y

2
1 +y

1
1 +1+

x2 ·
(
y26

1 + y
24
1 + y

23
1 + y

13
1 + y

11
1 + y

10
1 + y

8
1 + y

7
1 + y

6
1 + y

3
1 + y1

) )

c

x3
1 ·

(
y477

1 +y476
1 +y473

1 +y472
1 +y470

1 +y469
1 +y466

1 +y463
1 +y461

1 +y459
1 +y458

1 +y457
1 +y456

1 +y453
1 +y452

1 +y451
1 +y450

1 +y449
1 +y448

1 +y447
1 +y446

1 +y443
1 +y441

1 +

y440
1 +y439

1 +y438
1 +y436

1 +y433
1 +y431

1 +y428
1 +y422

1 +y420
1 +y419

1 +y414
1 +y413

1 +y410
1 +y409

1 +y407
1 +y406

1 +y403
1 +y402

1 +y400
1 +y399

1 +y394
1 +y391

1 +y388
1 +y385

1 +

y384
1 +y383

1 +y382
1 +y381

1 +y379
1 +y373

1 +y372
1 +y368

1 +y367
1 +y366

1 +y363
1 +y362

1 +y359
1 +y358

1 +y357
1 +y356

1 +y354
1 +y353

1 +y350
1 +y349

1 +y348
1 +y347

1 +y344
1 +y342

1 +

y341
1 +y340

1 +y339
1 +y337

1 +y335
1 +y334

1 +y333
1 +y332

1 +y331
1 +y330

1 +y328
1 +y325

1 +y324
1 +y323

1 +y322
1 +y321

1 +y320
1 +y319

1 +y313
1 +y312

1 +y310
1 +y307

1 +y305
1 +y304

1 +

y303
1 +y302

1 +y300
1 +y295

1 +y294
1 +y293

1 +y292
1 +y289

1 +y287
1 +y286

1 +y283
1 +y282

1 +y280
1 +y279

1 +y276
1 +y274

1 +y272
1 +y270

1 +y269
1 +y267

1 +y264
1 +y263

1 +y262
1 +y261

1 +

y259
1 +y256

1 +y255
1 +y254

1 +y253
1 +y251

1 +y246
1 +y244

1 +y243
1 +y242

1 +y241
1 +y238

1 +y237
1 +y235

1 +y234
1 +y233

1 +y231
1 +y230

1 +y225
1 +y222

1 +y221
1 +y220

1 +y212
1 +y210

1 +

y208
1 +y207

1 +y206
1 +y205

1 +y199
1 +y198

1 +y197
1 +y193

1 +y191
1 +y190

1 +y189
1 +y188

1 +y187
1 +y185

1 +y184
1 +y180

1 +y179
1 +y177

1 +y176
1 +y175

1 +y174
1 +y170

1 +y169
1 +y167

1 +

y166
1 +y165

1 +y162
1 +y160

1 +y159
1 +y158

1 +y156
1 +y155

1 +y154
1 +y148

1 +y146
1 +y142

1 +y141
1 +y139

1 +y138
1 +y137

1 +y135
1 +y131

1 +y130
1 +y129

1 +y128
1 +y126

1 +y125
1 +y123

1 +

y122
1 +y120

1 +y117
1 +y115

1 +y112
1 +y111

1 +y110
1 +y108

1 +y107
1 +y105

1 +y103
1 +y102

1 +y101
1 +y99

1 +y
97
1 +y

96
1 +y

92
1 +y

91
1 +y

86
1 +y

85
1 +y

83
1 +y

82
1 +y

81
1 +y

80
1 +y

79
1 +y

78
1 +

y77
1 +y

76
1 +y

75
1 +y

74
1 +y

72
1 +y

70
1 +y

68
1 +y

67
1 +y

65
1 +y

62
1 +y

61
1 +y

59
1 +y

58
1 +y

57
1 +y

56
1 +y

55
1 +y

54
1 +y

53
1 +y

52
1 +y

51
1 +y

50
1 +y

49
1 +y

48
1 +y

45
1 +y

44
1 +y

43
1 +y

41
1 +y

40
1 +

y39
1 +y

38
1 +y

37
1 +y

36
1 +y

31
1 +y

30
1 +y

27
1 +y

26
1 +y

25
1 +y

24
1 +y

22
1 +y

21
1 +y

20
1 +y

18
1 +y

17
1 +y

16
1 +y

15
1 +y

14
1 +y

13
1 +y

12
1 +y

11
1 +y

9
1+y

8
1+y

7
1+y

6
1+y

5
1+y

4
1+y

3
1+y

2
1+y1+

x2 ·
(
y24

1 + y
23
1 + y

21
1 + y

19
1 + y

17
1 + y

15
1 + y

11
1 + y

10
1 + y

8
1 + y

7
1 + y

6
1 + y

5
1 + y

4
1 + y

2
1 + 1

) )
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