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Abstract 

Since Shannon's ground-breaking work in 1948, there have been two main development streams 
of channel coding in approaching the limit of communication channels, namely classical coding 
theory which aims at designing codes with large minimum Hamming distance and probabilistic 
coding which places the emphasis on low complexity probabilistic decoding using long codes built 
from simple constituent codes. This work presents some further investigations in these two channel 
coding development streams. 

Low-density parity-check ( L D P C ) codes form a class of capacity-approaching codes with sparse 
parity-check matrix and low-complexity decoder Two novel methods of constructing algebraic bi
nary L D P C codes are presented. These methods are based on the theory of cyclotomic cosets, idem-
potents and Mattson-Solomon polynomials, and are complementary to each other. The two methods 
generate in addition to some new cyclic iteratively decodable codes, the well-known Euclidean and 
projective geometry codes. Their extension to non binary fields is shown to be straightforward. 
These algebraic cyclic L D P C codes, for short block lengths, converge considerably well under itera
tive decoding. It is also shown that for some of these codes, maximum likelihood performance may 
be achieved by a modified belief propagation decoder which uses a different subset of 7̂  codewords 
of the dual code for each iteration. 

Following a property of the revolving-door combination generator, multi-threaded minimum 
Hamming distance computation algorithms are developed. Using these algorithms, the previously 
unknown, minimum Hamming distance of the quadratic residue code for prime 199 has been eval
uated. In addition, the highest minimum Hamming distance attainable by all binary cyclic codes 
of odd lengths from 129 to 189 has been determined, and as many as 901 new binary linear codes 
which have higher minimum Hamming distance than the previously considered best known linear 
code have been found. 

It is shown that by exploiting the structure of circulant matrices, the number of codewords 
required, to compute the minimum Hamming distance and the number of codewords of a given 
Hamming weight of binary double-circulant codes based on primes, may be reduced. A means 
of independently verifying the exhaustively computed number of codewords of a given Hamming 
weight of these double-circulant codes is developed and in coiyunction with this, it is proved that 
some published results are incorrect and the correct weight spectra are presented. Moreover, it is 
shown that it is possible to estimate the minimum Hamming distance of this family of prime-based 
double-circulant codes. 

It is shown that linear codes may be efficiently decoded using the incremental correlation Dorsch 
algorithm. By extending this algorithm, a list decoder is derived and a novel, CRC-less error detec
tion mechanism that offers much better throughput and performance than the conventional ORG 
scheme is described. Using the same method it is shown that the performance of conventional C R C 
scheme may be considerably enhanced. Error detection is an integral part of an incremental re
dundancy communications system and it is shown that sequences of good error correction codes, 
suitable for use in incremental redundancy communications systems may be obtained using the 
Constructions X and XX. Examples are given and their performances presented in comparison to 
conventional C R C schemes. 



Table of Contents 

Page 

I Introduction and Background 1 

1 Introduct ion 3 
1.1 Channel Coding and Reliable Communications 3 
1.2 Definition and Notation 8 
1.3 Historical Development of Channel Coding 10 
1.4 A Note on the Performance Bound of Binary Codes of Finite Block Length 17 
1.5 Thesis Aim, Objectives and Organisation 21 
1.6 Contributions to Knowledge 23 

II Probabilistic Coding 27 

2 L D P C Code Construct ions 29 
2.1 Background and Notation 29 

2.1.1 Random Constructions 32 
2.1.2 Algebraic Constructions 34 
2.1.3 Non-Binary Constructions 35 

2.2 Algebraic L D P C Codes 35 
2.2.1 Binary Cyclic L D P C Codes Derived from Cyclotomic Cosets 35 
2.2.2 Mattson-Solomon Domain Construction of Binary Cyclic L D P C Codes 41 
2.2.3 Non Binary Extension of the Cyclotomic Coset-based L D P C Codes 46 

2.3 Irregular L D P C Codes from Progressive-Edge-Growth Construction 50 
2.4 Summary . 56 

3 Improvements to I terat ive Decoder 59 
3.1 Preliminaries 59 
3.2 Investigation on the Hartmann-Rudolph Decoding Algorithm 61 
3.3 Codeword-Substitution Belief Propagation Algorithm 66 
3.4 Other Approaches to Improve the Convergence of Iterative Decoder 69 

3.4.1 Grouping of the Parity-Check Equations 69 
3.4.2 The Received Vector Coordinate Modification Algorithm 70 

3.5 Summary 70 

III Classical Coding 71 

4 Good B i n a r y L i n e a r Codes 73 
4.1 Introduction 73 
4.2 Algorithms to Compute the Minimum Distance of Binary Linear Codes 74 

4.2.1 The First Approach to Minimum Distance Evaluation 74 
4.2.2 Brouwer's Algorithm for Linear Codes 74 
4.2.3 Zimmermann's Algorithm for Linear Codes and Some Improvements 76 
4.2.4 Chen's Algorithm for Cyclic Codes 78 



TABLE OF CONTENTS 

4.2.5 Codeword Enumeration Algorithm 81 
4.3 Binary Cyclic Codes of Lengths 129 < / I < 189 84 
4.4 Some New Binary Cyclic Codes of Large Minimum Distance 85 
4.5 Constructing New Codes from Existing Ones 88 

4.5.1 New Binary Codes from Cyclic Codes of Length 151 90 
4.5.2 New Binary Codes from Cyclic Codes of Length > 199 93 

4.6 Summary 93 

5 Double C i r c u l a n t Codes based on Pr imes 97 
5.1 Introduction 97 
5.2 Background and Notation 98 
5.3 Code Construction 100 

5.3.1 Double-Circulant Codes from Extended Quadratic Residue Codes 104 
5.3.2 Pure Double-Circulant Codes for Primes ± 3 Modulo 8 106 
5.3.3 Quadratic Double-Circulant Codes 107 

5.4 Evaluation of the Number of Codewords of Given Weight and the Minimum Distance: 
A More Efficient Approach 112 

5.5 Weight Distributions 115 
5.5.1 The Number of Codewords of a Given Weight in Quadratic Double-Circulant 

Codes 116 
5.5.2 The Number of Codewords of a Given Weight in Extended Quadratic Residue 

Codes 124 
5.6 Minimum Distance Evaluation: A Probabilistic Approach 128 
5.7 Summary 130 

6 Decoding of L i n e a r B lock Codes 133 
6.1 Introduction 133 
6.2 Dorsch Decoding Algorithm 134 
6.3 Incremental Correlation Approach to Dorsch Decoding 135 
6.4 The Number of Codewords Required to Achieve Maximum-Likelihood Solution . . . . 140 
6.5 Numerical Results ofSome Binary Codes with Large Minimum Distance 142 

6.5.1 [136, 68, 24] Quadratic Double-Circulant Codes ; . . . . 142 
6.5.2 [154, 77, 23] Best Known Linear Code 145 
6.5.3 [255,175,17] Cyclotomic Idempotent L D P C Code 146 
6.5.4 B C H and Goppa Codes 148 

6.6 Summary 150 

IV Application of Coding 151 

7 Incrementa l R e d u n d a n c y Communicat ions 153 
7.1 Overview of Incremental Redundancy Codes 154 
7.2 Juxtaposition Codes: Chain of Cyclic Codes with Constructions X and XX 154 
7.3 IR-ARQ Protocols, Error Detection Mechanisms and their Performance Analysis . . . 159 

7.3.1 Error Detection based on Cyclic-Redundancy-Check 159 
7.3.2 Error Detection based on Two Successive F E C Decoding 160 
7.3.3 Error Detection based on the Confidence of F E C Output 163 

7.4 Numerical Results 169 
7.5 Adding C R C to CRC-less Error Detection Approach 169 
7.6 Summary 171 



V Conclusions 175 

8 Conclus ions and F u t u r e R e s e a r c h Direct ions . 177 

VI Appendices 183 

A Q u a s i - C y c l i c L D P C Codes a n d Protograph 185 
A.1 Quasi-Cyclic L D P C Codes 186 
A.2 Construction of Quasi-Cyclic Codes using Protograph 187 

B B i n a r y C y c l i c Codes o f O d d L e n g t h s from 129 to 189 193 

C Improved Lower -Bounds of the M i n i m u m H a m m i n g Dis tance of B i n a r y L i n e a r 
Codes 205 

D Weight Distr ibut ions of Q u a d r a t i c Double -Circulant Codes a n d the ir Modulo C o n 
gruence 211 
D . l Primes+3 Modulo 8 211 

D , l . l Prime 11 211 
D.1.2 Prime 19 212 
D.1.3 Prime 43 212 
D.1.4 Prime 59 214 
D.1.5 Prime 67 216 
D.1.6 Prime 83 218 

D.2 P r i m e s - 3 Modulo 8 221 
D.2.1 Prime 13 221 
D.2.2 Prime 29 221 
D.2.3 Prime 53 223 
D.2.4 Prime 61 224 

E Weight Dis tr ibut ions of Q u a d r a t i c Res idue Codes of P r i m e s 151 a n d 167 229 

Vn References 231 

VIII PubUcations 245 

111 



List of Tables 

Table Page 

2.1 Examples of 2-cyclotomic coset-based L D P C codes 41 
2.2 Several good cyclic L D P C codes with girth of 4 45 
2.3 Examples of (/i, k, rfja- cyclic L D P C codes 50 
2.4 Variable degree sequences for codes in Figure 2.7. 54 
2.5 Variable degree sequences of L D P C codes in Figure 2.9 54 
2.6 Variable degree sequences of L D P C codes in Figure 2.10 58 

3.1 Eb/No against mri codewords for the (63,37,9] cyclic L D P C code 67 

4.1 New Binary Cyclic Codes 87 
4.2 Order of ^ in an optimum chain of [151, cyclic codes 91 
4.3 New binary codes from Construction X and cyclic codes of length 151 92 
4.4 New binary code from Construction X X and cyclic codes of length 151 93 

5.1 Modular congruence weight distributions of ^ 3 7 122 
5.2 The Minimum Distance of Qp and for 12 < 7j < 200 128 
5.3 The Minimum Distance of Qp and for 204 < < 450 129 

B. l The Highest Attainable Minimum Distance of Binai^ Cyclic Codes of Odd Lengths 
from 129 to 189 193 

C. l Updated Minimum Distance Lower Bounds of Linear Codes C = [n,k] for 153 < n < 
174 and 58 < A: < 77 205 

C.2 Updated Minimum Distance Lower Bounds of Linear Codes C = [n^h] for 175 < n < 
224 and 56 < Ar < 78 206 

C.3 Updated Minimum Distance Lower Bounds of Linear Codes C = [n, k] for 175 < n < 
224 and 79 < < 100 207 

C.4 Updated Minimum Distance Lower Bounds of Linear Codes C = [n, k] for 225 < n < 
256 and 48 < A: < 62 208 

C. 5 Updated Minimum Distance Lower Bounds of Linear Codes C = [/i, k] for 225 < /* < 
25G and 03 < / ; < 76 209 

D. l Modular congruence weight distributions of 211 
D.2 Modular congruence weight distributions of ^ 1 9 212 
D.3 Modular congruence weight distributions of .^43 213 
D.4 Modular congruence weight distributions of ^ 5 9 215 
D.5 Modular congruence weight distributions of 217 
D.6 Modular congruence weight distributions of 219 
D.7 Modular congruence weight distributions of ^ 1 3 221 
D.8 Modular congruence weight distributions of ^29 222 
D.9 Modular congruence weight distributions of ^53 223 
D. 10 Modular congruence weight distributions of SSQI 226 

E . l Weight distributions o fQR and extended Q R codes of prime 151 229 
E .2 Weight distributions o fQR and extended Q R codes of prime 167 230 



List of Figures 

Figure Page 

1.1 Transmitter of a typical communication system without coding 6 
1.2 Transmitter of a typical communication system with coding 6 
1.3 The minimum to achieve a given probability of bit error for continuous-input 

AWGN and binary-input AWGN channels 21 

2.1 Representations of a (16,4,4] L D P C code 30 
(a) Parity-check matrix 30 
(b) Tanner graph 30 

2.2 Waterfall and error regions on F E R performance over AWGN channel 31 
2.3 F E R performance of binary cyclic L D P C codes 46 

(a) [127,84,10) cyclic L D P C code 46 
(b) (127,99,7) cyclic L D P C code 46 
(c) [255,175,17] cyclic and [255,175,6] irregular P E G L D P C codes 46 
(d) [341,205,16) cyclic and [341,205,6] irregular P E G L D P C codes 46 

2.4 F E R performance of non binary cyclic L D P C codes 51 
(a) (51,29, > 5)22 cyclic L D P C code 51 
(b) [21,15, > 5)20 cyclic L D P C code 51 
(c) [85,48, > 7)2-1 cyclic L D P C codes 51 
(d) (255,175, > 17)22 cyclic L D P C codes 51 

2.5 F E R performance of algebraic and irregular L D P C codes of rate 0.6924 and block 
length 5461 bits 52 

2.6 Effect of vertex degree ordering in P E G algorithm 53 
2.7 Effect of low degree variable vertices 53 
2.8 Effect of high degree variable vertices 55 
2.9 Effect of varying low degree variable vertices 56 
2.10 Effect of varying high degree variable vertices 57 

3.1 Hartmann Rudolph decoding algorithm: optimum and non optimum performance . . 63 
(a) [7,4,3) Hamming code 63 
(b) [63,51,5) B C H code 63 
(c) (21,11,0] difference set cyclic code 63 

3.2 Behaviour of the Hartmann-Rudolph decoding algorithm for [63,51,5] B C H code at 
Ei,INo = 5.0 dB 65 
(a) Correct bits in a correct block 65 
(b) Correct bits in an incorrect block 65 

3.3 F E R of the Codeword-Substitution belief propagation decoder 68 
(a) (63,37,9] cyclic L D P C code 68 
(b) [93,47,8) cyclic L D P C code 68 
(c) (105,53,8) cyclic L D P C code 68 

3.4 Performance improvement by grouping the component codes 69 

4.1 C4 and C | revolving-door combination patterns 83 

5.1 Minimum distance and its extremal bound of doubly-even self-dual codes 131 

V l l 



6.1 The structure of incremental correlation Dorsch decoder 140 
6.2 Outline ofthe incremental correlation Dorsch decoding algorithm 141 
6.3 Position of T{W) in the first k coordinates of a received vector 142 
6.4 F E R performance of the [136,68,24] quadratic double-circulant code as a function of 

the number of codewords enumerated 143 
6.5 Probability of maximum likelihood decoding as a function ofthe number of codewords 

evaluated for the [136,68,24] quadratic double-circulant code 144 
6.6 Magnitudes of an example received vector, ordered by T T , at E^/No = 2.5 dB 145 
6.7 Cumulative probability distributions of wt/y (zt'J) at Et/No = 3.5 dB 146 
6.8 F E R performance ofthe [154,77,23] best known linear code 147 
6.9 F E R performance ofthe [255,175,17] cyclic L D P C code 147 
6.10 F E R performanceofthe [128,64,22] extendedBCH code 148 
6.11 F E R performance ofthe [1023,983,9] primitive B C H code 149 
6.12 F E R performance ofthe (513,467,12) extended Goppa code 149 

7.1 Lattice of extended cyclic codes 158 
7.2 Transmission stages of a typical incremental redundancy ARQ scheme 159 
7.3 Incremental redundancy system employing C R C 160 
7.4 CRC-less incremental redundancy system, using output of two successive F E C decod

ing for error detection 161 
7.5 CRC-less incremental redundancy system, using confidence of F E C output for error 

detection 163 
7.6 Comparison of A *̂* and A^*' under sofl-decision list decoding 168 

(a) Eb/No 2.0 dB, [128,113,6] 168 
(b) Eb/No 5.5 dB, [128,113,6] 168 
(c) Eb/No 2.0 dB, [136,113,8] 168 
(d) Eb/No 5.5 dB, [136,113,8] 168 

7.7 F E R performance of the IR-ARQ scheme based on extended B C H codes of length 128 . 170 
7.8 Average throughput ofthe IR-ARQ scheme based on extended B C H codes of length 128170 
7.9 Incremental redundancy system, using combined C R C and the confidence of F E C 

output for error detection . 1 7 1 
7.10 F E R performance of the approach using C R C combined with confidence of F E C output 172 
7.11 Average throughput of the approach using C R C combined with confidence of F E C 

output 172 

8.1 Distance to the sphere packing lower bound at 10"^ F E R of rate 1/2 L D P C codes and 
best known linear codes 180 

A . l Code construction using a protograph 188 
A.2 F E R performance ofthe DVB-S2 and the designed [64800,48600] L D P C codes 190 

V l l I 



Acknowledgements 

This thesis would not be available without the help and support that I obtained whilst I was regis

tered as a PhD student in the University of Plymouth. I would like to express my sincere gratitude 

to everyone who has helped and supported me in this work. 

First of all, it has been a privilege to have Martin Tomlinson as my director of studies. Thanks 
for all the constant help, support, guidance and encouragement during my research. Thanks also 
for giving chances to visit other parts of the world as well as your huge effort in getting me as a 
member of staff in the university. 

My other supervisors, Mohammed Zaki Ahmed and Marcel Ambroze, thanks for your support and 
friendship. I really enjoyed the tour and dinner that we had and to Zaki, thanks for your 'holiday-
package* in Kuching during your wedding. 

I would like to acknowledge Emmanuel Ifeachor and Joachim Hagenauer-my internal and external 

examiners respectively, for providing their valuable feedback on this thesis. 

The University of Plymouth, for awarding me scholarships in my studies. In fact, I am indebted to 
Carole Watson, who made the university scholarship possible. 

The PlymGRID team of the University of Plymouth, for the high throughput computing resources. 

Without the grid, some of the results in this work would not be feasible. 

Markus Grassl, for providing me with a preprint of Zimmermann (1996) and also for some very 
useful discussion on coding theory. 

My colleagues in Smeaton 209 (Purav Shah, Evangelos Papagiannis, Jing Cai , Xin Xu, Ismail Isnin, 

L i Yang, and Keiko Takeuchi), for your pleasant company, friendship and of course, parties. Thanks 

to Purav Shah, for proof-reading parts of this thesis. 

Ivy Tiam, for your love and support in any sort of difRculty that I had. 

Finally, my beloved family-my parents, sisters and brother, for all your support throughout the 
years. In particular to my parents, for all the advice, guidance and sacrifices that you have made. 
Without them, I will not be able to reach this far 

IX 



Author's Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author been regis

tered for any other University award without prior agreement of the Graduate Committee. 

This study was financed in parts with the aid of the university scholarship, the Overseas Research 

Student Award Scheme and the Faculty of Technology scholarship. 

A programme of advanced study was undertaken, which included the extensive reading of liter

ature relevant to the research project and attendance of international conferences on coding and 

communications. 

The author has published papers in the following peer-reviewed international journals: 

1. L E T Proceedings Communications (1 paper: volume 1, June 2007, pages 479-488); 

2. l E E Proceedings Communicatiosn (2 papers: volume 153, October 2006, pages 581-585; vol

ume 153, April 2006, pages 256-262); 

3. Electronics Letters (2 papers: volume 41, no. 3, March 2005, pages 341-343; volume 43, no. 

4, February 2007, pages 234-235); 

and has presented papers in the following international conferences: 

1. I E E E Information Theory Workshop, Rotorua, New Zealand, 28 August - 1 September 2005; 

2. I E E E Information Theory Workshop, Chengdu, China, 22-26 October 2006; 

3. the 4th International Symposium on Turbo Codes in connection with the 6th International 

ITG-Conference on Source and Channel Coding, Munich, Germany, 3-7 April 2006; 

4. the 10th I E E E International Conference on Communication Systems, Singapore, 30 October -

1 November 2006; 

5. the 8th International Symposium on Communication Theory and Applications, Ambleside, 

Lake District, U K , 17-22 July 2005; 

6. the 9th International Symposium on Communication Theory and Applications, Ambleside, 

Lake District, U K , 16-20 July 2007; 

7. I E E E International Magnetic Conference, Nagoya, Japan, 4-8 April 2005; and 

8. I E E E International Magnetic Conference, San Diego, USA, 8-12 May 2006; 

In addition, the author has also applied for three U K patents (GB0409306.8, GB0428042.6, GB0637114.3) 

and a U S patent (11751313). 

XI 



Word count of main body of thesis: 62876 

Signed 

Date 

^ J . J J . ^ ^ 

02 5" Stf-fct^Ur 

Xl l 



Part i 

Introduction and Background 



1 Introduction 

Suppose that we want to send a message from one end of a communication link to another and we 

want to make sure that, upon receiving the transmitted message, the receiver makes a decision 

as to what was transmitted with a minimum probability of error. Errors are inevitable in practi

cal communication systems and they may be caused by noise, interference, distortion and fading. 

Error correcting codes provide a means of ensuring reliable information transfer from source to 

destination, and is the subject of this thesis. 

1.1 Channel Coding and Reliable Communications 

The development of digital communications has made channel coding possible. Harry Nyquist may 

be regarded as the founder of digital communications. Nyquist's (1924) paper investigated the max

imum possible transmission rate that is free from intersymbol interference for a bandlimited chan

nel in telegraph transmission. It was shown by Nyquist (1924) that given a channel of bandwidth 

B Hz, the maximum theoretical signalling rate without suffering from intersymbol interference is 

2D symbols per second. This rate of 2/? symbols per second is commonly known as the Nyquist rate 

in sampling theorem*. He also found that this rate was only possible for certain pulse shapes such 

as that of the form sinc(/.). 

Another important work in the early development of digital communications was that of Hartley 

(1928). Ralph Hartley realised that electronics do not have infinite precision and the ability of a re

ceiver to reliably detect the transmitted signal depends on this precision. This, in turn, dictates the 

maximum rate for reliable transmission over a communications channel. Hartley's (1928) argument 

may be restated as follows. Assume that the amplitude of the transmitted signal has minimum and 

maximum values of - i 4 and A respectively, and the precision or accuracy of the receiver is ±5, This 

signal may be divided into slots of size 26 and there are 

M 

slots of this size. I f we consider that these M levels may be represented by a binary sequence, 

then the length of this binary sequence is simply k = log2(M). Coupled with the work of Nyquist 

(1924), this means that signals may be transmitted and reliably distinguished at the receiver at a 

•The term sampling theorem was first coined by Shannon (1949) and in fact, the idea behind sampling has been known 
before Shannon's publication. Edmund Taylor Whitiakcr, an English mathemotician, may be regarded as the originator 
of the sampling theorem. His work on sampling-although it was not called sampling then, wos published in the 1915 
Proceedings of the Royal Society of Edinburgh, Section A, vol.̂ 35, pages 181-194, entitled "On the functions which are 
represented by the expansions of the interpolation theory". For a more detailed discussion of the origin of sampling theorem, 
refer to Luke (1999). 
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maximum rate of 

n = 2I3 Iog2 ^1 + y j bits/second (1.1) 

R = B log2 ^1 + bits/second (1.2) 

assuming that the channel bandwidth is B Hz. 

Two decades later, Shannon (1948) published his landmark paper on coding and information 

theory, which showed that the capacity of a channel C of bandwidth B, perturbed by additive white 

Gaussian noise (AWGN) is given by 

C = flIog2 (l + ^ ) bits/second (1.3) 

where 5 is the average received signal power and is the average noise power We can see that 

there is a striking similarity between Hartley*s (1928) (1.2) and Shannon's (1948) (1.3) formulations; 

the term A/6\sa voltage ratio, whereas S/N is a power ratio. In the literature, it is common to see 

(1.3) being referred to as Shannon-Hartley capacity theorem-

Shannon (1948) postulated that communications over a noisy channel with arbitrarily small 

error probability is theoretically possible as long as the transmission rate R is kept below this 

capacity C. Shannon*s (1948) theorem, which is also commonly referred to as the noisy channel-

coding theorem, shows that the effect of noise on the communication link is not on the reliability 

of communication, but on how fast we can signal. This essentially means that signal power 5 and 

channel bandwidth B are two of the factors that affect the limit of communications, and we may 

compensate one for the other. We may for example, reduce j S at a cost of increased 5 or reduce 5 at 

a cost of increased B to achieve a given reliability. In terms of achieving the capacity C , it is worth 

noting that increasing the power or bandwidth alone may not be an option. This is because there 

is a limit on how much power we can increase and as shown in (1.3), the increment is slow since it 

is logarithmic. Increasing the channel bandwidth, on the other hand, has two contradicting effects 

since the average noise power is proportional to the bandwidth, i.e. 

N = !^2B = NoB (1.4) 

where is the two-sided noise power-spectral density of the AWGN channel (Proakis; 2001; 

Sklar; 2001). Using this relationship, we can rewrite (1.3) as 

C = B logs ^1 + j ^ r ^ ) bits/seconds • 

and the two contradicting effects of increasing B are obvious in this equation. 

It is interesting to examine what was the engineering perception to achieving reliable commu

nication prior to Shannon's (1948) formulation. Consider a communication system which transmits 

a sequence of waveforms corresponding to binary sequences. It is assumed that a one is mapped 

to the waveform s{t) - g{t.) and a zero is mapped to the waveform s{f.) = -(j{t) where g{t.) is an 

arbitrary waveform which has non zero ampHtude at intervals 0 < £ < T . This type of mapping is 
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known as the binary antipodal signalling. At the receiving end, a signal t / (0 = 5(i)+Ti(t) is received, 

where n{t) represents white Gaussian noise of zero mean and variance o-̂ . Matched filtering of the 

transmitted waveforms is carried out in the receiver prior to detection. A bit error is made if a 0 

is sent but a 1 is decided at the receiver and vice versa. For a binary communication system with 

two equiprobable a priori digits, the probability of bit error Pa may be expressed in terms of the 

Euclidean distance between the two signal points corresponding to digits 0 and 1, and the noise 

variance (Sklar; 2001) 

PB=Q (1.5) 

where Q(x) is the Q-function, i.e. 

^ 2 

For binary antipodal signalling, it is sufficient to use just one matched filter and we know that the 

two signal points are located at ±y/Ei, where £(, is the energy per information bit. It is clear that 

= 2y/Ei and following Proakis (2001) and Sklar (2001), 

^2 = A'o/2. (1.6) 

Thus the probability of bit error of bandlimited AWGN channel with binary antipodal signalling 
is given by 

Since energy is a product of power and time duration, i.e. Ef, = ST^ = S/R where R. = l/Tf, is the 
bit rate, we can also write 

PB=Q . r - ^ . (1.7b) 

From (1.7b), we can see that in order to increase transmission reliability, we may increase the 

transmitter power or increase the bit duration (i.e. to reduce bit rate). Transmitter power cannot be 

increased indefinitely, each transmitter has a limit on the average power and there are regulations 

on this issue. Thus, the only option to have reliable communication is to reduce the transmission 

rate and in order for PB -* 0, it is necessary that Rt, —* 0 or 'I\ —• oo. This was how reliable 

communication was viewed before 1948. 

Shannon's (1948) work completely changed this perception and showed that reliable communi

cation may be achieved by means of channel coding. Given a block of message or information bits, 

channel coding adds redundancy in a structured and efficient manner to produce a block of longer 

length, known as codeword. How do the additional redundant symbols help to achieve reliable 

communication? In order to answer this question, consider the following scenario. 

Consider a block of k bits binary information sequence and assume that no channel coding is 
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Source 
k l>its 

R= TP^ bits/seconds 

M = 2' 

Modulator 

It 
R 

k/s symbols 

syml)ols/scconcls 

Figure 1.1: Transmitter of a typical communication system without coding 

Source 
k bits 

R = ^ bits/seconds 

n,k,d\2 

Encoder 
n bits 

M = T 

Modulator 
ii/.s synilDols 

Rr = '^R bits/seconds R^ = — symbols/seconds 
k s 

Figure 1.2: Transmitter of a typical communication system with coding 

employed, see Figure 1.1 for the block diagram representation of the transmitter of this system. 

The source emits one bit of information every seconds and we assume that the modulator groups 

every s information bits, where s < k, and assigns a waveform to represent these s bits. With 5 = 1, 

there are M = 2^' possible distinct waveforms, {7ni ,m2, . . . J T T I M } , and it is assumed that m j is the 

transmitted waveform and that binary antipodal equiprobable signalling is employed. The energy 

in each information bit is Eb and since each information contains k bits, the total energy is E = kEb 

and it is clear that the minimum number of differences among the k bits between any pair in the 

M waveforms is 1. This result holds for any value of k and it corresponds to a minimum Euclidean 

distance of da; = 2\/E^. Using an optimum detection criterion, the receiver makes a decision error 

if the squared Euclidean distance of m i with respect to received vector y is larger than that of m,-, 

for 2 < i < A'/, with respect to the same received vector. For a given value of i", the probability of 

this error Pc is simply equal to (1.7a). Let Si, where 2 < / < M, denote the event that the squared 

Euclidean distance of is closer to that of transmitted waveform m i , with respect to the received 

vector y. Using the union bound argument (Proakis; 2001), the message error probability PM is 

upper-bounded by 

PM = PTI [ j Si 
2<i<M 

2<i<M 

< {M - 1)Q 
No 

(1.8) 

The transmitting end of a communication system that uses coding may be seen as in Figure 1.2. 

Initially, k bits of information is encoded into a codeword of length n bits where 71 > k. We have, as 

before, the total energy E = kEi, and denoting Ec by the energy per transmitted bit in a codeword. 
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we also have E = nEc for the encoded block. Therefore, we can write 

Ec = -Eb. (1.9) 

A digital modulator groups every 5 bits in a codeword and a waveform is assigned to these s bits. I f 

Eg is the energy per waveform, we also have E = -Eg. To make a fair comparison with the uncoded 

case, we let s = 1. The effect of the n - k additional redundant bits is to increase the number of 

differences between any pair of codewords in the set of 2̂ ' codewords. Let d denote the minimum 

number of differences, the corresponding Euchdean distance becomes rf^ = • 2 v ^ . Using (1.5) 

and (1.9), the probability of one codeword or message error is 

Pr.=Q 

and as before, using the union argument, the codeword or message error probability is upper-
bounded by 

P . < ( A . - l ) < ? ( ^ ( . . J ) f ) . (1.10) 

Comparing (1.7a) and (1.10), we can immediately see that there is a ratio of 

7c = '/ - - (1.11) II 

in their difTerence and this ratio is called the asymptotic coding gain. In contrast, the real coding 

gain is a measure of the amount of power saving that can be attained with coding compared to 

without coding for a fixed probability of error. In general, the asymptotic coding gain is not equal to 

the real coding gain, but the quantity jc may be regarded as a reliable indicator of how good a code 

is without the need of running long experiments or simulations. 

It is obvious that if a coding scheme for which d > n/k can be devised, reliable communication 

is possible. Of course, there is a price to pay for this gain. In an uncoded case, we need to transmit 

k bits for a given duration and with coding, n - k more bits need to be transmitted in the same 

duration. This means that, assuming that the same type of modulation is employed in both coded 

and uncoded schemes {s = 1), the bandwidth required has been expanded by a factor n/k. It is 

worth noting that with trellis-coded modulation, of Ungerboeck (1982), 5 7^ 1 and coding does not 

necessarily require bandwidth expansion. 

Consider the block diagram depicted in Figure 1.2 and assuming that we are transmitting infor

mation over a channel of bandwidth B Hz at bit rate equal to the channel capacity, R = C. There are 

two important parameters encapsulated in Shannon*s capacity equation for AWGN channel, (1.3): 

the spectral efficiency in bits per second per Hertz and a dimensionless quantity, the signal-to-noise 

ratio (SNR). Given an AWGN channel of bandwidth D Hz, the spectral efficiency of a coding system 

that transmits R bits per second is 7; = R/B bits per second per Hertz. Following Costello, Jr. and 

Forney, Jr. (2007), the spectral efficiency may be written as ?; = 2rd where is the discrete-time 

code rate of the coding system. Since S = E^R and N = NQB, Shannon's capacity formula in (1.3) 
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may be rewritten in terms of the discrete-time code rate as 

2 . . = l o g , ( n - 2 r . | ) 

No ~ 2rd • 
(1.12) 

Equation (1,12) gives a limit of Et/No (in dB) for various discrete-time code rates to achieve er

ror free communications, for instance EIJ/NQ > 0 dB for = 1/2; E^/NQ > 0.86 dB for Vd = 3/4; 

Eb/^o > 1-36 dB for = 8/9; and so forth. This formulation is asymptotic in the sense that it 

assumes zero probability of error, infinite block length and also infinite input alphabet size (contin

uous input). For the case = 0, we have Et/No > -1.6 dB and this value o f -1 .6 dB represents 

the ultimate Shannon's limit to achieve error free communications. For any communication sys

tem, unless the Eb/i^o operating point is larger than -1.6 dB, reliable information transfer is not 

guaranteed. Reliable communication may be achieved by means of coding scheme which has 7c > 1. 

The promise of coding to achieve reliable communications has created a new line of research 

in both mathematics and communication theory. Many research efforts have bieen devoted to this 

subject and to date, there have been many different coding schemes developed. Nowadays, channel 

coding is an integral part in not only almost every communication systems, but also in storage 

systems. Section 1.3 gives an outline of some major milestones in the development of coding since 

Shannon's (1948) landmark paper to date. In order to aid the description of the history of coding 

as well as the description of the rest of the chapters in this thesis, some useful definitions and 

notations are given in Section 1.2. 

1.2 Definition and Notation 

i . i Definition (Linear code). Let F^' denote an ?i-dimensional vector space over a finite field of 7 j 

elements, F^,. An [n,k,d]q linear code C is a A:-dimensional subset ofF'^. The quantity d is called 

the minimum Hamming distance of the code, see Definition 1.6. Each vector in the fc-dimensional j 

subset of F;^\ which has length of /i symbols, is called a codeword and may be denoted as c =j 

( c o , c i , . . . , c „ - i ) . . ; , •• 

The term linear arises from the fact that a codeword may be obtained from linear combinations 

of other codewords and the component-wise sum of all codewords is an all zeros vector. It is assumed 

that operations such as addition and multiplication are performed under the algebra of Fg. 

Note that, throughout this thesis, if the subscript q is dropped from the notation of C, i.e. (71, k, d], 

we shall assume that it means [n,k,d]2. 

1.2 Definition (Code rate). The code rate of an {n,k,d]g linear code C is the ratio k/n. 

1.3 Definition (Hamming weight). For a vector v = {vo,vu- • - , 1 ^ 1 1 - 1 ) e F " the Hamming weight of 
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v-denoted by wt//(v), is the number of non zero elements in the vector. That is ' 

wt/y(t;) = | { y , - 5 i O | 0 < i < n - l } | 

1.4 Definition (Support), The support of a vector i; e F^', siip(v), denotes'a set of coordinates of v 

for which the value is non zero, 
,- . 

sup {V) = {i I Vi # 0, 0 < i < 7( - 1}. 

L5 Definition (Hamming distance). Let vectors u,v ^ FJ '̂, the Hamming distance of u and v, de

noted by (\H {U,V), represents the number of coordinates in which u and v do not agree, 

d,/ {u,v) = wt,/ { u - v ) = \ {(rii - u , ) 7^ 0 I 0 < t < 7J - 1} I . 

1,6 Definition (Minimum Hamming distance). The minimum Hamming distance of C, denoted by I 

d, is the smallest value of all Hamming distances between any two distinct codewords of C. Because j 

of the linearity property, d can also be defined as : 

d=imn{6ti{c,c') | for all c, c ' e C} 

= iiiiii{\vt//(c) I for all c e C} . 

A code of Hamming distance d is capable of correcting all 0 < £ < [{d - 1)/2J symbol errors. 

1.7 Definition (Generator matrix). An [n, k. c/)̂  linear code C has a generator matrix G , which con

tains k linearly independent codewords of C. A codeword c e C may be obtained by taking anyl 

linear row combination of G , an A; x n matrix. j 

The matrix G can be transformed into a reduced-echelon or systematic form by elementary row 

operations and if necessary, some column permutations. In systematic form, the first k coordinates 

of G is an identity matrix. Hence, for an arbitrary information vector u € F j , c = uG and c € C is 

a systematic codeword where the first k symbols are u and the remaining n - k coordinates contain 

the redundant symbols. 

1,8 Definition (Parity-check equation and matrix). The parity-check matrix / / - a n (n - k) x n 

matrix, of a code C contains n-A: linearly independent vectors of F^' so that GH^ = 0. Equivalcntly, 

this implies cH^ = 0 for all c € C. Each row in the matrix H is called a parity-check equation. 

Similar to G , H may be transformed into a reduced-echelon form such that the last n-k columns 

of H form an identity matrix. Given an arbitrary information vector w G F j , c € C may also be 

obtained from H, which is in reduced echelon form, by taking the component-wise product of u and 
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the first k columns of H, i.e. the ith parity-check symbol is UH] where Hi is the ith row of a matrix 

formed from the first k columns of H. 

1.9 Definition (Dual code). The dual code of an [n,k,d]^ linear code C, denoted by C-^, is an [n ,7 i - , 

k, d'\q linear code where c-^c'̂  = 0 for all c G C and all c-̂  € C-^. . : 

While any linear row combination of G produces c, any linear row combination of i f produces 

c-*-. The matrices H and G are the generator and parity-check matrices of respectively. 

Definition (Syndrome). Given a vector v e F J , the vector s e defined by 

i S = VH'^ 

' -̂ ' • > 

is the syndrome of a code whose parity-check matrix is H. If the vector v eC, then 5 = 0 otherwise' 

at least one coordinate of s has non zero value. , ; „ , : ^ 

i . i i Definition (Hamming weight enumerator polynomial and weight distribution). Given ari{ 

[n,k,(i],j linear code C, let Ai - \ {wt / / (c) = i | for all c G C} |, i.e. the number of codewords of 

Hamming weight L The Hamming weight enumerator polynomial of C is given by 

i 

where z is an indeterminate. The distribution of Ai for 0 < / < v. is known as the weight distribu-; 

tion of C. 

1.3 Historical Development of Channel Coding 
Shannon (1948) did not show how to devise a coding scheme that maximises the quantity 7c, al

though he did give an example of encoding 4 bits of information to a codeword of 7 bits long. This 

coding scheme, which is due to R. Hamming, has = 3 and this translates to 7c = 1.714 or equiva-

lently 2.34 dB. Assuming binary antipodal signalling, plotting (1.7a) against Eb/No, we will see that 

Pg =z 10"^ is achieved at Eb/No = 9.6 dB. Compared to the ultimate Shannon's limit, the coding 

scheme due to Hamming is approximately 8.86 dB away and obviously there must be a better coding 

scheme that can bring the gap to Shannon's limit closer. This sparked challenges to communication 

engineers and mathematicians to design codes that maximise d for a given n and k (or equivalently 

maximise k for a given d and ?/). The quest to approach Shannon's limit began and this also marked 

the birth of coding theory. 

The scheme introduced by Hamming, which was subsequently called the Hamming codes and 

was published in Hamming (1950), is a class of binary codes, with parameter [2'" - 1,2"* - 1 - m,3l 

for m > 2, that is capable of correcting any single error The example given in Shannon (1948) is 

for rn = 3. It is interesting to note that, according to Blake (1973), F i s h e r \ before coding theory 

* Fisher, R. (1942), "The theory of confounding in factorial experiments in relation to the theory of groups", Ann. Augenics, 
11.341-353 

10 
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was even bom, the Hamming code of length 15 bits was already known, along with its weight 

distributions. In addition to Hamming's (1950) work, Golay (1949) introduced a 3-error correcting 

codes which added I I bits of redundancy to protect 12 bits^of information. The (23,12,7)2 Golay 

code has become a toy code for mathematicians due to the very nice structure the code possess. All 

patterns up to 3 errors are uniquely represented by the 2̂ ^ syndromes. A code that satisfies this 

property, which may be mathematically stated as E l i V ^ ^ ^ {")(*/ ~ = *s called a perfect or 

lossless or close-packed code. To date, the Hamming codes, the [23,12,7)2 and 6,5)3 Golay codes 

are the only non-trivial perfect codes known. 

Studies of error-correcting codes in the 1950s were code-specific. A generalisation to the theory 
of error-correcting codes, including the decoding method (using the standard array), was given by 
Slepian^. The generalised decoding method, however, is only efficient for very short codes. Never
theless, Slepian's work is an important contribution to coding as it sets an algebraic framework to 
this subject. 

It soon became clear that finding a good coding scheme is not the only problem to approach the 

Shannon's limit. Given a code that could theoretically give large coding gain, the complexity of the 

matched filter decoder was often prohibitive to realise this gain. Hamming and Golay codes are good 

examples. The technologies in the 1950s only allowed exhaustive decoding of some very short codes 

such as the [7,4,3)2 Hamming code. The Golay code which gives 7c = 5.G3 dB, on the contrary, had 

impractical decoding complexity Thus, there are contradicting aims to approach Shannon's limit; 

long codes which have larger coding gain are undecodable practically, meanwhile short codes which 

have practical decoders are not effective. I t is not surprising that not long after Shannon's (1948) 

formulation, there was a great deal of effort dedicated towards the construction of codes which have 

efficient decoder structures. 

A simple decoding, but non optimum, method suitable for the technology in the 1950s wias the 

one based on majority voting, the majority logic decoding. A class of binary codes that could be 

decoded in this manner was given by Muller^ and an efficient majority logic decoding algorithm 

was introduced by Reed'*. These codes arc subsequently known as the Reed-Muller (RM) codes. 

Similar to the case of the (15,11,3)2 Hamming code, according to Peterson and Weldon, Jr. (1972), 

the R M codes had already been known by Mitani^ in 1951. The R M codes are a precursor to a class 

of majority-logic decodable codes which include the difference set cyclic codes of Weldon, Jr. (1966) 

and the finite geometry codes. 

Albeit having low decoding complexity, the error correcting capability of R M codes is relatively 

poor and a quest for better codes with simple decoders was necessary Communication engineers 

and mathematicians started to associate algebra with the design of codes and the outcomes were 

fruitful; the discovery of the Bose-Chaudhuri-Hocqucnghem ( B C H ) and Reed-Solomon (RS) codes. 

The B C H codes were discovered independently by Hocquenghem** in 1959 and by Bose and Ray-

^Slcpian, D. (1956), "A class ofbinory signalling alphabets", Bell System Technical Journal, 35, 203-234 
^Mullcr, D. (1954), "Application of Boolean olgcbra to switching circuit design and to error detection", IRE Transactions 

on Electronics and Computers, 3, 6-12 
^Reed, I., (1954), "A class of multiple-error-correcting codes and the decoding scheme", IRE Transactions on Information 

Theory, 4, 3&-49 
^Mitani, N. (1951), "On the transmission of numbers in a scquentio) computer," National Convention of the Institute of 

Electrical Communication Engineers of Japan 
''Hocquenghem, A. (1959), "Codes correcteurs d*crreurs", Chiffres, 2, 147-156 

11 
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Chaudhuri' in 1960. They are t-error correcting linear codes which have a decoder that is guar

anteed to correct all error patterns up to t errors. In addition to having low complexity decoder, 

the B C H codes also have rich mathematical structure and in fact they form a subclass of codes 

introduced by Prange in 1957^ and 1958®, cyclic codes. The cyclic nature of the B C H codes was 

first shown by W. W. Peterson in his paper in 1960̂ **. This paper was also the first that described 

the error correction procedure for binary B C H codes. The decoding procedure for non binary B C H 

codes was attributed to Gorenstein and Zierler in 1961". Both decoding techniques, however, are 

not efficient and Berlekamp*^ in 1966 and Massey^^ in 1969 set an important milestone in channel 

coding with their invention of an efficient decoding algorithm for B C H codes. 

Another important class of algebraic codes are the R S codes, which were discovered by Irving 

Reed-who also invented the R M codes, and Gustave Solomon". This class of codes turn out to 

be a special case of B C H codes and they are optimum in the sense of having the highest error 

correcting ability attainable by any linear code of the same field. The decoding algorithm developed 

by Berlekamp and Massey is applicable to RS codes. The fact that R S codes are non binary, optimum 

and efficiently decodable has attracted a great deal of practical interest. Each non binary symbol 

in a codeword of an R S code may be mapped to a binary vector and since the optimality of R S codes 

is defined symbol-wise, this created an opportunity for R S codes to be used in applications that 

require burst error correction. 

All the efficient decoding procedures introduced in the period of the 1950s and 1960s involve 

quantisation of the received signal to levels which are equal to the field size of the code. This, 

inevitably, results in a loss as the reliability information of each symbol is excluded by the decoder. 

It was realised that in order to bring the gap to Shannon's limit closer, this loss-which is typically 

2 dB for binary quantisation, must be eliminated. The hard-decision decoder is the name given to 

the decoder that does not take the symbol reliability information into account and the one that does 

is called a soft-decision decoder In this period, the lack of development in soft-decision decoding was 

attributed to its complexity, which is of course higher than that of the hard-decision counterpart, 

and also the state-of-the-art of electronics at the time. 

Another important development in channel coding was the invention of convolutional codes by 

El ias in 1954*^. All the codes mentioned earlier fall into a type known as block codes. With block 

codes of length n symbols and dimension k symbols, each user message is partitioned into blocks of 

'Bose, R and Roy-Chaudhuri, D. (1960), "On a class of error correcting binary group codes", Information and Control, S, 
6S-79 

^Prange, E . (1957), "Cyclic error-correcting codes in two symbols", Report AFCRC-TN-57-103, Air Force Cambridge 
Research Center, Bedford, Mass, USA 

^Prange, E . (1958), "Some cyclic error-correcting codes with simple decoding algorithms", Report AFCRC-TN-58-156, Air 
Force Cambridge Research Center, Bedford, Mass, USA 

^opctcrson, W. (1960), "Encoding and error-correction procedures for the Bose-Chaudhuri codes", IRE TransactionB on 
Information Theory, 6, 459-470 

*^Gorenstein, D. and Zierler, N. (1961), "A class of error-correcting codes in p*" symbols", Journal of the Society for 
Industrial and Applied Mathematics, 9, 207-214 

*2BcHekamp, E . (1966), "Nonbinary BCH decoding". Institute of Statistics Mimeo Series 502, Dept. Statistics, University 
of North Carolina, Chapel Hill, N.C. 

»3Massey. J . (1969), "Shia-register synthesis and BCH decoding", IEEE Transactions on Information Theory, 15, 122-127 
"Reed, I. and Solomon, G. (1960), "Polynomial codes over certain finite fields", Journal of the Society for Industrial and 

Applied Mathematics, 8, 300-304 
^^Elias, P. (1954), "Error-free coding", IRE Transactions Information Theory, 4, 29-37 
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k symbols. Each of these blocks is mapped to a larger block, n symbols, which is then used for trans

mission. With convolutional or recurrent codes, however, partitioning of user messages is avoided. 

The convoiutional encoder reads a small fraction of the user message-say k' symbols, and generates 

a block of length n' symbols, where n' > k\ for transmission. Each of the n ' symbols generated does 

not depend on the current k' symbols of the user message only, but it is also a function of some 

previous symbols of the user message. The number of symbols in the previous user message that 

are involved in generating a block for transmission are dictated by the memory or constraint length 

of a convolutional code. Unlike block codes, the structure of convolutional codes with short mem

ory allows efficient implementation of sofl-decision decoding algorithms. Sofl-decision decoding of 

convolutional codes was first introduced by Wozencrafl in 1957^^ which was then improved by Fano 

in 1963*^. This decoder, known as a sequential decoder, is a suboptimal sofl-decision decoder. The 

suboptimality was solved with the introduction of a maximum likelihood decoder, known as the 

Viterbi algorithm (Viterbi; 1967), which was further developed by Forney, Jr. (1973) using trellis 

diagrams. The introduction of a trellis diagram for convolutional codes marked another important 

milestone in channel coding. Efficient optimum sofl-decision decoder of convolutional codes would 

not be possible without the knowledge of their trellis representation. The Viterbi's (1967) algo

rithm is optimum only in terms of the detected codeword, that is the algorithm returns a codeword, 

which among all of the possible transmitted codewords, has the highest probability of being correct 

for a given sequence received from the channel. There also exists optimum sofl-decision decoders 

in terms of symbol, that is for a given coordinate in a received sequence, this decoder returns a 

symbol that has the highest probability of being correct compared to the other symbol possibilities. 

The algorithms by Bahl et al. (1974) and Hartmann and Rudolph (1976) are instances of optimum 

symbol-by-symbol sofl-decision decoders. It is worth mentioning that the algorithm by Bahl et al. 

(1974), which is subsequently known as the B C J K algorithm, also makes use of a trellis diagram. To 

the best of the author's knowledge, the trellis-based optimum sofl-decision decoder for block codes 

was also first introduced by Bahl et al. (1974). While the trellis representation of convolutional 

codes is invariant over time, this is not the case for block codes and as a consequence, it prohibits 

the development of efficient, optimum sofl-decision decoders for block codes. It is not surprising 

that, in the 1990s, one of the active research subjects was the trellis complexity of block codes. 

In general, the longer the code the larger the coding gain. Forney, Jr . (1966) introduced a coding 

scheme which allowed two codes-a non binary outer code and a binary inner code, to be cascaded 

to form a longer and more powerful binary code. This coding scheme, which is termed concatenated 

codeSf restricts the decoding complexity to that of the component codes. This is because the decod

ing can be done in two stages: inner code decoding in the first stage, followed by outer code decoding 

to correct the residual errors from the decoding of the inner code. The Consultative Committee on 

Space Data Systems (CCSDS) adopted Forney, Jr.'s (1966) concatenation as the N A S A / E S A Teleme

try Standard in 1987 (Costello, Jr. et al.; 1998). The adopted arrangement used a rate 1/2 convo

lutional code as the inner code and a (255,223,33)28 R S code as the outer code. A generalisation of 

Forney, Jr.'s (1966) concatenation was introduced by several Russian mathematicians, Blokh and 

Zyablov (1974) and Zinov'ev (1976). The resulting work has resulted in the construction of many 

^''Wozencrafl, J. (1957), "Sequential decoding for reliable communication", 1957 National IRE Convention Record, 5(2), 
11-25 

^'Fano, R. (1963), "A heuristic discussion of probabilistic decoding", IEEE Transactions on Information Theory, 9(2), 64-74 
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codes with attractive asymptotic coding gains. 

The introduction of combined coding and A/-ary modulation by Ungerboeck (1982) was an im

portant step in the quest to approach Shannon's limit. Before this combined scheme, which is 

commonly referred to as trellis-coded modulation (TCM), it was believed that coding, in bringing 

the gap to channel capacity closer, required larger bandwidth. It was thought that coding would 

only be suitable for applications that have large bandwidth availability such as satellite communi

cations; for data transmission over telephone channel, where the bandwidth is around 4 kHz only, 

coding was considered to be inefficient. The T C M scheme, which puts emphasis on joint coding and 

modulation, dispelled this belief and introduced significant data rate improvements for transmis

sion using modems over the telephone channel. The pre-TCM modem standard was only able to 

provide data rate of 9.6 kilo bits per second half-duplex, meanwhile with T C M full duplex data rate 

as high as 33.6 kilo bits per second (V.34 modem standard) was made possible. 

Despite the many achievements accomplished between 1948 and the early 1990s, none of these 

presented a desired solution to Shannon's challenge-the gap to Shannon's limit was still consider

able. History has shown that the challenge of finding good codes has been much more difficult to do 

than said. According to Costello, Jr. et al. (1998), the best code designed up to the 1990s was the 

Forney, Jr.'s (1966) concatenation of [255,223,33]28 R S and a rate 1/4 memory 14 convolutional codes 

decoded using the Big Viterbi Decoder (BVD)*®. This arrangement with binary antipodal signalling 

achieves bit error probability of 10"^ at Eb/No = 0.9 dB, which corresponds to a gap of 2.5 dB to 

the ultimate Shannon*s limit, and albeit this significant gain, the code rate is less than 1/4 and the 

complexity of BVD is significantly large. A major breakthrough was achieved with the discovery 

of parallel-concatenated convolutional codes or turbo codes by Berrou et al. (1993). The turbo code 

was made up of two simple convolutional codes separated by a pseudorandom interleaver, giving an 

overall code rate of 1/3. Berrou et al. (1993) reported that, with rate 1/2 (achieved by means of punc

turing) and block length of 65536 bits, a bit error probability of 10"^ was achieved at Eb/Na = 0.7 dB, 

a real coding gain of 8.9 dB over uncoded binary antipodal signalling. The outstanding performance 

of the turbo code, which has brought the gap to ultimate Shannon's limit to as close as 2.3 dB at 10'^ 

of bit error probability, is attributed to the way the code is decoded. The decoder for the turbo code 

consists of two optimum soft-decision decoders, which use the B C J R algorithm, for the constituent 

convolutional codes. Each decoder produces soft output, known as extrinsic information, which is 

fed to the other decoder and vice versa, in an iterative manner. A notable issue on turbo codes is on 

their performance which shows a sign of flooring at low error probability. This floor is attributed to 

the weakness of the iterative decoder and the codes themselves. 

Since the discovery of Viterbi's (1967) algorithm, many developments have been devoted to 

convolutional codes. The feasibility of an optimum soft-decision decoder has created opportuni

ties for convolutional codes to be used in many practical applications, namely space communica

tions, broadcasting of digital audio and video, and also mobile communications such as the Global 

System for Mobile Communications (GSM) and the IS-95 standard of Code Division Multiple Ac

cess (Costello, Jr. et al.; 1998). The C C S D S concatenation scheme of R S and convolutional codes 

was also decoded using the Viterbi algorithm. Realising the benefit of soft input information, re

searchers began to associate soft output in the context of decoding. A notable work in this direction 

^^Collins, O. (1992), "The subtleties and intricacies of building a constraint length 15 convolutional decoder", IEEE Trans
actions Communications, 40(12), 1810-1819 
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was that of Hagenauer and Hoeher (1989) for what is known as the Soft-Output Viterbi Algorithm 

(SOVA). Subsequent work on this area was the use of soft output using the B C J R algorithm, see 

Lodge et al. (1992) and Lodge et al. (1993). The work on soft-input and soft-output decoding re

vealed the advantage of iterative decoding in a concatenated scheme and was a precursor to turbo 

codes. 

The success of iterative decoding has brought Gallager's (1962) work back to life. The rediscovery 

of Gallager's (1962) low-density parity-check ( L D P C ) codes by MacKay and Neal (1996) marked 

another major milestone of channel coding in the 1990s. MacKay and Ncal (1996) showed that, in 

addition to turbo codes, L D P C codes were also capacity-approaching codes in the AWGN channel. 

The decoder of L D P C codes, commonly known as the sum-product (Gallager; 1963) or equivalently 

belief propagation (Pearl; 1988) decoder, is a form of iterative decoder which can be viewed as a bank 

of B C J R decoders for [77,71 - 1,2)2 single parity-check codes. Each of the B C J R decoders produces 

soft-output information which is processed and then utilised in the next iteration. 

L D P C codes provides an obvious example which shows the role of technology in the field of 

channel coding. Gallager invented L D P C codes in 1962, but his invention was forgotten for the 

next three decades because the complexity of decoding L D P C codes was deemed to be too high from 

a practical standpoint considering the level of technology during that period. While this was true 

from the application point of view, it did not stop Tanner (1981) studying the algebraic framework 

of L D P C codes. In addition, Tanner (1981) also linked the subject of L D P C codes with a branch of 

mathematics called graph theory, and consequently, the term Tanner graph now commonly appears 

in the literature on L D P C codes. 

An important contribution to the construction of L D P C codes was made by Luby et al. (2001) 

who showed that by allowing some irregularity in the structure of the parity-check matrix of the 

L D P C codes, performance can be improved. Gallager's (1962) original L D P C codes are regular in 

the sense that, considering the parity-check matrix of the L D P C codes, the number of non zeros in 

each row are fixed and so are the number of non zeros in each column. It was than shown by Chung, 

Forney, Jr. , Richardson and Urbanke (2001), using the method of Richardson et al. {2001)-density 

evolution to design irregular L D P C codes, a distance as small as 1.8 dB to the ultimate Shannon's 

limit was attainable at a block length 10̂  bits. 

Due to their capacity approaching performance, both turbo codes and L D P C codes have dom

inated the research topics in modern channel coding. They have also attracted the attention of 

industry and we have seen, in recent years, the availability of various hardware encoders and de

coders for these codes. There seems to be a tendency by industry to favour L D P C codes, instead 

of turbo codes. This may have been motivated by the fact that Berrou has patented his invention, 

while Gallager's patent on L D P C codes had expired before even their rediscovery. Thus, since both 

types of code have similar performance, it is financially more attractive to adopt L D P C codes than 

turbo codes. In addition, in terms of hardware implementation, L D P C codes are more attractive-

the bank of B C J R decoders for the single parity-check codes may be parallelised and each B C J R 

decoder for a single parity-check code has relatively low complexity. Indeed, implementation com

plexity has driven recent research and development and also the deployment of L D P C codes. De

spite having superior performance, the complexity of encoding irregular L D P C codes is considerable 

and L D P C codes that have some regular structure are preferred. Recent developments have been 

geared towards the construction of low encoding complexity L D P C codes. One of the attractive types 
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is quasi-cyclic L D P C codes for which the encoder may be implemented with linear feedback shift 

registers. Another attractive type of L D P C codes is the family of Repeat-Accumulate (RA) codes pro

posed by Divsalar et al. (1998). An irregular extension of RA codes, introduced by J in et al. (2000), 

outclassed turbo codes and was selected as the chosen error-correcting codes in the second version 

of digital video broadcasting (DVB) standard. L D P C codes have also been adopted for the I E E E 

802.3an (Ethernet) standard, and are being considered for inclusion in the I E E E 802.16e (WiMax) 

and 802 . l ln (WiFi) standards as well as various storage applications (Costello, Jr. and Forney, Jr.; 

2007). Turbo codes have also been widely deployed; according to Costello, J r and Forney, J r (2007), 

they have been used in deep space communications, third generation mobile communications such 

as CDMA2000 and Universal Mobile Telecommunications System (UMTS), digital video broadcast

ing: both Return Channel over Satellite and Terrestrial, satellite communications such as Inmarsat 

and Eutelsat, as well as in WiMax. 

Throughout the journey of the development of channel coding since 1948, we have seen that the 

line of development has been shifted from algebraic coding, which aims to maximise the asymptotic 

coding gain 7c, to iterative decoding of large codes made up of simple constituent codes. The latter 

line of development puts the emphasis on linear codes of long block length which in general have 

relatively poor minimum Hamming distance. Classical or algebraic coding is still an active research 

subject to date and the search for codes that maximise 7^ is still active. The flrst effort to tabulate 

a survey of binary linear codes that are known to have maximum 7c was attributed to Calabi and 

Myrvaagnes (1964). They gave a table of best known binary linear codes for I < k <n < 2̂ 1. This 

survey was later extended by Sloane (1972) to include both linear and non linear binary codes. Us

ing the results of Calabi and Myrvaagnes (1964), those of Sloane (1972) for binary linear codes and 

contributions from researchers, Helgert and Stinaff (1973) presented an extended Calabi and Myr-

vaagnes^s (1964) table to include all best known binary linear codes for \ <k <n < 127. Improve

ments to Helgert and StinafFs (1973) table were given by Verhoeff (1987), which were subsequently 

updated in Brouwer and Verhoeff (1993). A major contribution to this survey was published in 

Brouwer (1998), which includes not only the best known binary linear codes, but also linear codes 

over for 3 < fy < 9 except r/ = 6. Brouwer's (1998) tables contains codes over 

1. IF2 for 1 < A: < n < 256; 

2. F3 f o r i < fc < n < 243; 

3. IF4 for 1 < k < n < 128; 

4. F5 for 1 < k < n < 100; 

5. IF7 for 1 < k < 10, 1 < 71 < 50; 

6. IFe f o r i < k < 40,1 < 71 < 85; and 

7. F9 f o r i < k < 20, 1 < 71 < 121. 

Brouwer set up a website^® from which one may determine the highest known d for an [TI, A:]̂ ^ linear 

code. Brouwer's (1998) tables were discontinued on 12 March 2007 and the tables were superseded 

*http://www.win.Cue.nl/-aeb/voorlincod.html 
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by those of Grassl (2007). At the time of writing, GrassKs (2007) contains entries for l<k<n<n' 
where n ' = 25G, 243, 25G, 130, 100, 130 and 130 for 9 = 2, 3, 4, 5, 7, 8 and 9 respectively 

As the technology became more powerful and coupled with the success of soft-decision decoding 
of convolutional codes, from the beginning of the 1990s, there has been some significant develop
ment in soft-decision decoding of linear block codes. While an optimum soft-decision decoder is only 
possible for very short, low rate or high rate codes, many suboptimum soft-decision decoding algo
rithm arose from these developments. The precursor to the suboptimum decoder was the work of 
Wagner^**, Chase (1972) and Dorsch (1974). Some of the notable developments from the 1990s are 
due to Han et al. (1993), Fossorier and Lin (1995), Gazelle and Snyders (1997) and Valembois and 
Fossorier (2004). While these algorithms are for binary codes, major contributions to soft-decision 
decoding of non binary codes such as the R S codes are attributed to Sudan (1997), Guruswami and 
Sudan (1999) and Koetter and Vardy (2003). 

1.4 A Note on the Performance Bound of Binary Codes of 
Finite Block Length 

Shannon (1948) defines the channel capacity C of a communication channel with input A' and 
output Y as the maximum of the mutual information between A' and Y, denoted by / ( A ; Y), 

C = m a x / ( A ; r ) (1.13) 

=. .^x:x : . (xw. ix) .os (^^) (1.14) 

where p(x) is the probability density function of x and p(y|x) is the conditional probability density 
function of y given x. The mutual information between X and Y can also be written in terms 
of entropy functions (Shannon; 1948; Cover and Thomas; 1991). Correspondingly, (1.13) may be 
written as 

C »= max{H(Y) - H{Y\X)}. (1.15) 

where H{Y} is the entropy of K and H{Y\X) is the conditional entropy of K given A . 

The most commonly used communication channel model is the bandlimited AWGN channel 
model, which is a continuous time model, whose input and output waveforms of the channel are 
related by (Cover and Thomas; 1991) 

y(t) = (x{t)-\-7i(t))*c{t), (1.16) 

where x{t), 7i(t) and y(t) are the input, Gaussian noise and output waveforms respectively, and c(t) 
is the impulse response of the channel which is bandlimited to B Hz. In order to obtain the capacity 
of the continuous-time AWGN channel model, the equivalent discrete-time model is considered. 
This equivalent discrete-time model is obtained by sampling the waveforms x{t), n{t) and y{t) at 

^^Wagner's algorithm is described in Silverman and Balser (1954) 
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Nyquist rate of 25 samples per second. Thus, (1.16) becomes 

= Xi + 7(i i = 0 , l , . . . , / > - l (1.17) 

and L = 2BT if these samples are transmitted in T seconds. The noise samples n,- are independently, 

identically distributed Gaussian random variables with zero mean and variance = A^o/2. For 

continuous random variables x, and y,-, (1.14) and (1.15) may be respectively written as 

C = max r p{xi)p(yiM log (?!^^^) dy^dxi 

= max{/i(7/i) - % i | x , ) } . 
P ( x . ) 

(1.18) 

(1.19) 

Note that for continuous random variable, differential entropy k{ ) is used instead of entropy H( ). 

The maximisation of the channel capacity is attained when x, is a Gaussian random variable with 

zero mean and variance al. (Shannon; 1948; Cover and Thomas; 1991). As a result, the output i/,- is 

also a Gaussian random variable with mean py. = p.j:. + 0 = 0 and variance a^. = (T^. + a^, i.e. 

(1.20) 

Using (1.20) and the following identities of continuous random variable z of mean / i . and variance 

r p(z)dz = 1 
J-co 

/

oo 
(z - Pz?p{z)dz ^ al, 

•oo 

the differential entropy h{yi) is given by 

Hvi) = - f PiVi) ^og^P(yi)dyi 
J-oo 

•oo 
•oo 

a , , x / 2 ^ ' ^ ' ' l 2al ) 

dyi + / p(yi)\oQ 
J-oo 

dyi 

•OO 

•00 

exp 

= - / p(l/i)log, 
J-oo 

/

oo roo 

= l o g , ( a i , , v ^ ) + i 

= ^ l o g c K ; N / 2 ^ ) ' + ^logce 

( ^ ) l * 

= -log,(27rea;;^). 

(1.21) 

(1.22) 

(1.23) 
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From Cover and Thomas (1991), the conditional differential entropy /i(yi|x,), 

hiVilxi) = k(xi + ni\xi) = k{ni\xi) 

since the Gaussian random variable ni of zero mean and variance is independent of the random 

variable i , . Following (1.23), 

I'iViU-i) = h(7ii) = i \og,{2n<ia^) (1.24) 

and the channel capacity for continuous-time bandlimited AWGN channel is 

< : ^ = 5 l o g c ( 2 7 r « < . ) - 5 l o g e ( 2 W ) 

= \ log* 

and after changing the basis from e to 2, 

Note that the average transmitted power has to be constrained, otherwise the channel capacity 

may be infinite (Cover and Thomas; 1991; Proakis; 2001), i.e. 

L-\ 

S=^Zn-l\ = ^ (1-26) 

and this means 

r 
i=0 

and using (1.27), (1.6) and (1.4), the channel capacity (1.25) can be written as 

1 / S \ 

C = - logs 1̂1 + ^ j bits/sample. (1.28) 

Using Nyquist signalling, 2B samples per second can be transmitted without suffering from inter-

symbol interference over a channel of bandwidth B Hz. Multiplying (1.28) by 2B samples per sec

ond, which effectively changes the unit from bits per sample to bits per second, the channel capacity 

formulation given in (1.3) is obtained. Note that both input and output of the channel are continu

ous random variables (infinite input and output alphabets), x,-,i/,- G (-00,00) for i = 0 , 1 , 1 . 

Therefore, (1.3) is also termed the continuous-input continuous-output channel capacity for A W G N 

channel. 

For finite input alphabet size or discrete-input and continuous-output AWGN channel, a differ

ent formulation of channel capacity exists. Assuming <7-ary discrete input X - {SQ, S \ , . . . , } and 
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continuous output y e Y = \-oc, oo), the channel capacity for this model is given by (Proakis; 2001) 

C = maxX: r AsM'M)\og, ( , ,] dy (1.29) 

where for AWGN channel, it is known that 

p(y\si) = -1= exp ( - {y - s^f I2a^) . (1.30) 

The maximum value of C in (1.29) is achieved by a uniform distribution of the input Sj, and thus 

^' = r (̂̂ 1̂ )̂ '^S. f , , j ; y ; \ ,] dy. (1.31) 
1=0 

For binary-input AWGN (BIAWGN) channel, where X = {±1}, having continuous-output, the chan
nel capacity given in (1.31) can be written as 

There is no closed-form expression for (1.32) and it has to be evaluated numerically. The channel 
capacity formulations given in (1.12) and (1.32) give the minimum Eb/No value required to achieve 
zero error probability. It is possible to obtain the minimum Et/No value to achieve a given non zero 
probability of error using the rate distortion theory, see Moon (2005). Figure 1.3 shows the plot of 
the channel capacity in terms of the minimum Eb/No to achieve a given probability of error-denoted 
by bit-error rate (BER) for binary-input AWGN and continuous-input AWGN channels, for various 
code rates. It can be seen from the figure that infinite alphabet input has larger capacity than 
discrete input; and that the difference in the capacity vanishes as the code rate approaches zero. 

While all the Shannon's channel capacity formulations given above assume infinite block length, 
from a practical point of view, it is important to know the limit for finite block length and non zero 
error probability. The lower-bound of this limit was derived by Shannon (1959) using the sphere 
packing argument. It gives the required Eb/No value to achieve a given probability of frame error 
for a given code with parameters n and A:. The exact evaluation of this lower-bound-commonly 
known as the sphere packing lower bounds was initially given by Dolinar et al. (1998) for k < 50, 
and later extended by Tomlinson et al. (2002) to include cases for k < 1000. Using the results of 
Lenth (1989) and Posten (1994) on the non central /.-distribution, which is equivalent to spherical 
Gaussian distribution, Ahmed et al. (2007) described an exact evaluation of the sphere packing 
lower bound for any value of k. 

The Shannon's (1959) sphere packing lower bound is for the transmission of codes with infinite 
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Figure 1.3: The minimum Eb/No to achieve a given probability of bit error for continuous-input 
AWGN and binary-input AWGN channels 
Note thflt, in the figure legend, BIAWGN refers to thot of binory-input whereas AWGN refers to that of continuous-input. 

alphabets over AWGN channel. Constraining the transmission to finite alphabets, e.g. binary 
transmission, inevitably introduces loss-rendering the sphere packing lower-bound relatively loose 
for finite alphabet transmissions. This loss, which is defined in terms of Eb/i^^o and is dependent 
on the code rate (larger loss for higher code rate), may be obtained using the result of Butman and 
McEliece (1974) as shown in Ahmed et al. (2007). Consequently, a tighter approximation for binary 
transmission may be derived by taking this loss into account. 

For the remainder of this thesis, the term offset sphere packing lower-bound is used to refer 
to Shannon's (1959) sphere packing lower-bound constrained for binary transmission. This offset 
bound is used throughout this thesis as the Shannon's limit for binary transmission over AWGN 
channel, i.e. a benchmark of how good a code performs with binary transmission over AWGN 
channel. 

1.5 Thesis Aim, Objectives and Organisation 

The aim of this thesis is to study the state-of-the-art advancement of error correcting codes from the 
perspective of classical coding theory-which put the emphasis on code optimality; and probabilistic 
coding theory-which put the emphasis on ease-of-decoding. The objectives of this thesis are the 
development of code construction and decoding methods from the classical and probabilistic coding 
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perspectives; investigation and development of various capacity approaching measures; and the 
study of the mathematical aspects of classical error correcting codes in relation to their weight 
distributions. 

This thesis contains three main parts. The first part (Chapters 2 and 3) considers the mod
em approach to channel coding-commonly referred to as probabilistic coding theory, we discuss 
LDPC codes-the construction methods and improvements to the iterative decoder. The second part 
(Chapters 4 through to 6) considers classical coding theory aspects; the search for good binary linear 
codes, some results on double-circulant codes and the soft-decision decoding of linear block codes. 
The final part of the thesis presents an application of coding to a communication system which has 
noiseless feedback. The detailed breakdown of this thesis is as follows. 

Modem passage to approach the channel capacity is to utilise iterative decoding of long block 
length linear codes, such as turbo codes and LDPC codes, which are made of some simple component 
codes. Chapter 2 presents some novel algebraic techniques to constmct good short block length 
LDPC codes. Techniques are presented based on the theory of idempotents, cyclotomic cosets and 
Mattson-Solomon polynomials in the code construction. The constmction of irregular LDPC codes 
is considered, there is a numerical investigation on the effect of the irregularity of the codes and 
also the construction of quasi-cyclic codes using a protograph is described. 

Chapter 3 describes methods to improve the convergence of the iterative decoder for LDPC codes. 
It essentially shows that, in the event that the standard iterative decoder which uses low weight 
parity-check equations is unsuccessful, the higher weight parity-check equations can be of some 
use. Investigation of the optimal Hartmann and Rudolph (1976) decoding algorithm is also given 
in this chapter. 

One of the main problems in classical coding theory is to search for linear codes that max
imise the minimum Hamming distance for a given code rate. To find a code which has the highest 
known minimum Hamming distance, one may consult to Brouwer's (1998) or Grassl's (2007) ta
bles. Chapter 4 presents some new codes that have larger minimum Hamming distance than the 
corresponding ones in the tables. In this chapter, we also review the development of algorithms to 
compute the minimum Hamming distance of binary linear codes, and show how the problem of min
imum Hamming distance computation may be solved by tuming the minimum Hamming distance 
computation into a task suitable for parallel computing. In addition, this chapter also presents 
some results that serve as a continuation of the existing work on determining the largest minimum 
Hamming distance attainable by all binary cyclic error-correcting codes. 

Chapter 5 considers an important class of half rate binary linear codes made up of two circu-
lant matrices-double-circulant codes. Only prime-based double-circulant codes are considered and 
some interesting results on the weight distributions of these codes are presented. Some useful 
applications of these results are presented. 

The loop in the classical coding part of this thesis is not closed without some studies on how 
to decode linear codes which are designed by classical coding theory-large minimum Hamming 
distance for a given code rate. In Chapter 6, there is a detailed discussion on the suboptimum 
sofl-decision decoding algorithm due to Dorsch (1974). Some bounds related to the complexity of 
extending this algorithm to a achieve maximum likelihood solution are presented and so are the 
performance curves of some of the best binary linear codes. 

The last part of this thesis, which contains Chapter 7, discusses an application of coding in a 
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type of communication systems commonly known as the incremental redundancy hybrid automatic 
repeat request (ARQ) system. It is shown how classical coding theory, which was also used in 
Chapter 4, may be used to construct a sequence of good linear codes for incremental redundancy 
communication systems. Some novel soft-decision error detection techniques, which can improve 
performance and throughput considerably compared to the known conventional schemes, are de
scribed and analysed in this chapter. 

In Chapter 8, the work presented in this thesis is concluded and some directions for future 
research are given. 

1.6 Contributions to Knowledge 
The following list summarises the contributions made by the thesis. 

Chapter 2 
• An algebraic approach, using the theory of idempotents and cyclotomic cosets, to con

struct binary cyclic LDPC codes. Various conditions are derived to guarantee that the 
resulting cyclic LDPC codes have a girth of at least 6 and have an explicit minimum 
Hamming distance. This construction 

1. produces, in addition to the well-known Euclidean and projective geometry LDPC 
codes, some new binary cyclic codes suitable for iterative decoding; 

2. provides an incremental approach to the minimum Hamming distance and the sparse-
ness of the parity-check matrix of the code. 

These binary cyclic codes, at short block length (71 < 350), have performance close to the 
optimum performance of binary codes of the same block length and code rate, 

• Algorithm 2.1 provides a procedure to search for all cyclic LDPC codes which have a girth 
of at least 6 for a given length. 

• A different insight to constructing cyclic LDPC codes is given by running the construc
tion in the Mattson-Solomon domain. This is analogous to time and frequency domain 
representations of a signal. 

• Algorithm 2.2 provides a procedure, which works in the Mattson-Solomon domain, to 
search for all cyclic LDPC codes of a given length that can be itcratively decoded. 

• Extending the construction of algebraic LDPC codes using the theory of cyclotomic cosets, 
idempotents and Mattson-Solomon polynomials to non binary fields. 

• Some results and conclusions on the effect of low weight and high weight variable nodes 
in irregular LDPC codes, which are constructed using the Progressive-Edge-Growth (Hu 
et al.; 2005) algorithm, under iterative decoding. In addition, the effect of variable node 
degree ordering in constructing irregular LDPC using the Progressive-Edge-Growth al
gorithm is also discussed. 

Chapter 3 
• Results showing the effect of a suboptimum implementation-using a subset of all 2"~*'" 

parity-check equations of an [n,k,d] linear code, of the Hartmann and Rudolph (1976) 
decoding algorithm. 
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• A modified belief propagation iterative decoder-the codeword-substitution belief propa
gation decoder (Algorithm 3.1). For some cyclic LDPC codes of short block length, this 
modification produces near maximum likelihood performance. 

• A method to improve the convergence of the iterative decoder by grouping the parity-
check equations and the complexity implications. 

Chapter 4 
• A detailed description, including an example (Example 4.3) and a pseudo-code (Algo

rithm 4.4), of how the revolving door algorithm may used to spht a lengthy single-threaded 
enumeration process to one that is suitable for parallel computation, in evaluating the 
minimum Hamming distance and the number of codewords of a given Hamming weight 
of a linear code. 

• The highest minimum Hamming distance attainable by all binary cyclic codes of odd 
lengths from 129 to 189. This is an extension to the previous work of Chen (1970), Prom-
house and Tavares (1978), and Schomaker and Wirtz (1992). 

• A method to obtain an improved component code to be used in Construction X in the case 
where the dimension of the auxiliary component code is relatively small. 

• New codes with larger minimum Hamming distance than the corresponding linear codes 
of the highest known minimum Hamming distance given in Brouwer*s (1998). Overall 
there are 901 new codes. 

Chapter 5 
• A mathematical description on the choices of defining polynomial to construct pure double-

circulant codes based on primes congruent to ±3 (mod 8). A necessary condition to pro
duce self-dual pure double-circulant codes is also derived. 

• A detailed mathematical proof of the automorphism group of the bordered double-circulant 
codes based on prime congruent to ±3 (mod 8) (quadratic double-circulant codes) in rela
tion to the projective special linear group. 

• A more efficient algorithm to compute the minimum Hamming distance and also the 
number of codewords of a given Hamming weight for self-dual double-circulant and for
mally self-dual quadratic double-circulant codes, both pure and bordered cases (Lemma 5.7). 

• Detailed descriptions, including examples, on the approach to compute the modular con
gruence of the number of codewords of a given Hamming weight in a double-circulant 
code based on prime congruent to ±3 (mod 8). 

• A proof, which is derived using the modular congruence approach, of the incorrect re
sults in Gaborit et al. (2005) on the weight distribution of the [152,76,20]2 extended 
quadratic residue code, and the number of codewords of Hamming weights 30 and 32 
in the [138, G9,22)2 extended quadratic residue code. Corrected results for these extended 
quadratic residue codes are given in this thesis. 

• Weight distributions of the binary (168,84,24] extended quadratic residue and quadratic 
double-circulant codes. The correctness of these distributions is verified with the modular 
congruence approach. 
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• A probabilistic approach to determine the minimum Hamming distance in extended quadratic 
residue and quadratic double-circulant codes. 

Chapter 6 
• Detailed description of the Dorsch's (1974) algorithm to decode binary linear codes, which 

uses the revolving door algorithm to efficiently enumerate codewords of low information 
weight. 

• Derivation of a bound on the number of codewords required by Dorsch's (1974) algorithm 
to achieve maximum likelihood solution. 

Chapter 7 
• Application of Constmctions X, Corollary 7.1, and XX, Corollary 7.2, to produce a se

quence of linear codes suitable for incremental redundancy systems. 

• A novel cyclic-redundancy-check-less soft-decision error detection method based on the 
confidence of the output of a list decoder of a linear code. 

• A formulation and analysis of the error probability of this soft̂ -decision error detection 
method, 

• A scheme to reduce the probability of error of this soft-decision error detection technique 
by incorporating a cyclic-redundancy-check. 
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2 LDPC Code Constructions 

Since their rediscovery in the 1990s, a great deal of effort has been devoted to the construction of 
good LDPC codes. This chapter outlines various existing techniques for LDPC code constructions, 
introduces some new algebraic construction techniques and discusses the author's experiments on 
irregular LDPC code constructions 

Parts of this chapter are published in the following journal papers 

1. Tjhai, C , Tomlinson, M., Ambroze, M. and Ahmed, M. (2005), "Cyclotomic idempotent based 
binary cyclic codes", Electronics Letters, 41(3), pp. 341-343 

2. Horan, R., Tjhai, C , Tomlinson, M., Ambroze, M. and Ahmed, M. (2006), "Idempotents, 
Mattson-Solomon polynomials and binary LDPC codes", lEE Proceedings Communications, 
153(2), pp. 256-262 

and as well as in the following conference proceedings 

1. Horan, R., Tjhai, C , Tomlinson, M., Ambroze, M. and Ahmed, M. (2005), "A finite-field trans
form domain construction of binary low-density parity-check codes", in Proceedings IEEE In
formation Theory Workshop on Coding and Complexity, Rotorua, New Zealand, pp. 72-76 

2. Tjhai, C , Tomlinson, M., Horan, R., Ahmed, M. and Ambroze, M. (2006), "GF(2'") low-density 
parity-check codes derived from cyclotomic cosets", in Proceedings 4th International Sym
posium on Turbo Codes in connection with 6th International ITG-Conference on Source and 
Channel Coding, Munich, Germany. 

2.1 Background and Notation 
LDPC codes are linear block codes whose parity-check matrix-as the name implies, are sparse. 
These codes can be iteratively decoded using the sum product (Gallager; 1963) or equivalently the 
belief propagation (Pearl; 1988) soft decision decoder. It has been shown that (e.g. Chung, For
ney, Jr., Richardson and Urbanke; 2001), for long block lengths, the performance of LDPC codes 
is close to the channel capacity. The theory of LDPC codes is related to a branch of mathematics 
called the graph theory. Some basic definition and notation on graph theory are briefiy introduced 
as follows. 

2. J Definition (Vertex, Edge, Adjacent and Incident). A graph-denoted by G{V, E), consists of an 
ordered set of vertices and edges, 

• (Vertex) A vertex is commonly drawn as a node or a dot. The set V{G) consists of vertices 
of G'(K, £•) and if r is a vertex of G(V, [C), it is denoted as r € V(C). The number of vertices of 
V(G) is denoted hy\V{G)\. 
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• (Edge) An edge {u,v) connects two vertices u e y{G) and v .G V{G) and it is drawn as 
a line connecting vertices u and v. The set E{G) contains pairs of elements of V(G), i.e. 
{(u,v)\u,veV{G)}. 

• (Adjacent and Incident) If (u,w) € £̂ (<:?), then u € K(G) and v € V̂ (C7) .are adjacent or 
neighbouring vertices o^G{V,E). Similarly, the vertices u and v are incident with the edge 
(U,TJ). ' 

2.2 Definition (Degree). The degree of a vertex v e V'(G) is the number of edges that are incident 
with vertex i.e. the number of edges that are connected to vertex v. 

2.3 Definition (Bipartite or Tanner graph). Bipartite or Tanner graph G{V, E) consists of two dis
joint sets of vertices, say Vi,(G) and Kp(C), such that V{G) = V^(G) U Vp(G) and every edge 
(vuPj) € E{G) such that Vi e Vv{G) and pj € Vp{G) for some integers i and j. 

H 

Vo U] V2 U4 VG VJ VS V<J U J O U J J 

1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 1 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 1 0 1 0 
1 0 0 0 0 0 0 1 0 1 0 0 
0 0 0 1 0 0 1 0 0 1 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 1 0 1 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 1 0 
0 1 0 0 1 0 0 0 0 0 0 1 

(a) Parity-chock matrix 

V\2 l̂ l l l^li 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 1 1 
O l i o 
0 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 1 
1 0 0 0 
0 0 1 
0 0 0 

Pi) 
Pi 
P2 

Pi 
Pb 

Pii 

;>7 

Ps 

Pa 

Pio 

Pn 

(b) Tanner graph 

Figure 2.1: Representations of a [16,4,4] LDPC code 

An [n,k,d] LDPC code may be represented by a Tanner graph G(V,E). The parity-check ma
trix H of the LDPC code consists of |V;,(G)| = n - k rows and \V^(G)\ = n columns. The set 
of vertices Vy{G) and Vp(G) are called variable and parity-check vertices respectively. Figure 2.1 
shows the parity-check and the corresponding Tanner graph of a (16,4,4] LDPC code. Let V^(G) = 
{vQ,vu-..,Vn-\) and Vp{G) = (po,Pi, • • • ,Pn-fc-i), it can be seen that for each (vi,pj) e E{G), the ith 
column and jth row of K , Hj^i ^ O.for 0 < i <n - I and 0 < j < 7i - A; - 1. 
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2.4 Definition (Cycle). A cycle in a graph G(V,E) is a sequence of distinct vertices that starts and 
ends in the same vertex. For bipartite graph G{V,E), exactly half of these distinct vertices belong 
to Vv{G) and the remaining half belong to Vp{G). 

2.5 Definition (Girth and Local Girth). The girth of graph G{V,E) is the length of the shortest 
cycle in the graph G(V, E). The local girth of a vertex v € V'(G) is the length of shortest cycle that 
passes through vertex v. 

The performance of a typical iteratively decodable code (e.g. LDPC and turbo code) may be 
partitioned into three regions, namely erroneous, waterfall and error floor regions, see Figure 2.2. 
The erroneous region occurs at low Eb/No values and is indicated by the inability of the iterative 
decoder to correctly decode almost all of the transmitted messages. As the signal power is increased, 
the error rate of the iterative decoder decreases rapidly-resembling a waterfall. The Eb/No value at 
which the waterfall region starts is commonly known as the convergence threshold in the literature. 
At higher Eb/No values, the error rate starts to flatten-introducing error floor in the frame error 
rate (FER) curve. 

10° r 

10-2 r 

"1 

10 - p4 ^ 
^ : Erroneous 

10" ! region 

10'̂  r 

10-̂  r 

10-'° r 

1 0 - , 

10-12 i 
0 0.5 

Waterfall region Error floor region 

Typical performance of 'i 
iterativcly decodable codc^ 

Offset sphere packing ' 
lower-bound 

1.5 
i \ I, 
2 2.5 

Union bound i 

I 
3.5 

>. J 
4.5 

Figure 2.2: Waterfall and error regions on F E R performance over AWGN channel 

In addition to this F E R curve, the offset sphere packing lower bound and the probability of error 
based on the union bound argument-see Proakis (2001), are also plotted in Figure 2.2. The sphere 
packing lower bound represents a region where the attainable performance of a coding system is; 
the performance to the left of this lower bound is not attainable, whereas that to the right may be 
achieved by some coding and decoding arrangements. The other curve is the union bound of the 

31 



Chapter 2. LDPC Code Constructions 

probability of error, which is dominated by the low Hamming weight codewords and the number of 
codewords of these Hamming weights. The larger the minimum Hamming distance of a code, the 
lower the union bound typically. For iteratively decodable codes which are not designed to maximise 
the minimum Hamming distance, the union bound intersects with the offset sphere packing lower 
bound at relatively low Eb/No value. 

It may be seen that, with an ideal soft decision decoder, the performance of a coding system 
would follow the sphere packing lower bound and at higher Eb/No values, the performance floors 
due to the limitation of the minimum Hamming weight codewords. However, as depicted in Fig
ure 2.2, that there is a relatively wide gap between the union bound and the error floor of a typical 
iteratively decodable code. This is an inherent behaviour of iteratively decodable codes and it is 
attributed to the weakness of the iterative decoder. There are other error events, which are not 
caused by the minimum Hamming weight codewords, that prevent the iterative decoder to reach 
the union bound. 

In terms of the construction technique, LDPC codes may be divided into two categories, namely 
random and algebraic LDPC codes. LDPC codes may also be classified as regular or irregular codes 
depending on the structure of the parity-check matrix, see Section 2.1.1 for the definition. Another 
attractive construction method that has been shown to offer capacity-achieving performance is non-
binary construction. 

2.1.1 Random Constructions 

Gallager (1962) introduced the (n,A,/3) LDPC codes where n represents the block-length and the 
number of non zeros per column and the number of non zeros per row are represented by A and p 
respectively*. The short notation (A,/?) is also commonly used to represent these LDPC codes. The 
code-rate of the Gallager (A, p) codes is given by 

P 

An example of the parity-check matrix of the Gallager (A, p) LDPC code is shown in Figure 2.1a. 
It is a [16,4,4] code with A of 3 and p of 4. The parity-check matrix of the (A, p) Gallager codes always 
have a fixed number of non zeros per column and per row, and because of this property, this class 
of LDPC codes is termed regular LDPC codes. The performance of the Gallager LDPC codes in the 
waterfall region is not as satisfactory as that of turbo codes for the same block-length and code-rate. 
Many efforts have been devoted to improve the performance of the LDPC codes and one exeunple 
that provides significant improvement is the introduction of the irregular LDPC codes by Luby et al. 
(2001). The irregular LDPC codes, as the name implies, does not have fixed number of non zeros 
per column or per row and thus, the level of error-protection varies over a codeword. The columns 
of a parity-check matrix that have higher nujnber of non zeros provide stronger error protection 
than those that have less number of non zeros. Given an input block in iterative decoding, errors 
in the coordinates of this block, whose columns of parity-check matrix have larger number of non 
zeros, will be corrected earlier, i.e. only small number of iterations are required. In the subsequent 

'Note that Gallager actually used the notations of j and k for the number of non zeros per column and per rows respec
tively. These notations, however, are changed here due to the ambiguity of the symbol k which is also used to denote the 
code dimension. 
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iterations, the corrected values in these coordinates will then be utilised to correct errors in the 
remaining coordinates of the block. 

2.6 Definition (Degree Sequences). The polynomial Ax(x} - J2i>i ^i^* >s called the symbol or vari
able degree sequence, where A; is the fraction of vertices of degree i. Similarly, Ap{x) = ^i .̂̂ j p̂ x* 
is the check degree sequence, where pi is the fraction of vertices of degree i. 

The degree sequences given in the above definition are usually known as vertex-oriented degree 
sequences. Another representation are edge-oriented degree sequences which consider the fraction 
of edges that are connected to a vertex of certain degree. Irregular LDPC codes are defined by these 
degree sequences and in this thesis, it is assumed that the degree sequences are vertex-oriented. 

Example 2.1: An irregular LDPC code with the following degree sequences: 

A A ( X - ) = 0.53;2 + 0.26a:̂  -t- O.lTa:̂  + O.OTx*̂  

Ap(a;) = 0.80;i;*'* + 0.20:/;»^ 

has 50%, 26%, 17% and 7% of the columns with 2, 3, 5 and 10 ones per columns respectively and 80% 
and 20% of the rows with 14 and 15 ones per row respectively. 

Various techniques have been proposed to design good degree distributions. Richardson et al. 
(2001) have used density evolution to determine the convergence threshold and to optimise the 
degree distributions. Chung, Richardson and Urbanke (2001) simplified the density evolution ap
proach using Gaussian approximation. With the optimised degree distributions, Chung, Forney, Jr., 
Richardson and Urbanke (2001) showed that the bit error rate performance of a long block-length 
(n = 10̂ ) irregular LDPC code was v̂ rithin 0.04 dB away from the capacity limit for binary trans
mission over AWGN channel-see Wozencraft and Jacobs (1965) for the limit, which is equivalent 
to 0.18 dB to the ultimate Shannon's (1948) limit. The density evolution and Gaussian approxima
tion methods, which make use of the concentration theorem (Richardson and Urbanke; 2001), can 
only be used to design the degree distributions for infinitely long LDPC codes. The concentration 
theorem states that the performance of cycle-free LDPC codes can be characterised by the average 
performance of the ensemble. The cycle-free assumption is only valid for infinitely long LDPC codes 
and cycles are inevitable for finite block-length LDPC codes. As can be expected, the performance 
of finite block-length LDPC codes with degree distributions derived based on the concentration the
orem varies considerably from the ensemble performance. . There are various techniques to design 
good finite block-length LDPC codes, for instance see Campello et al. (2001), Campello and Modha 
(2001), Hu et al. (2002) and Tian et al. (2004). In particular, the work of Hu et al. (2002) with 
the introduction of the Progressive-Edge-Growth (PEG) algorithm to construct both regular and 
irregular LDPC codes, that of Tian et al. (2004) with the introduction of extrinsic message degree 
and recently, that of Richter and Hof (2006) which improves the original PEG algorithm by intro
ducing some construction constraints to avoid certain cycles involving variable vertices of degree 3, 
have provided significant contributions to the construction of practical LDPC codes as well as the 
lowering of the inherent error floor of these codes. 
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2.1.2 Algebraic Constructions 

In general, LDPC codes constructed algebraically have a regular structure in their parity-check 
matrix. The algebraic LDPC codes offer many advantages over the randomly generated codes. 
Some of these advantages are . 

1. The important property such as the minimum Hamming distance can be easily determined or 
in the worst case, lower- and upper-bounds may be mathematically derived. These bounds are 
generally more accurate than the likes for random codes. 

2. The minimum Hamming distance of algebraic LDPC codes is typically higher than that of the 
random counterparts. Due to the higher minimum Hamming distance, algebraic codes are not 
that likely to suffer from an early error floor. 

3. The existence of a known structure in algebraic codes offers an attractive and simple encoding 
scheme. In the case of random codes, in order to perform encoding, a Gaussian-elimination 
process has to be carried out in the first place and the entire reduced echelon parity-check 
matrix has to be stored in the memory. On the other hand, algebraically constructed codes 
such as cyclic or quasi-cyclic codes can be completely described by polynomials. The encoding 
of cyclic or quasi-cyclic codes may be simply achieved using a linear-feedback shift-register 
circuit and the memory requirement is minimum. Various efficient techniques for encoding 
random LDPC codes have been proposed, see Ping et al. (1999) for example, but none of these 
techniques simplifies the storage requirements. The simplicity of the encoder and decoder 
structure has led to many £ilgebraically constructed LDPC codes being adopted as industry 
standards (Costello, J r and Forney, Jn; 2007). 

4. Cyclic LDPC codes, have n low Hamming weight parity-check equations and therefore, com
pared to random codes, these cyclic LDPC codes has k extra equations for the iterative decod
ing to iterate with and this leads to improved performance. 

One of the earliest algebraic LDPC code constructions was introduced by Margulis (1982) us
ing the Ramanujan graphs. Lucas et al. (2000) showed that the well-known Different-Set Cyclic 
(DSC) (Weldon, Jr.; 1966) and One-Step Majority-Logic Decodable (OSMLD) (Lin and Costello, J r ; 
2004) codes have good performance under the iterative decoding. The iterative soft decision de
coder offers significant improvement over the conventional mtyority-logic decoder Another class of 
algebraic codes, is the class of the Euclidean and projective geometry codes which were discussed 
in detail by Kou et al. (2001). Other algebraic constructions include those that use combinatorial 
techniques (e.g. Johnson and Weller; 2001, 2002; Johnson; 2004; Vasic and Milenkovic; 2004). 

It has been observed by the author that, in general, there is an inverse performance association 
between the minimum Hamming distance and the iterative decoding convergence. The irregular 
codes converge well with iterative decoding, but the minimum Hamming distance is relatively poor. 
On the other hand, the algebraically constructed LDPC codes, which have high minimum Ham
ming distance, tend not to converge well with iterative decoding. Consequently, compared to the 
performance of the irregular codes, the algebraic LDPC codes may perform worse in the low SNR 
region and become better in the high SNR region and this is be attributed to the early error floor of 
the irregular codes. As will be shown later, for short block-lengths {n < 350), cyclic algebraic LDPC 
codes offer the best performance. 
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2.1.3 Non-Binary Constructions 

LDPC codes may be easily extended so that the symbols take values from finite-field F 2 ' " and Davey 
and MacKay (1998) were the pioneers in this work. Given an LDPC code over I F 2 with parity-check 
matrix H, LDPC code over F 2 - for m > 2 may be constructed by simply replacing every non zero ele
ment ofH with any non zero element of I F 2 ' " in a random or structured manner. Davey and MacKay 
(1998) and Hu et al. (2005) have shown that the performance of LDPC codes can be improved by 
going beyond the binary field. The non binary LDPC codes have better convergence behaviour un
der iterative decoding. Using some irregular non binary LDPC codes, whose parity-check matrices 
are derived by randomly replacing the non zeros of the PEG-constructed irregular binary LDPC 
codes, Hu et al. (2005) demonstrated that a coding gain of 0.25 dB was achieved. It may be regarded 
that the improved performance is attributable to the improved graph structure in the non binary 
arrangement. Consider a cycle of length 6 in the Tanner graph of a binary LDPC code, which is rep
resented as the following sequence of pairs of edges {(vo,Po), (T^3,7>O), (^3 ,^2) , (^4,7^2), (T^4,Z>I). (1^0,7^1)}-

If the corresponding entries in the parity-check matrix are replaced with some non zeros over 
for 771 > 2, provided that these six entries are not all the same, the cycle length becomes larger 
than 6. According to McEliece et al. (1998) and Etzion et al. (1999), the non convergence of iterative 
decoder are caused by existence of cycles in the Tanner graph representation of the code considered. 
Cycles-especially those of short lengths, introduce correlations of reliability information exchanged 
in iterative decoding. Since cycles are inevitable for finite block length codes, it is desirable to have 
LDPC codes with large girth. 

The non-binary LDPC codes also offer an attractive matching for higher-order modulation. The 
impact of increased complexity of the symbol-based iterative decoder can be moderated as the re
liability information, from the component codes may be efficiently evaluated using the frequency 
domain dual codes decoder based on the Fast-Walsh-Hadamard transform (Davey and MacKay; 
1998). 

2.2 Algebraic LDPC Codes 

2.2.1 Binary Cyclic LDPC Codes Derived from Cyclotomic Cosets 

Based on the pioneering works of MacWilliams and Sloane (1977) on the Mattson-Solomon poly
nomials, idempotents and cyclotomic cosets, a class of cyclic codes that is suitable for iterative 
decoding is constructed. This class of cyclic codes falls into the class of OSMLD codes whose parity-
check polynomial is orthogonal on each position-implying the absence of girth of 4 in the underlying 
Tanner graph, and the corresponding parity-check matrix is sparse, and thus can be used as LDPC 
codes. 

Let the splitting field of a;" - 1 over I F 2 be ^2"* where ii is an odd integer and m > 1, and let a 
generator of be a and an integer r = (2"* - l)/n. Let Tm{x) be a set of polynomials of degree at 
most 71-1 with coefficients over ^ 2 - " and for convenience, let Ti(x) be denoted by T{x). 

2,7 \pefinition (Matison'Sqlomon Polynomial), If a(a;) e.,T{x), the Mattson-Solomon-polynomial 
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of a(x) is the mapping from a{x) to A(z) and is defined by (MacWilliams and Sloane; 1977) 

n - l 

A(z) - MS(a(x)) = ^ a ( a - ' - - ' > ^ (2.1) 
j. 0 

where A(z) e Tjn(z). The inverse Mattson-Solomon polynomials is: 

a(a;) = MS"*(yl(2)) = - ^ i 4 ( r t " ) x ' . (2.2) 
u-0 

The polynomial variables x and z are used to distinguish the polynomials in the domain and 
codomain of the mapping. Assume that o be polynomial multiplications (mod - 1) and • be 
the dot product of polynomials, i.e. (J^a^x*) • (J^bix') = Y^aibix\ It follows from the mapping that 
0 in the domain is mapped to • in the codomain and vice-versa. This concept is analogous to mul
tiplication and convolution in time and frequency domain, where the Fourier and inverse Fourier 
transforms are the Mattson-Solomon and inverse Mattson-Solomon polynomials respectively 

2.8 Definition (Binary Idempotent). Consider c(a;) € T(x), v{x) is an idempotent if the property of 
1 ( x ) = f 2 ( x ) = (.(x'^) mod ( i " - 1) is satisfied. 

An \n,k\ binary cyclic code may be described by the generator polynomial g(x) e T{x) of degree 
n - k and the parity-check polynomial h{x) G T{x) of degree k such that g{x)h(x) = x " - 1. Accord
ing to MacWilliams and Sloane (1977), as an alternative to (j{x), idempotent may also be used to 
generate cyclic codes. Any binary cyclic code can be described by a unique idempotent Cg{x) € T(x) 
which consists of a sum of primitive idempotents. The unique idempotent Cg(x) is known as the 
generating idempotent and as the name implies, g(x) is a divisor of C g ( x ) , and to be more specific 
Cfjix) = m{x)g(x) where m ( x ) e T(x) contains the repeated factors or non-factors of x " - 1. 

2.1 Lemma, l{({x) 6 T{x) is an idempotent, E(z) = MS(r (x) ) e T(z). 

Proof ([cf MacWilliams and Sloane (1977)].), Since e(x) = ('(xf (mod - 1), from (2.1) it 
follows that e(a"'•'') = C ( Q ~ ' ' ^ ) ^ for j = {0,1,... ,7I - 1} and some integer r. Clearly c{a'"'-') € {0,1} 
implying that E(z) is a binary polynomial. • 

2.9 Definition (Cyclotomic Coset), Let s be a positive integer, the 2-cyclotomic coset of s (mod n) 
is given by 

a ^ { 2 \ s (modn) |0< i<0 . 

where it shall always be assumed that the subscript s is the smallest element in the set and t 
is the smallest positive integer such that 2'+ ŝ = s (mod n). 

For convenience, the term cyclotomic coset shall be used when referring to the 2-cyclotomic coset 
of an integer for the remainder of this thesis. If A/* is the set consisting of the smallest elements of 
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all possible cyclotomic cosets then it follows that 

C= UC, = { 0 , l , 2 , . . . , n - l } . 

2.10 Definition (Binary Cyclotomic Idempotent). Let the polynomial Cj(x) € T{x) be given by 

(2.3) 
0 < t < | C , | - l 

where | C , | is the number of elements in and C^.i = 2*5 (mod 7i), the (i+ l)th element of C , . The 
polynomial et{x) is called a binary cyclotomic idempotent. 

Cyclotomic Example 2.2: The entire cyclotomic cosets of 63 and their corresponding binary cyclotomic idem-
cosets of 63 potents are as follows 

Co {0} coix) = 1 

c , {1,2,4,8,16,32} ci{x) = 
Ca = {3,6,12,24,48,33} C3(X) = 
C5 = (5,10,20,40,17,34} = 
Cy {7,14,28,56,49,35} e7{x) = 
Co = {9,18,36} CQ{X) = 

On = {11,22,44,25,50,37} en{x) = 
C i 3 = {13,26,52,41,19,38} = 
Ci5 = {15,30,60,57,51,39} ci^(x) = x ' s + x^o + i^^ + x S i + x ^ + x ™ 

C21 {21,42} C2l{x) x ^ ' + x ' ' ^ 

C23 — {23,46,29,58,53,43} — x " + x='' ' + x ' ' 3 + x ' " = + x ° ' + x'>8 

C27 = {27,54,45} e27(x) = x ^ + x ^ ^ + x ^ " 

C31 — {31,62,01,59,55,47} C3l{x) = x 3 i + x ' ' V x 5 5 + x'^3 + x ' " + x " 

and AT = {0,1,3,5,7,9,11,13,15,21,23,27,31}. 

2.11 Definition (Binary Parity-Check Idempotent). Let M CM and let the polynomial u{x) € T{x) 
be defined by 

u(x) = e.(x), (2.4) 

where e,(rc) is an idempotent. The polynomial u(x) is called a binary parity-check idempotent. 

37 



Chapter 2. LDPC Code Constructions 

The binary parity-check idempotent v(x) can be used to describe an [7/,,̂ :] cyclic code. Since 
{u(x),x'' - 1) = h{x), the polynomial n{x) = x^'^^^^'^^^^uix-^) and its n cyclic shifts (mod a;" - 1) 
can be used to define the parity-check matrix of a binary cyclic code. In general, \vtff(u(x)) is much 
lower than \vtH(li(x}), therefore a low-density parity-check matrix can be derived from u(x). 

Let the parity-check polynomial u{x) = 3:"° + x" > -H... + x"' of weight i -f 1. Since the code defined 
by u(x) is cyclic, for each non zero coefficient Ui in u(x), there are other t parity-check polynomials 
of weight t -f 1, that also have non zero at position u,-. Furthermore, consider the set of these t + 1 
polynomials that have non zero at position Ui, there is no more than one polynomial in the set that 
have non zero at position uj for some integer j. In other words, if we count the number of times the 
positions 0,1, . . . , 71 - 1 appear in the exponent of the aforementioned set of i + 1 pol3rnomials, we 
shall find that all positions except Ui appear at most once. These set of £ + 1 polynomials are said 
to be orthogonal on position Ui, The mathematical expression of this orthogonality is given in the 
following definition and lemma. 

2,12 DefinitipnWifference Enumerator Polynomial). Let the polynomial f{x) € T{x). The differ
ence enumerator of /(a;), denoted as is defined as 

V { f { x ) j = / (a:) / {x-') = rfo + rfix -f . . . -f dn-ix^'^ (2.5) 

where i t is assumed that-t»(/(a;)) is a modulo x" - 1 polynomial with coefficients taking values 
from R (real coefficients). 

2.2 Lemma. Let rfi for 0 < i < n.- 1 denote the coefficients ofV{u{x)). U di e {0,1}, for all i € 
{1,2,..., 71 - 1}, the parity-check polynomial derived from u{x) is orthogonal on each .position in 
the 7i-tuple. Consequently 

i) . the minimum distance of the resulting LDPC code is 1 -f ̂ vt//(u(x)), and 

ii) -the underlying Tanner Graph has girth of at least 6. 

Proof, (i) (Peterson and Weldon, Jr.; 1972, Theorem 10.1) Let a codeword c(x) = co + cix -t-... + 
Cn-ix"~^ and c{x) € T{x). For each non zero bit position cj of c(x), where j e {0 ,1 , . . . ,71 - 1}, there 
are wt//(u(x)) parity-check equations orthogonal to position cj. Each of the parity-check equation 
must check another non zero bit c/, where / 7̂  j, so that the equation is satisfied. Clearly, wt//(c(x)) 
must equal to 1 + wt//(u(a:)) and this is the minimum weight of all codewords, (ii) The direct 
consequence of having orthogonal parity-check equation is the absence of cycles of length 4 in the 
Tanner Graphs. Let a, b and c, where a < 6 < c, be three distinct coordinates in an 71-tuple, 
since d,- € {0,1} for 1 < i < 7i - 1, this implies that 6 - a / c - 6. It is known that q{b - a) 
(mod 11) 6 {1,2,... ,71 - 1} and thus, q(b - a) (mod 71) = (c - 6) for some integer g € {1,2,... ,71 - 1}. 
If the integers a, 6 and c are associated with some variable vertices in the Tanner graph, a length 6 
cycle is formed. • 

It can be deduced that the cyclic LDPC code with parity-check polynomial u{x) is an OSMLD 
code if di e {0,1}, for all z € {1,2,... ,n - 1} or a DSC code if = 1, for all i € {1,2,... ,71 - 1}, where 
di is the coefficient of P(il(x)). 
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In order to arrive at either OSMLD or DSC codes, the following design conditions are imposed 
on u(x) and therefore, u(x): 

Condition 2,1, The idempotent u(x) must be chosen such that \vtuiu(x)) {\vtii{u(x)) - 1)) < n - 1. 

Proof. There are \vt//(1/(3;)) polynomials of weight wt//(u(x)) that are orthogonal on position j for 
some integer J. The number of distinct positions in this setof polynomials is wt//(u(3:))(wt//(u(3;)) - 1) 
and this number must be less than or equal to the total number of distinct integers between 1 and 
71 - 1. • 

Condition 2.2. Following Definition 2.12, let W = {i \ = I, \ < i < n - I}, the cardinality of W 
must be equal to \vtii{u{x)) (wt//(u(a;)) - 1). 

Proof The cyclic differences between the exponents of polynomial u(x) are given by 'D{u{x}) = 

Er=o* where the coefficient di is the number of differences and the exponeht i is the difference. 
The polynomial u{x) and some of its cyclic shifts are orthogonal on position 0 and this means that 
all of the cyclic differences between the exponents of u{x) (excluding zero) must be distinct, i.e. 
rfi € {0,1} for 1 < i 7"̂  71 - 1. Since the weight of u{x) excluding is wt/y (u{x)) - 1 and there are 
wt// {u(x)) cyclic shifts of u(x) that are orthogonal to .7;̂ , the number of distinct exponents in the 
cyclic differences is wt// {u(x)) (wt// (u{x)) - 1) = VV. • 

Condition 2.3, The exponents of u(x) must not contain a common factor of ?i, otherwise a degener
ate code-a repetition of a shorter cyclic code, is generated. 

Proof I f the exponents of u(x) contain a common factor of 71, p with n = pr, then factors of u(x) 
divide x^ ~ I and form a cyclic code of length r. Every codeword of the longer code is a repetition of 
the shorter cyclic code. 

Condition 2,4, Following (2.4), unless wtn{es{x)) = 2, the binary parity-check idempotent es{x) 

must not be self-reciprocal, i.e. Ca(x) Cg {^~^)-

Proof The number of non zero coefficients o^'D[es(x)) is equal to wt//(ea(x)) (wtnieaix)) - 1). For 
a self-reciprocal case, es[x)es (x"*) = cl{x) = Ca(x) with v^tu(es(x)) non zero coefficients. Following 
Condition 2.1, the inequality wtH(e5(3;)) (wt//(es(a:) - 1) < wt//(ea(3;)) becomes equality if and only 
ifwt//(e,(3;)) = 2. a 

Condition 2,5, Following (2.4), u{x) must not contain unless ea{x) is self-reciprocal. 

Proof I f u{x) contains then V ( X L { X ) ) will contain both es(x)es (x~^) and {x~^)es{x), 

hence some of the coefficients of I?(ej(x-)), di ^ {0,1} for some integer L a 

Although the above conditions seem overly restrictive, they turn out to be helpful in code construc
tion. Codes may be designed in stage-by-stage by adding candidate idempotents to u{x) checking 
the above conditions at each stage. 

In order to encode the cyclic LDPC codes constructed, there is no need to determine g(x). With a 
defined as a primitive 7ith root of unity, it follows from Lemma 2.1 that u(a*) e {0, l}forO<z < 7 i - l . 
Let J = UoJi,- • Jn-k-i) be a set of integer between 0 and 71- 1 such thatgia^) = 0, for all j e J . 
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Because u{x) does not contain Q-' as its roots, it follows that U(G^) = 1, for all j G J, In F2, 
1 + u{<yj) = 0 and the polynomial 1 + u(x) = eg(x), the generating idempotent of the code, may be 
used to generate the codewords as an alternative to g(x). 

The number of information symbols of the cyclic LDPC codes can be determined either from 
the number of roots of u{x) which are also roots of unity, i.e. n - wtn {U{z)), or from the degree of 
{u(xlx--l) = h{x). 

Example 2.3: Consider the design of cyclic LDPC code of length 63. The cyclotomic cosets modulo 
63 is given in Example 2.2. Let u{x} be defined by Co, i.e. u(x) = eo(x) = x^(l + + x^"^). t>{u{x)) 

indicates that the parity-check matrix defined by u(x) has no cycles of length 4, however, following 
Condition 2.3, it is a degenerate code consisting of repetition of codewords of length 7. 

With u{x) = e23(x) = 0:23(1 + 1 6 + + 3 : 2 3 + 3:30 + t h e resulting cyclic code is a [63,31,6] 
LDPC code which is non degenerate and its underlying Tanner graph has girth of 6. This code 
can be further improved by adding e2i{x) to u{x). Despite 621(3:) is self-reciprocal, its weight is 2 
satisfying Condition 2.4. Now, u(x) = i ^ i (1 + ^ ^ ̂ 21 + ̂ 22 _,_ ̂ 25 _,_ ̂ 32 _̂  ̂ 37̂  ^̂ d̂ it is a [63,37,9) 
cyclic LDPC code. 

Construction 
of [63.37,9] 
cyclotomic 
idempotent 

code 

Based on the theory described above, an algorithm which exhaustively searches for all non de
generate cyclic LDPC codes of length n which have orthogonal parity-check polynomial, has been 
developed and it is given in Algorithm 2.1. 

Algorithm 2.1 CodeSearch(7i, V, index) 
Input: 

11 <= block length (odd integer) 
index <= an integer that is initialised to - 1 
V a vector that is initialised to 0 
S <=Af excluding 0 

Output: 
CodesList contains set of cyclic codes which have orthogonal parity-check polynomial 

1: T<^ V 
2: for (i-index+1; i < |5|; do 
3 
4: 
5: 
6 
7: 
8: 
9: 

10; 
11 
12 
13 
14 
15 
16 
17 
18 

Tprov ^ T 
^ (EvtGT 1̂ 5, \<sFhSt is the element of 5) then 

Append i to T 
w(a:) = EvtGT^S.Ca;) 
if [u(x) is non degenerate) and {u{x) is orthogonal on each position (Lemma 2.2)) then 

U(z) = US(u(x)) 
k = n-wtH {U(z)) 
C <= an [n, fc, 1 + wt//(u(x))] cyclic code defined by u(x) 
i f { k > \ ) and {C i CodeList) then 

Add C to CodeList 
end if 

end if 
CodeSearch(T, i) 

end if 
T < = T r 

end for prev 
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Table 2.1: Examples of 2-cyclotoniic coset-based LDPC codes 
(n, k, d\ Cyclotomic cosets 

[21,11,6] 
(63,37,9] 
[93,47,8] 
(73,45,10] c, 

[105,53,8) 
[219,101,12] 03, C73 

[255,135,13] 
[255,175,17] C\, C27 
(273,191,18] 
[341,205,16] 
[511,199,19] 
[511,259,13] 
[819,435,13] c, 
[819,447,19] 
[1023,661,23] 
[1023,781,33] ^̂ 1J Ĉ53i ̂ 1231̂ 341 

[71, A:, d] Cyclotomic cosets 
[1057,813,34] 
[1387,783,28] C\, C247 
[1971,1105,21] ^li^657 
[2047,1167,23] C\, C27 
[2325,1335,28] 1̂5̂ 5̂7:̂ 775 
[2325,1373,30] Ĉ l:<̂ 525iC'i085 
[2359,1347,22] Ci 
[3741,2229,29] c, 
[3813,2087,28] C'l,C3G9>C'i271 
(4095,2767,49] Ci,C4i,C235,t̂ 733 
[4095,3367,65] Ci, C41, C2351 ^̂ 273i C^w, C733 
[4161,2827,39] ^^1, <̂ 307, Ci387 
[4161,3431,66] C\, C285: ̂ 3̂07, C357, Ci387 
[4681,2681,31] 1̂1̂ 5̂1 
[5461,3781,43] ^̂ l:̂ 77iC 5̂79 

Table 2.1 lists some example of codes obtained from Algorithm 2.1. Note that, all codes with code 
rate less than 0.25 are excluded from the table and codes of longer lengths may also be constructed. 
It can also be seen that some of the codes in Table 2.1 have the same parameters as the Euclidean 
and projective geometry codes, which have been shown by Kou et al. (2001) to perform well under 
iterative decoding. 

A key feature of the cyclotomic coset-based construction is the ability to increment the minimum 
Hamming distance of a code by adding further weight from other idempotents and so steadily der 
crease the sparseness of the resulting parity-check matrix. Despite the construction method has a 
feature of producing LDPC codes with no cycles of length 4, it is important to remark that codes 
that have cycle of length 4 in their parity-check matrix do not necessarily have bad performance 
under iterative decoding and a similar finding has been demonstrated by Tang et al. (2005). It has 
been observed that there are many cyclotomic coset-based LDPC codes that have this property and 
the constraints in Algorithm 2.1 can be easily relaxed to allow the construction of cyclic LDPC codes 
with girth 4. 

2.2.2 Mattson-Solomon Domain Construction of Binary Cyclic LDPC 
Codes 

The [/I, k, d\ cyclic LDPC codes presented in Section 2.2.1 are constructed by using the sum of idem
potents, which are derived from the cyclotomic cosets modulo n, to define the parity-check matrix. 
A different insight on this construction technique may be obtained by working in the Mattson-
Solomon domain. 
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Let 71 be a positive odd integer, be a splitting field for x" - 1 over IF2, a be a generator for 
Fz"* and TmCx) be a polynomial with maximum degree of 71 - 1 and coefficients in F2'". Similar 
to Section 2.2.1, the notation of T(3;) is used as an alternative to T\(x) and the variables x and 
z are used to distinguish the polynomials in the domain and codomain. Let the decomposition of 
2" - 1 into irreducible poljmomials over F2 be contained in a set = {/i(^),/2(^)j • • •. A(^)}. i-e. 
Y\i<i<tfi{z) = 2" - 1. For each /i(z), there is a corresponding primitive idempotent, denoted as 
Bi{z)y which can be obtained by (MacWilliams and Sloane; 1977) 

(2.6) 

where !\(z) = f j i ( z ) , J[(z) e T(z) and the integer S is defined by 

1 ifdeg(/i(z))isodd, 
o = < 

0 otherwise. 

Let the decomposition of 2" - 1 and its corresponding primitive idempotent be listed as follows 

u,{x) e,{z) h ( z ) 

U2(T:) 0 2 { Z ) f2iz) 

ut(x) edz) friz). 

Here ui{x),U2{x),... ,ui{x) are the binary idempotents whose Mattson-Solomon polynomials are 
0i{z),92(z),... ,ei(z) respectively. Assume t h a t ! C { 1 , 2 , . l e t the binary polynomials u(x) = 

H^i^jUiix), f { z ) = riviex/iC^). and 0(e) = Evi€i^^(^)- It is apparent that, since mix) = MS"' (0.(2)), 
u{x) = MS"* {0{z)) and u{x) is an idempotent^ 

Recall that u(x) is a low-weight binary idempotent whose reciprocal polynomial can be used to 
define the parity-check matrix of a cyclic LDPC code. The number of distinct 71th roots of unity 
which are also roots of the idempotent u{x) determines the dimension of the resulting LDPC code. 
In this section, the design of cyclic LDPC codes are built around several important features of a 
code. These features, which are listed as follows, may be easily gleaned from the Mattson-Solomon 
polynomial of u(x) and the binary irreducible factors of z" - I. 

1. Weight of the idempotent u{x) 
The weight of u{x) is the number of 71th roots of unity which are zeros of f(z). Note that, 
/(a*) = 0 if and only if 0(Q*) = 1 since idempotent takes only the values 0 and 1 over ^2 .̂ I f 
u(x) is written as UQ-\-Uix-\-.. . + Un-\x''~\ following (2.2), it can be seen that 

Ui = 0{Q') (mod 2) for i = {0,1,..., 71 - 1}. 

Therefore Uj = 1 precisely when /(a*) = 0, giving wt//(u(a:)) as the degree of the polynomial 

^Sincc the Mattson-Solomon polynomial of a binary polynomial is an idempotcnt and vice-versa (MacWilliams and 
Sloanc; 1977), the Mattson-Solomon polynomial of a binary idempotcnt is also a binary idempotent 
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2. Number of zeros of u(x) 
Following (2.1), it is apparent that the number of zeros of u{x) which are roots of unity, which 
is also the dimension of the code is 

Number of zeros of u{x) = k = n - wtn {0{z)). (2.7) 

3. Minimum Hamming distance bound 
The lower-bound of the minimum Hamming distance of a cyclic code defined by idempotent 
u(x) is given by its BCH bound, which is determined by the number of consecutive powers of 
a, taken cyclically (mod n), which are also roots of the generating idempotent eg{x) = 1 + u{x). 
In the context of u{x), it is the same as the number of consecutive powers of a , taken cyclically 
(mod n), which are not roots oTu{x). Therefore, it is the largest number of consecutive non 
zero coefficients in ^(2), taken cyclically (mod 11). 

The method of finding fi(z) is well-established and using the above information, a systematic 
search for idempotents of suitable weight may be developed. To be efficient, the search procedure 
has to start with an increasing order of wt//(u(a;)) and this requires rearrangement of the set such 
that cicg(/i(2)) < deg(/i+i(2)) for all i. I t is worth mentioning that it is not necessary to evaluate 
u{x) by taking the Mattson-Solomon polynomial of ^(2), for each f{z) obtained. It is more efficient 
to obtain u{x) once the desired code criteria-see the design features listed above, are met. 

For an exhaustive search, the complexity is of order O (2'^'). A search algorithm, see Algo
rithm 2.2, has been developed and it reduces the complexity considerably by targeting the search 
on the following key parameters. Note that this search algorithm, which is constructed in the 
Mattson-Solomon domain, is not constrained to find cyclic codes that have girth at least 6. 

1. Sparseness of the parity-check matrix 
A necessary condition for the absence of cycles of length 4 in the Tanner graph of a cyclic LDPC 
code is given by the inequahty wtH(u(x)) (wtH(w(a;)) - 1) < 7 i - l . Since wtw(w{a;)) = deg(/(2)), 
a reasonable bound is 

^ deg(/,(2)) < 

In practice, a bit beyond this limit is considered to enable finding of good cyclic LDPC codes 
which have girth of 4 in their underlying Tanner graph. 

2. Code-rate 
The code-rate is directly proportional to the number of roots of u{x). I f 7?,ni„ represents the 
minimum desired code-rate then it follows from (2.7) that the search may be refined to consider 
cases where 

w t „ ( ^ ( 2 ) ) < ( l - / C i „ ) n . 

3. Minimum Hamming distance 
If the idempotent u(x) is orthogonal on each position, then the minimum Hamming distance of 
the resulting code defined by 7i(x) is equal to l+wt//(u(a;)). However, for cyclic codes with cycles 
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of length 4, there is no direct method to determine their minimum Hamming distance and 
their BCH bound provides a usefijl information on the minimum Hamming distance lower-
bound. Let d be the lowest desired minimum Hamming distance and rg be the largest number 
of consecutive non zero coefficients, taken cyclically, of 6(z), I f a cyclic code has VQ of then 
its minimum Hamming distance is at least 1 + d. It follows that the search may be further 
refined to consider the following case 

ro>d-l 

Algorithm 2.2 MSCodeSearch(7?., V, index) 
Input: 

71 <= block length (odd integer) 
V <!= a vector initialised to 0 
index <= an integer initialised to - 1 
Rfnin <^ minimum code-rate of interest 
d <= lowest expected minimum distance 
6 •<= small positive integer 
F(z) <^ {fi(z)} Vi € / sorted in ascending order of the degree 

Output: 
CodesList contains set of codes 
T 
for {i=index+l; i < |Z|; do 

i f (Ev.eT deg(/>(a;)) + deg(/i(:i;)) < + 5) then 
Append i to T 

i f (\vtfi(0{z)) < (1 - Rinxn)n and TQ > d) then 
u(x)^MS-'{e{z)) 
i f {IL{X) is non-degenerate) then 

C <=a cyclic code defined by u{x) 
i f (C ̂  CodeList) then 

Add C to CodeList 
end i f 

end i f 
end i f 
MSCodeSearch(T, i) 

end i f 
T <= T, 

end for 
prov 

In comparison to the construction method described in Section 2.2.1, we can see that the con
struction given in Section 2.2.1 starts from the idempotent u(x), whereas that given in this section 
starts from the idempotent 0{z), which is the Mattson-Solomon polynomial of u(a:). Both construc
tion methods are equivalent and the same cyclic LDPC codes may be produced. 

Some good cyclic LDPC codes with cycles of length 4 found using Algorithm 2.2, which may also 
be found using Algorithm 2.1, are tabulated in Table 2.2. A check based on Lemma 2.2 may be 
easily incorporated in Stiep 12 of Algorithm 2.2 to filter out cyclic codes whose Tanner graph has 
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Table 2.2: Several good cyclic LDPC codes with girth of 4 
[n, k, d] u(x) 

[51,26,10] 1 + a;3 + a;G + 3;I2 ^ .̂17 _̂  2̂4 + 2̂7 _̂  3̂4 + 3̂9 _̂  4̂5 ^ 4̂8 

[63,44,8] 1 + X̂  + X>1 + + a;21 + 2-22 ^ 2̂5 + 2̂7 ^ 3̂G 3̂7_̂  
j;'12 _̂  ^44 _j_ ^45 _,_ 2,50 _,_ 3.54 

[117,72,12] 1 -t- X + x2 + X** + X̂  + X^l + X^̂  + X22 + x32 + x"*** -J- X^̂  -f X̂ "* + X̂ ^ 
[127,84,10] 1 + X + x^ + x** + x8 -t- x»*̂  + x32 + -H x^^ -t- x̂ -* + x»̂  + x̂ '3 + x^o»+ 

x"0 + x»̂ « 
[127,91, 10] 1 + a;2 + 1̂0 + 1̂8 _̂  2̂9 ̂  3̂2 _,_ 3.33 _,_ 3.49 + 5̂0 ^ .̂54 ^ 5̂8 _j. .̂GS.̂  

+ .̂ .70 + .,.78 _̂  8̂G _̂  8̂7 _̂  8̂8 + ,.92 _̂  ,,93 ^ .̂95 
[127,92,7] l-H X̂  + X̂O -f- X20 + x2f -f + x33 + 3:39 _̂  4̂0 _̂  .̂58 + 3.02 _̂  ^6G^ 

a;78 ̂  7̂9 + 8̂0 + 8̂3 _,_ 1̂03 _,_ ,̂105 _̂  .̂IIS + M̂G ^ ^121 + ̂ 124 

[127,99,7) 1 -f + X̂ « + X̂ 8 -f x22 + + x39 -f x'*̂  + x"^ + x"^^ -\- X*̂» + X^̂  + X«5 + 
3;68 ^ 7̂0 ^ .̂78 _,_ _,. 9̂0 _̂  9̂1 ̂  ,̂92 _,_ ,̂90 _̂  9̂7 ̂  1̂02 + ,.103+ 
1̂05 +,,108+^111 

girth of 4. 
Figure 2.3 demonstrates the FER performance of several cyclic LDPC codes found by Algo

rithm 2.2. It is assumed that binary antipodal signalling is employed and the iterative decoder uses 
the RVCM algorithm (Papagiannis et al.; 2003a). The FER performance is compared against the 
sphere packing lower bound offset for binary transmission. It can be seen that the codes [127,84,10] 
and [127,99,7], despite having cycles of length 4, are around 0.3 dB from the offset sphere packing 
lower bound at lO"** FER. Figure 2.3c compares two LDPC codes of block size 255 and dimension 
175, an algebraic code obtained by Algorithm 2.2 and an irregular code constructed using PEG al
gorithm (Hu et al.; 2002). It is shown in the figure that, in addition to having an advantage on the 
minimum Hamming distance, the cyclic LDPC code is 0.4 dB superior to the irregular counterpart, 
and compared to the offset sphere packing lower bound, it is within 0.25 dB away at lO"** FER. The 
effect of error floor is apparent in the FER performance of the [341,205,6] irregular LDPC code, as 
shown in Figure 2.3d. The floor of this irregular code is largely attributed to minimum Hamming 
distance error events. While this irregular code, at low SNR region, has better convergence than 
does the algebraic LDPC code of the same block length and dimension, the benefit of having larger 
minimum Hamming distance is obvious as SNR increases. The [341,205,16] cyclic LDPC code is 
approximately 0.8 dB away from the offset sphere packing lower bound at 10"** FER. 

It has been shown that short block length (71 < 350) cyclic LDPC codes have outstanding perfor
mance; the gap to the offset sphere packing lower bound is relatively close. On the other hand, it 
has also been observed that, as the block length increases, the algebraic LDPC codes although have 
large minimum Hamming distance, have a convergence issue and the threshold to the waterfall 
region is at larger Eb/No. The convergence problem arises because as the minimum Hamming dis
tance is increased, the weight of the idempotent u(x), which defines the parity-check matrix, also 
increases. In fact i f ii(x) satisfies Lemma 2.2, wt//(u(x)) = rf - 1 where d is the minimum Hamming 
distance of the code. Large value of \vtH(u(x)) results in a parity-check matrix that is not as sparse 
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s s ss 
EJJ.dD 

(a) [127,84,10] cyclic LDPC code (b) [127,99,7] cyclic LDPC code 

(c)[255,175,17) cyclic and [255,175,0] irregular PEG LDPC (d) (341,205,16] cyclic and [341,205,6] irregular PEG 
codes LDPC codes 

Figure 2.3: PER performance of binary cyclic LDPC codes 

as that of a good irregular LDPC code of the same block length and dimension. 

2.2.3 Non Binary Extension of the Cyclotomic Coset-based LDPC Codes 

The code construction technique for the cyclotomic coset-based binary cyclic LDPC codes, which are 
discussed in Section 2.2.1, may be extended to non binary fields and it is the subject of this section. 
Similar to the binary case, the non binary construction produces the dual code idempotent which is 
used to define the parity-check matrix of the associated LDPC code. 

Let 7/1 and m' be positive integers with m. \ m', so that IF2"» is a subfield of Fjm'. Let n be 
a positive odd integer and Fjm' be the splitting field of x" - 1 over F2'», so that 7i|2"*' - I. Let 
r = (2"*' - l ) /n, / = (2"*' - l)/(2'" - 1), a be a generator for lF2m' and P he a generator of , where 
P = a'. Let Ta(x) be the set of polynomials of degree at most n - 1 with coefficients in F2-. For the 
case of a = 1, we may denote Ti{x) by T{x) for convenience. 

The Mattson-Solomon polynomial and its corresponding inverse, (2.1) and (2.2) respectively, may 
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be redefined as 

ri-l 
A{z) = MS (a(x)) = ^ a{o-'-^)z^ (2.8) 

1 ""^ 

a(a;) = MS"* ( ^ ( 2 ) ) = - ^ >l(a"):K* (2-9) 

where a(x) € 7;„'(x) and A(z) e Tm'(z). 

Recall that a polynomial e{x) € Tjnix) is termed an idempotent i f the property e{x) = e(.'c)2 

(mod x" - 1) is satisfied. Note that e{x) i= e{x?) (mod a;" - 1) unless m = 1. The following definition 
shows how to construct an idempotent for binary and non binary polynomials. 

2.13 Definition (Cyclotomic Idempotent), Assume that be a set as defined in Section 2.2.1, let 
5 € AT and let C .̂i represent the (i +.l)th element of Ca, the cyclotomic coset of s (mod 71). Assume 
that the polynomial es(x) € Tm(^)^^^ given by 

es(x)= ^c.,,x^"', (2.10) 
0<»<|C,|-1 

where [Cal is the number of elements in C,. In order for es{x) to be an idempotent, its coefficients 
may be chosen in the following manner, 

i) i f 771= 1, ec..i = 1, 

ii) otherwise, is defined recursively as follows 

. for. i>0, ec:,,=el^._^. 

The idempotent Ca(x) is refen-ecl to as a cyclotomic idempotent. . 

2.14 Definition (Parity-Check idempotent), LetMCAf and let u(a;) e T„^(x) be; 

- u(x) = Y^esix). - . (2.11) 

The polynomial ?i(a:) is an idempotent and it is called a.parity-cHeck idempotent. 

As in Section 2.2.1, the parity-check idempotent u(x) is used to define the F2m cyclic LDPC code 
over F2'", which may be denoted by [71, A:,d]2'". The parity-check matrix is being made up of 71 cyclic 
shifts of x**'̂ 8("^^**u(x~'). For non binary case, the minimum Hamming distance d of the cyclic code 
is bounded by 

do + 1 < d < min(wtA/(ff(i)), \vt//(l +it(a:))) 

where do is the maximum run of consecutive ones in U(z) = MS(u(a;)), taken cyclically mod n. 
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Based on the description given above, a procedure to construct a cyclic LDPC code over F2'» may 
be devised and described as follows. 

1. Given some integers in and n, obtain the splitting field (Fjm') of - 1 over F2'". Unless the 
condition of 771 | m' is satisfied, F2'" cyclic LDPC code of length 71 cannot be constructed. 

2. Generate the cyclotomic cosets modulo 2'"' - 1 and denote it C. 

3. Derive a polynomial p(x) from C and let 6 A/* be the smallest positive integer such that 
\Cs \ = in. The polynomial p{x) is the minimal polynomial of cv̂ , 

p(x)= N (^ + '^'^*') (2.12) 
0<t<m 

Construct all elements of F2m using p(a:) as the primitive polynomial. 

4. Let C be the cyclotomic cosets modulo 7; and let A'' be a set containing the smallest number 
in each coset of C. Assume that there exists a non empty set M C Af and following Defini
tion 2.14, construct the parity-check idempotent u{x). The coefficients of u(x) can be assigned 
following Definition 2.13. 

5. Generate the parity-check matrix of C using the n cyclic shifts of a:'̂ *-'s("t̂ J'u(3:"̂ ). 

6. Compute r and /, then take the Mattson-Solomon polynomial of u{x) to produce U{z). Obtain 
the code dimension and the lower-bound of the minimum Hamming distance from U(z). 

Example 2.4; Consider the construction of a 71 = 21 cyclic LDPC code over Fjo. The splitting field Construction 
of - 1 over F20 is F20 and this implies that 7/(. = 7/1' = 6, r = 3 and / = 1. Let C and C denote of 
the cyclotomic cosets modulo n and 2"*' - 1 respectively. It is known that |CJ | = 6 and therefore the |21,15, > 5]2C 
primitive polynomial p(x) has roots of for all j 6 , i.e. p(x) = 1 -t-x-Hx®. By letting 1 = 0, cyclic LDPC 
all of the elements of F20 can be defined. If 7/(3;) is the parity-check idempotent generated by the code 
sum of the cyclotomic idempotents defined by Cs where 5 € {A^ ; 5,7,9} and ec,.o a\\ s € M be 
p^^, 1 and 1 respectively, 

u{x) = P^^x^ -t- + + P ' ^ T } ^ + p'^x'' -t- x'' + x'' + P^^x}' + x'' + P^'x'^ + 2̂9̂ 20 

and its Mattson-Solomon polynomial U(z) indicates that it is a (21,15, > 5)20 cyclic code, whose 
binary image is a [126,90,8] linear code. 

A systematic algorithm has been developed to sum up all combinations of the cyclotomic idem
potents to search for all possible F2". cyclic codes of a given length. Same as Algorithm 2.2, the 
search algorithm is targeted on the following key parameters: 

1. Sparseness of the resulting parity-check matrix 
Since the parity-check matrix is directly derived from u(x) which consists of the sum of the cy
clotomic idempotents, only low-weight cyclotomic idempotents are of interest. Let Wmax be the 
maximum \vtH(u(x)) then the search algorithm will only choose the cyclotomic idempotents 
whose sum has total weight less than or equal to W,„ax-
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2.2. Algebraic LDPC Codes 

2. High code-rate 
The number of roots ofu{x) which are also roots of unity define the dimension of the resulting 
LDPC code. Let the integer kmin be defined as the minimum code dimension, the cyclotomic 
idempotents that are of interest are those whose Mattson-Solomon polynomial has at least 
kmin zeros. 

3. High minimum Hamming distance 
Let the integer d' be the smallest value of the minimum Hamming distance of the code. The 
sum of the cyclotomic idempotents should have at least d' - I consecutive powers of /3 which 
are roots of unity but not roots of u(x). 

Following Definition 2.14 and the Mattson-Solomon polynomial 

C/(z) = M s ( ' ^ e , ( x ) ] = : J^EAz). 
VaGAI / aGM 

it is possible to maximise the run of the consecutive ones in U(z) by varying the coefficients ofes{x). 
It is therefore important that all possible non zero values of ec..o al\ s e M are included to 
guarantee that codes with the highest possible minimum Hamming distance can be found, or at 
least to obtain a better estimate of the minimum Hamming distance of a code. 

Table 2.3 outlines some examples of [n, k, c/]2- cyclic LDPC codes. The detail parameters are 
given in the table. The non binary algebraic LDPC codes in this table perform considerably well 
under iterative decoding as shown in Figure 2.4. For the results in this figure, binary antipodal 
signalling and AWGN channel are assumed. Furthermore, the RVCM algorithm is employed in the 
iterative decoder. The FER performance of these non binary codes is compared to the offset sphere 
packing lower bound. 

As mentioned in Section 2.1,2, an inverse relationship between the convergence of iterative 
decoder and the minimum Hamming distance of a code has been observed. The algebraic LDPC 
codes, which have larger minimum Hamming distance compared to irregular LDPC codes, do not 
converge well at long block length. To the best of author's knowledge, the best convergence at 
long block length can only be realised by irregular LDPC codes with good degree distributions. 
Figure 2.5 shows the performance of two LDPC codes of block length 5461 bits and code rate 0.6924; 
one is an irregular code constructed using the PEG algorithm and the other one is an algebraic 
code of minimum Hamming distance 43 based on cyclotomic coset and idempotent, see Table 2.1. 
These results are obtained by assuming AWGN channel and binary antipodal signalling with belief 
propagation iterative decoder with a maximum of 100 iterations. It can be seen that at 10"^ FER, 
the irregular PEG code is superior by approximately 1.6 dB over the algebraic cyclic LDPC code. 
Despite this disadvantage at long block length, short algebraic LDPC codes are attractive as they 
offer the best performance and yet have low complexity encoder structure. 
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Chapter 2. LDPC Code Constructions 

Table 2.3: Examples oi[n,k,d\2'^ cyclic LDPC codes 

7 [71, A:] u(x) Comment 

[51,29] /3 V+/3x^ + /y2x>2+/52,.l7^^,.24 _,_̂ ,.27 ̂ ^,.34 ^ 
/jV^+ZJx'^s + ^ V e 

> 5 10 VI — 2, m' — 8, 
r = 5 and / = 85 

[255,175] /3x^+/?2x»'*+^x28+/?V'5+xi»i-H/3x»»2+3:i23 + 
2̂̂ 131̂ .,.183+,.189+ ,̂.193_̂ ,.219_̂ ,.222+ 2̂,.224̂  

3.237 ^ 2̂46 

> 17 < 20 m = 2, m' = 8, 
r = 1 and / = 85 

[273,191) /?2x23 + /?x37 + ^x'*^ + /J^x^"* + ^X»^ -f- /?2x92 + 
/?2x«S+/y2x'07 + .-cll7+^,.l48 + 2̂,.155̂ _̂ 2,.182 + 
/JX^^-* + /?X^»0 ^ ,.196 + ,̂.214 ^ ,,234 

> 18 < 20 77* = 2, in' = 12, 
r = 15 and / = 
1365 

[63,40] l+;55a;^*+;9x»3+/?3a;»8_^/?2,.i9_^^2,.26^^6,,3G^ > 6 10 ni = 3, in.' = 6, 
r = 1 and / = 9 

[63,43] /?V + /?3xl»+;3^xlS+x2»+^«x22+^3,.25_^,.27_,_ 
Px^^ + j^^x^^ + x'*̂  + ^̂ x**"* + x**̂  H- /?«x̂ o + x̂ ^ 

> 8 < 12 7/1 = 3, rn' = 6, 
7- = 1 and / = 9 

[91,63] ^«x+/35x2+/33.x'*+/?«x8+/?xi3+^53;»C-i-/?V3 + 
2̂̂ 26 + ̂ 3,.32 ^ Ĝ,.37 ^ 3̂,.4G ̂  4̂,.52 _̂  ̂ 6,,57 _̂  

j^x^-* + /^^X^'* 

> 8 < 10 77/. = 3, in' = 12, 
r = 45 and / = 
585 

[85,48] 1 ^12^21 _̂ ̂ 9,,42 + ^6,.53 ^3,,G9 + ^9,.77 ^ 
^12a;81 +^6,.83_^^3,.84 

> 7 < 12 m = 4, 7/;/ = 8, 
r = 3 and / = 17 

[31,20] 1 + ;328,.5 + ̂ 7,.9 ^ ^25,,10 .^ ,^11+ ,.13 ^ 1̂4,,18 + 
/ ? ^ V 0 + x 2 » + x 2 2 + x 2 6 

> 7 12 in = 5, in' = 5, 
r = I and / = 1 

IF2» 
[31,21] /?23,;5+^29,.9+^15,.10^^,.11^^4,.13+^27,.18 + 

/?303;20 _j. ^1G,.21 + 2̂,.22 _̂  ^8,,2G 
> 4 8 in = 5, 77i' = 5, 

r = 1 and / = 1 
[21,15] ;323a;5 + ^ ,.9 + ^46,.10 _̂  ̂ 43,.13 + ,.14 ^ ,.15 + 

/353a;17_^,.18+^58,,19_^^29,.20 
> 5 8 771 = 6, 77t' = 6, 

r = 3 and / = 1 

The minimum Hamming distance of the binary image: it is determined using the improved Zimmcrmonn algorithm. Algorithm 4.1. 

2.3 Irregular LDPC Codes from Progressive-Edge-Growth 
Construction 

It is shown in Hu et al. (2005) that LDPC codes obtained from the PEG construction method can 
perform better than other randomly constructed LDPC codes. The PEG algorithm adds edges to 
each vertex such that the local girth is maximised. The PEG algorithm, which is given in Hu et al. 
(2005), considers only the variable degree sequence, and the check degree sequence is maintained 
to be as uniform as possible. In this section, the results of experimental constructions of irregular 
LDPC codes using the PEG algorithm are presented. Analysis on the effects of the vertex degree 
ordering and degree sequences have been carried out by means of computer simulations. All sim
ulation results in this section, unless otherwise stated, were obtained by using binary antipodal 
signalling with the belief propagation decoder with a maximum of 100 iterations and by assuming 
AWGN channel. 

Figure 2.6 shows the FER performance of various [2048,1024] irregular LDPC codes constructed 
using the PEG algorithm with different vertex degree ordering. These LDPC codes have variable 
degree sequence Ax{x) = 0.475x2+0.280x^+ 0.035x'*+0.109x^+ 0.101x̂ .̂ Let (vo,vu ... ,Vi,..., V n - i ) 
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2.3. Irregular LDPC Code's from Progressive-Edge-Growtk Construction 

(a) (51,29, > 5I22 cyclic LDPC code (b) [21,15, > 5I20 cyclic LDPC code 

S 9 03 *a s 99 

(c)[85,48,> 7)2̂  cyclic LDPC codes (d) [255,175, > I7]r^2 cyclic LDPC codes 

Figure 2.4: FER performance of non binary cyclic LDPC codes 

be a set of variable vertices of an LDPC code. Code 0 and Code 1 LDPC codes were constructed 
with an increasing vertex degree ordering, i.e. deg(wo) < dcg(ui) < . . . < deg(u„_i), whereas the 
remaining LDPC codes were constructed with random vertex degree ordering. Figure 2.6 clearly 
shows that, unless the degree of the variable vertices is assigned in an increasing order, poor LDPC 
codes are obtained. In random degree ordering of half rate codes, it is very likely to encounter the 
situation where, as the construction approaches the end, there are some low degree variable vertices 
that have no edge connected to them. Since almost all of the variable vertices would have already 
had edges connected to them, the low degree variable vertices would not have many choice of edges 
to connect in order to maximise the local girth. I t has been observed that, in many cases, these low 
degree variable vertices are connected to each other, forming a cycle which involves all vertices, and 
the resulting LDPC codes may have a considerably low minimum Hamming distance. If d variable 
vertices are connected to each other and a cycle of length 2d is formed, then the minimum Hamming 
distance of the resulting code is d because the sum of these d columns in the corresponding parity-
check matrix H is 0*̂ . 

On the other hand, for the alternative construction which starts from an increasing degree of 
the variable vertices, edges are connected to the low degree variable vertices earlier in the process. 
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Chapter 2. LDPC Code Constructions 

10" 
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£• 10-2 
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[5461.3781 .s i IJ2 irregular P E G LDPC code 
(5461.3781.43)2 cyclic LDPC code 

Offset Sphere Packing Lower Bound --

3 3.5 4 
E^/NQ. dB 

4.5 5.5 6.5 

Figure 2.5: FER performance of algebraic and irregular LDPC codes of rate 0.6924 and block length 
54G1 bits 

Short cycles, which involve the low degree variable vertices and lead to low minimum Hamming 
distance, may be avoided by ensuring these low degree variable vertices to have edges connected to 
the parity-check vertices which are connected to high degree variable vertices. 

It can be expected that the PEG algorithm will almost certainly produce no good LDPC codes if 
the degree of the variable vertices is assigned in descending order. Throughout this thesis, unless 
otherwise stated, it is assumed that all PEG-based LDPC codes are constructed with increasing 
variable vertex degree ordering. 

Figure 2.7 shows the effect of low degree variable vertices, especially A2 and A3, on the FER 
performance of various (512,256) PEG-constructed irregular LDPC codes. Table 2.4 shows the vari
able degree sequences of the simulated irregular codes. Figure 2.7 shows that, with the fraction 
of high degree variable vertices kept constant, the low degree variable vertices have influence over 
the convergence in the waterfall region. As the fraction of low degree variable vertices is increased, 
the FER in the low signal-to-noise ratio (SNR) region improves. On the other hand, LDPC codes 
with high fraction of low degree variable vertices tend to have low minimum Hamming distance 
and as expected, these codes exhibit early error floor and this effect is clearly depicted by Code 7 
and Code 8 which have the highest fraction of low degree variable vertices among all the codes in 
Figure 2.7. Among all of the codes, Code 6 and Code 24 appear to have the best performance. 

Figure 2.8 demonstrates the effect of high degree variable vertices on the FER performance. 
These codes are rate 3/4 irregular LDPC codes of length 1024 bits with the same degree sequences, 
apart from their maximum variable vertex degree. One group has maximum degree of 8 and the 
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2.3. Irregular LDPC Codes from Progressive-Edge-Growth Construction 

Figure 2.6: Effect of vertex degree ordering in PEG algorithm 
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Figure 2.7: Effect of low degree variable vertices 
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Chapter 2. LDPC Code Constructions 

Table 2.4: Variable degree sequences for codes in Figure 2.7. 
Code As A3 A4 As Al4 

CodeO 0.150 0.350 0.350 0.050 0.100 
Code 1 0.200 0.325 0.325 0.050 0.100 
Code 2 0.250 0.300 0.300 0.050 0.100 
Code 3 0.300 0.275 0.275 0.050 0.100 
Code 4 0.350 0.250 0.250 0.050 0.100 
C o d e s 0.400 0.225 0.225 0.050 0.100 

" Code 6 0.450 0.200 0.200 0.050 0.100 
C o d e ? 0.500 0.175 0.175 0.050 0.100 
C o d e s 0.550 0.150 0.150 0.050 0.100 

Code 10 0.150 0.700 0.000 0.050 0.100 
Code 11 0.200 0.550 0.100 0.050 0.100 
Code 12 0.250 0.400 0.200 0.050 0.100 
Code 13 0.300 0.250 0.300 0.050 0.100 
Code 14 0.350 0.100 0.400 0.050 0.100 
Code 20 0.150 0.000 0.700 0.050 0.100 
Code 21 0.200 0.100 0.550 0.050 0.100 
Code 22 0.250 0.200 0.400 0.050 0.100 
Code 23 0.300 0.300 0.250 0.050 0.100 
Code 24 0.350 0.400 0.100 0.050 0.100 

other group has maximum degree of 12. From Figure 2.8, it is clear that the LDPC codes with 
maximum variable vertex degree of 12 converges better under iterative decoding than those codes 
with maximum variable vertex degree of 8. 

Code Ai A2 A3 A4 As A12 

CodeO 0.000625 0.249375 0.644375 0.105625 
Code 1 0.000625 0.249375 0.420000 0.224375 0.105625 
Code 2 0.000625 0.249375 0.195000 0.449375 0.105625 
C o d e s 0.000625 0.249375 0.420000 0.224375 0.105625 
Code 4 0.000625 0.249375 0.195000 0.449375 0.105625 
C o d e s 0.000625 0.249375 0.420000 0.111875 0.111875 0.106250 
Code 6 0.000625 0.249375 0.195000 0.224375 0.224375 0.106250 
C o d e ? 0.000625 0.249375 0.420000 0.224375 0.105625 
C o d e s 0.000625 0.249375 0.195000 0.449375 0.105625 
Code 9 0.000625 0.249375 0.449375 0.195000 0.105625 

Code 10 0.000625 0.249375 0.449375 0.097500 0.097500 0.105625 
Code 11 0.000625 0.249375 0.449375 0.044375 0.150000 0.106250 
Code 12 0.000625 0.249375 0.495000 0.150000 0.105000 
Code 13 0.000625 0.249375 0.495000 0.075000 0.075000 0.105000 
Code 14 0.000625 0.249375 0.495000 0.037500 0.111875 0.105625 
Code 15 0.000625 0.249375 0.570000 0.075000 0.105000 
Code 16 0.000625 0.249375 0.570000 0.037500 0.037500 0.105000 

Table 2.5: Variable degree sequences of LDPC codes in Figure 2.9. 

Similar to Figure 2.7, the effect of having various low degree variable vertices is also demon
strated on Figure 2.9. In this case, the LDPC codes are constructed to have linear time encoding 
complexity, where the parity symbols are commonly described as having a zig-zag pattern (Ping 
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2.3. Irregular LDPC Codes from Progressive-Edge-Growth Construction 

I... 

F i ^ r e 2.8: EfFect of high degree variable vertices 

et al.; 1999). In this case, Ai and Aa of these LDPC codes are fixed and the effect of varying A3, 
A4 and A5 is investigated. The variable degree sequences of the LDPC codes under investigation, 
which are rate 3/4 codes of length 1600 bits, are depicted on Table 2:5. The results shows that, as 
in the previous cases, these low degree variable vertices contribute to the waterfall region on the 
F E R curve. The contribution of A,- is more significant than that of Ai+i and this may be observed 
by comparing the F E R curves of Code 1 with either Code 3 or Code 4, which has A3 of 0.0. It can 
also be seen that Code 0, which has the most variable vertices of low degree, exhibits high error 
floor. 

In contrast to Figure 2.9, Figure 2.10 shows the effect of varying high degree variable vertices. 
The LDPC codes considered here all have the same code rate and block length as those in Figure 2.9 
and their variable degree sequences are shown in Table 2.6. The results show that: 

• The contribution of the high degree variable vertices is in the high SNR region. Consider 
Code 10 to Code 33, those LDPC codes that have larger A12 tend to be more resilient to error 
in the high SNR region than those with smaller A12. At E^/No = 3.0 dB, Code 10, Code 11 
and Code 12 are inferior to Code 13 and similarly, Code 23 and Code 33 have the best 
performance in their group. 

• Large value of maximum variable vertex degree may not always lead to improved F E R per
formance. For example, Code 5 and Code 6 do not perform as good as Code 4 at E^/No = 
3.0 dB. This may be explained as follows. As the maximum variable vertex degree is increased, 
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CodeO 
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Code 2 
Codes 
Code 4 
Codes 
Codes 
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Code 15 
Code 16 

Eb/No. OB 

Figure 2.9: Effect of varying low degree variable vertices. 

some of the variable vertices have many edges connected to them, in the other words the cor
responding symbols are checked by many parity-check equations. This increases the chances 
of having unreliable information from some of these equations during iterative decoding. In 
addition, larger maximum variable vertex degree also increases the number of short cycles in 
the underlying Tanner graph of a code, and following McEliece et al. (1998) and Etzion et al, 
(1999), short cycles have negative contributions toward the convergence of iterative decoder. 

In Appendix A, a method of constructing a quasi-cyclic LDPC code by expanding a small irreg
ular LDPC code is described. Protograph is the name commonly used to refer to a small regular or 
irregular LDPC code. 

2.4 Summary 

• The application of cyclotomic cosets, idempotents and Mattson-Solomon polynomials can pro
duce many binary cyclic LDPC codes whose parity-check equations are orthogonal in each 
position. While some of these cyclic codes have the same parameters as a class of the finite 
geometry codes, others are new. A key feature of this construction technique is the incremen
tal approach to the minimum Hamming distance and thus, the sparseness of the resulting 
parity-check matrix of the code. 

• Binary cyclic LDPC codes may also be constructed by considering idempotents in the Mattson-
Solomon domain. This approach gives a different insight into the cyclotomic coset-based con-

56 



2.4. Summary 

ii 3» 

Figure 2.10: Effect of varying high degree variable vertices 

struction. 

It has also been shown that, for short algebraic LDPC codes considered in this chapter, the 
myth of codes which have cycles of length 4 in their Tanner graph do not converge well with 
iterative decoding is not necessary true. 

The cyclotomic coset based construction can be easily extended to produce good non binary 
algebraic LDPC codes. 

Good irregular LDPC codes may be constructed using the Progressive-Edge-Growth algo
rithm. This algorithm adds edges to the variable and check vertices in a way such that the 
local girth is maximised. Structured LDPC codes, such us those which have quasi-cyclic struc
ture, are of interest to industry due to the simplification of their encoder and decoder. 
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2 Improvements to Iterative Decoder 

Realising an optimum soft decision decoder for any coded system is an non-polynomial-time (NP) 
hard problem. For a general [n^k,d] linear code over F , , the optimum decoding complexity is pro
portional to m i n { g ' ' , A s a consequence, the optimum decoder can only be realised for very 
high-rate or very low-rate codes. 

An iterative decoder is an approximation to the optimum decoder. An iterative decoder may not 
converge to an optimal solution and this leads to a gap with respect to the optimum performance. 
This chapter discusses techniques to improve the convergence of iterative decoder, aimed to bring 
the gap to optimum performance closer. The discussion in this chapter focuses on iterative decoder 
for LDPC codes, the belief propagation algorithm. 

Parts of this chapter appear in a conference proceedings: Tjhai, C , Tomlinson, M., Horan, R., 
Ambroze, M. and Ahmed, M. (2005), "Near maximum-likelihood performance of some new cyclic 
codes constructed in the finite field transform domain", in Proceedings 8th International Symposium 
Communication Theory and Applications, Ambleside, Lake District, UK, pp. 194-199. 

3.1 Preliminaries 

An iterative decoder may be viewed as a bank of soft-input soft-output (SISO) decoders. Each 
of the SISO decoder produces some reliability information which can then be used by the other 
SISO decoders in an iterative manner to converge to a solution. Each SISO decoder takes in some 
probabilities, known as the a-priori-probabilities (AP), and outputs some probabilities, known as 
the a-posteriori-probabilities (APP). 

3.1 Definition (Extrinsic information). The ratio of the a-posteriori-probabilities and the a-pribri-
probabilities is defined as extrinsic information. 

According to Ambroze et al. (2000), the iterative decoding algorithm is mathematically equivalent 
to the iterative method of solving the following equations 

Pi = f{P^) 

In the case of belief-propagation iterative decoder of LDPC codes, the function / may be represented 
as the message passing from the check to variable vertices, the ftinction g as the message passing 
from the variable to check vertices, and is the extrinsic information from the ith function. 

Consider an [n,k,d]q linear code C, let y = (2/0,2/1,. • ,2/n-i) . where yi e K, be the 71,-th dimen
sional vector representing the received samples. 
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Chapter 3. Improvements to Iterative Decoder 

3.2 Definition (Maximum likelihood decoder). A maximum likelihood decoder produces a code
word, say c, which has the highest probability of being correct compared to the remaining — 1 
codewords for a given received sample y, i.e. i 

I 
c = arginaxPr(c|?/). 

VcGC 

Following Bayes rule, Pr(c|y) may be written as 

Pr(c|i,) = g|g Pr(y|c). 

Assuming a discrete memoryless channel, Pi (c) = q'^ and the term Pr(y) is a normalising constant. 
Therefore, finding a codeword that maximises Pr(c|y) is equivalent to finding one that maximises 
Pr(y|c). 

In dealing with a hard decision decoder, the distance metric of interest is the Hamming distance, 
see Definition 1.5, whereas with a soft decision decoder, entities of IR are considered and Euclidean 
distance is a more important parameter. 

3.3'Definition (Euclidean Distance). The Euclidean distance of two n-tuple vectors, x and y, de-
rioted as d£;(a;,y), is given by 

n-l 

t=0 

Following Definition 1.1, a codeword c may be represented as an 7/-tuple vector For transmission 
purposes, the codeword c is mapped to a real vector 0(c) = (t̂ '(co), ^(c i ) , . . . , ^(cn-i)) and assuming 
discrete memoryless AWGN channel with zero mean and variance cr̂ , Pr(y|c) can be written as 

Pr(,|c) = n Pr ( . . | . ) = n exp {^^!^^) . (3.1) 

Since exp(a;) is a decreasing function of x, maximising Pr(y|c) is also equivalent to minimising 

n - l 

in the logarithmic domain. Thus, a maximum likelihood solution is the codeword with the minimum 
Euclidean distance with respect to the received sample y. 

It is useful to define the term more likely codeword in order to characterise the convergence of 
an iterative decoder in relation to maximum likelihood solution. 
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3.2. Investigation on the Hartmann-Rudolph Decoding Algorithm 

3,4 Definition (More Likely or mrl Codeword), Let c be a codeword of the code C, which is then 
modulated to ^(c) prior transmission. Due to noise corruption, it is received as a vector y and the 
decoder produces a codeword, c', where c c'. On the other hand, d£;(y, V'(c')) < d/5(y,^(c)). The 
codeword c' is defined as the more likely codeword. 

An iterative decoder, at the end of an iteration, does not always produce a solution which is an 
element of the code C. Given the transmitted codeword c and received vector y, the output of an 
iterative decoder, say 2, may be categorised as follows 

non convergent block: z ^C, 

correct codeword: z = c, 

non mrl codeword: z eC and d^d / , 0(2)) > d^iy, 0(c)), 

mrl codeword: z eC and di^(y, 0(2)) < cl£;(y, ^ ( c ) ) . 

In evaluating the performance of a code numerically, the number of mrl codewords provides 
significant information on the performance of an iterative decoder. A maximum likelihood decoder 
produces either a correct codeword or an mrl codewords and thus, the percentage of mrl codewords 
produced by an iterative decoder gives a performance indication of how close the iterative decoder 
is from the optimum maximum likelihood performance for the same code. If the iterative decoder 
produces an mrl codeword C i , then a maximum likelihood decoder is guaranteed to produce an mrl 
codeword CML and hence a decoding error, where 

dE(y,^(cA//J) < ci£(y, 0(ci)) < d £ : ( y , ^ ( c ) ) , 

i.e. the codeword C A / L is not necessary the same as C i . Frame errors due to mrl codewords provide 
a lower-bound on the maximum-likelihood performance of a code. 

3.2 Investigation on the Hartmann-Rudolph Decoding 
Algorithm 

Consider a communication system employing channel coding and binary antipodal signalling, given 
a received vector which is assumed to be made of a transmitted sequence added with Gaussian 
noise, the job of the decoder in the receiving end is to determine what the transmitted codeword 
was with minimum probability of making error Recall that there are two types of optimum decod
ing algorithm: one that minimises the probability of codeword error and the other which minimises 
the probability of symbol error The former type of optimum decoder, which is commonly known 
as the maximum likelihood decoder, includes the Wagner* algorithm for [71,71 - 1,2) single parity-
check codes which is the earliest type of soft decision decoder known, and the well-known Viterbi 
(1967) algorithm. The latter type of optimum decoding algorithm, which minimises symbol error 
probabilities, includes the BCJR algorithm by Bahl et al. (1974) and the Hartmann and Rudolph 

Description of the Wagner olgorithm is available in the paper by Silverman and Balser (1954). 

61 



Chapter 3. Improvements to Iterative Decoder 

(1976) algorithm. Given a code C, while the optimum BCJR algorithm produces the optimum deci
sion based on the codewords of C, the Hartmann-Rudolph (HR) algorithm is based on the codewords 
of C-^, the dual of C. As a consequence, the HR decoding algorithm is suitable for high-rate codes 
where the number of codewords C-"- are much less than those of C. 

The optimal HR decoding algorithm for linear code over IF, aims to minimise the symbol error 
probabilities and this is equivalent to maximising the probabilities of a symbol being correct, i.e. 

argmax Pr(ci = s\y) for i = 0 , 1 , . . . , 7i - 1 

where c = (co, c i , . . . , Cn_i ) is a codeword ofC and y is the received vector. The probabilities of a 
symbol c,- being s € conditioned to a received vector y is given by 

Vv(c = s\y)= »Mc|y). (3.2) 

Following Bayes rule, (3.2) can be expressed as 

= i^EP^(yl'=)*».c.c , (3.3) 

where Pr(c) has been replaced with due to the memoryless channel assumption, e,- is a vector 
of fill zeros except at position i where it is a one and 5ij is the Kronecker symbol, defined by 

, .1 if^ = i , 

0 otherwise. 

Note that c • in (3.3) is the standard dot product of codeword c and vector e,-, i.e. 5Zm=o *̂ '» ' '̂ «."»-

It is shown by Hartmann and Rudolph (1976) that (3.3) is equivalent to 

• = '\y) = £ E ^'(yi\')<^"'' li E Pr(2/ |̂0a;' "- (3.4) 
uGC-JL m=Ot=0 

where u = e'̂ "̂ *', the complex nth root of unity. For codes over F2 , as shown by Hartmann and 
Rudolph (1976), the detection rule given may be simplified to 

0 i<-E n 
vGC-^ m=0 

1 otherwise. 

"-1 _ J lUm+^i.m (mod 2) 

> 0, 
(3.5) 

for 0 < 2 < n - 1, where (pi = Pr(2/i|l)/Pr(7/i|0) and c = (co,ci,... , C n - i ) is the output of the HR 
decoder. 

Following (3.5), the HR decoder requires the entire codewords of C-*- in order to arrive at the 
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optimum solution. The sum-product algorithm of Gallager (1963) for decoding LDPC codes, which 
is equivalent to the belief propagation algorithm of Pearl (1988), may be viewed as an iterative 
algorithm to generate all codewords of C-^ to approximate the optimum HR solution. Instead of 
using all g""*̂  codewords of the dual code of an [71, k, d] linear code over IF,,, the sum-product iterative 
decoding algorithm considers the codewords of the n - k single parity-check subcodes of the dual 
code. This iterative approximation, however, introduces some 71-dimensional vectors, which are not 
codewords of C, and as a consequence, there is a gap between the performance of the HR algorithm 
and that of the sum-product iterative decoding algorithm. 

The complexity of the HR decoder is on the enumeration of all codewords of C^. For an [71, A:, d] 
code over Fq, there are 9""'' codewords of the dual and as such, applying the HR algorithm is pro
hibitive for almost all good linear codes. It is, therefore interesting to investigate the applicability 
of using some subset of the dual code codewords and also to determine how much the associated 
coding loss is. The sum-product iterative decoder resembles the HR decoder in a way that both 
decoders make use of the dual code codewords. While the HR algorithm uses the entire dual code 
codewords, the sum-product algorithm uses the lowest weight dual code codewords only. Investiga
tion on whether or not the gap between iterative and optimum decoders can be reduced by aiding 
the iterative decoder with HR algorithm is of interest and worth doing. 

O P . m a i M i K X ) • 

3 * 9 

(D) [7,4,3] Hamming code 

9 39 a 39 

(b) (03,51,5] BCH code 

Hfl.>U9B».l9 
n-»t-|9j.g.t2.t3.l( 

3S 

(c) [21 ,11 , G] difTerence set cyclic code 

Figure 3.1: Hartmann Rudolph decoding algorithm: optimum and non optimum performance 
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Figure 3.1 compares the F E R performance of the sum-product iterative decoder and that of the 
HR decoder-using the entire codewords of the dual or some subset of them. The weight enumerator 
functions of the codes considered in Figure 3.1 are 

a) [7,4,3] Hamming code: A{z) = 1 + l:r7, 

b) [63,51,5] BCH code: A(z) = 1 + 24a:2»o -f 28a:»̂ »2 ^ 323.1071 ^ 3c^u76 _^ ^QX^^G^ and 

c) (21,11,6] difference set cyclic code: = 1 + 1683:*̂  + 210a:8 + 1008x>«+ 280x-i2+ 359x»**+ 21.T'«. 

It is clearly demonstrated in Figure 3.1 that, unless the entire dual code codewords are considered, 
the performance of the HR algorithm is poor. The [7,4,3] Hamming code (Figure 3.1a) is a good 
example. The dual code of this Hamming code is a [7,3,4] cyclic code consisting of a codeword 
of weight 0 and 7 codewords of weight 7. The performance attained by omitting a single dual 
code codeword only is around 1.0 dB and more than 1.5 dB away from the iterative and optimum 
solutions, respectively. It is surprising that a codeword can makes such a significant coding gain and 
the answer can be explained by looking at Figure 3.2. This figure shows the plot of the summation 
in (3.5) against the number of dual code codewords used for the correct bit at positions 0, 20, 40, 
and 60, in both correct and incorrect blocks, at Eb/No = 5.0 dB. In the case of correct bits in a 
correct block, the sign of the summation does not change against the number of dual code codewords 
used. On the other hand, the sign of this summation for a correct bit fluctuates from positive to 
negative and vice-versa in an incorrect block. Also note that, in the case of an incorrect block, the 
maximum and minimum values of the summation are much lower than those in the correct block 
case. From (3.5), a bit is decoded as 0 if the summation is a positive real number and 0 otherwise. 
Due to the fluctuation as shown in Figure 3.2, especially for bits in an incorrect block, a single 
codeword can change the sign of the summation from one to another 

A way of improving the iterative decoder by extending the parity-check matrix of an LDPC code 
has also been investigated. A standard parity-check matrix of an LDPC code contains the low 
weight codewords of its dual. This parity-check matrix is extended so that it contains some higher 
weight codewords of the dual code. Initially, the belief propagation algorithm is invoked using the 
standard parity-check matrix; in the event of non convergence block, the HR algorithm is invoked 
using the additional parity-check equations of higher weight. However, the numerical results show 
that the joint iterative and Hartmann-Rudolph decoding scheme does not provide any improvement 
to the iterative decoder and this is attributed to the fluctuations as shown in Figure 3.2. This 
investigation, however, produces a different approach to improve the iterative decoder, which is 
discussed in Section 3.3. 
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Bit 20 Bit 60 

Number of dual code codewords 
1024 2048 3072 4096 

Numtier of dual code codewords 

B i t e Bit 40 

-20 h 

1024 2048 3072 4096 
Number of dual code codewords 

0 1024 2048 3072 4096 
Number of dual code codewords 

(a) Correct bits in a correct block 

Bit 20 Bit 60 

i 

0 1024 2048 3072 4096 
Number of dual code codewords 

0 1024 2048 3072 4096 
Number of dual code codewords 

BitO Bit 40 

n 
0 1024 2048 3072 4096 

Number of dual code codewords 
0 1024 2048 3072 4096 

NurT>ber of dual code codewords 
(b) Correct bits in on incorrect block 

Figure 3.2: Behaviour of the Hartmann-Rudolph decoding algorithm for [63,51,5] BCH code at 
Eb/No = 5.0 dB 
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3.3 Codeword-Substitution Belief Propagation Algorithm 
For linear codes, c • c-'- = 0 for every c € C and c-*- € C*^. The standard belief propagation algo
rithm for decoding LDPC codes extracts extrinsic information from the parity-check matrix which 
contains n - k low weight parity-check equations^ Since |C-^| = g""'̂ , one simple way to improve 
the performance of the belief propagation iterative decoder is to use a parity-check matrix that con
tains a larger set of parity-check equations. This parity-check matrix will have, in addition to the 
low weight codewords, higher weight codewords of C-^. The resulting parity-check matrix is dense 
and this causes performance degradation of the belief propagation algorithm. 

Let H be the parity-check matrix of C. The Codeword-Substitution belief propagation algorithm 
does not extend the number of parity-check equations in H. Instead, a set of parity-check equations 

is generated by taking the linear combinations of those equations in i f . A subset of if*' is substi
tuted into H to generate a modified parity-check matrix H, which is then used to extract extrinsic 
information as in the standard belief propagation iterative decoding. The decoding procedures may 
be described in Algorithm 3.1. 

Algorithm 3.1 Codeword-Substitution Belief Propagation Algorithm 
Input: 

y <= received vector 
H original parity-check matrix of the code 
i f ^ <= a set of parity-check equations not in i f 
T -5= number of trials 
S <= number of selections 

Output: a codeword with the minimum Euclidean distance 
Perform belief propagation decoding 
Let do <= decoded output. 
dE(y,^(do)) •<= Euclidean distance between do and y. 
d' <=dQ 

d f - ^ M y . ^ o ) ) 
for r i= 1 to T, do 

for i = 1 to maximum number of iterations, do 
Pick S parity-check equations from i f 
Substitute them into i f to generate H. 
Based on H, perform the check nodes (horizontal) and bit nodes (vertical) processing as in 
standard behef propagation decoding algorithm, 
dr denote the decoded output, 
d/jd/j^fdr)) <= Euchdean distance between d^ and y. 

1 
2 
3; 
4; 
5; 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 

18 
19: 
20; 
21; 

ifd^if^ = 0then 
Stop the algorithm and goto Step 17 

end if 
end for 
if (d£;(y,^(d,)) < d f ^ ) and (d,if^' = o) then 

d' ^dr and d f ^ ^<\E{yMdr)) 
end if 

end for 
Output d'. 

The selection of the candidate parity-check equations for substitution may be made on a ran-

^Notc that for cyclic LDPC codes, there are n low weight parity-check equations. 
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dom basis or may correspond to a predetermined sequence. To evaluate the performance of this 
algorithm, computer simulations have been run using a class of cyclic codes whose parity-check 
equations are orthogonal in each position. The properties and the construction of this class of codes 
are described in Chapter 2. It is assumed that the channel is perturbed by additive white Gaussian 
noise and binary antipodal signalling is employed, which has a function mapping the symbols 0 
and 1 to -1 and respectively. Figure 3.3 compares the F E R performance of the standard belief 
propagation and that of the Codeword-Substitution belief propagation decoders on the [63,37,9], 
[93,47,8] and [105,53,8] cyclic LDPC codes. It can be seen that the Codeword-Substitution decoder, 
provided enough substitutions and trials are carried out, can achieve maximum likelihood perfor
mance as all the frame errors observed are due to mrl codewords. Figure 3.3a shows that, for the 
[63,37,9] cyclic code, the Codeword-Substitution decoder offers a gain of approximately 0.9 dB over 
the standard decoder and at 10"̂  F E R the performance is v^thin 0.4 dB away from the offset sphere 
packing lower bound. Table 3.1 shows how close the performance of the Codeword-Substitution de
coder is to the maximum likelihood decoder for [63,37,9] cyclic LDPC code. Using the standard 
decoder, more than 50% mrl codewords are found in the low SNR region, but only a few mrl code
words is found in moderate SNR region. With just single substitution and 50 trials, the Codeword-
Substitution decoder is able to increase the percentage of mrl codewords significantly. The maxi
mum likelihood performance is achieved with 8 substitutions and 300 trials. Figure 3.3 also shows 
that the Codeword-Substitution decoder also achieves the maximum likelihood performance for the 
[93,47,8] and [105,53,8] cyclic.codes. The Codeword-Substitution decoder is approximately 1.1 dB 
and 2.0 dB better than the standard decoder for the [93,47,8] and (105,53,8] codes respectively. In 
addition, the gaps from the offset sphere packing lower bound at lO"*** F E R are respectively 0.8 dB 
and 0.9 dB. 

Substitution of the low weight parity-check equations with those of higher weight will inevitably 
introduce many short cycles in the graph of the LDPC code. However, these cycles do not pose a 
lasting negative effect on the belief propagation decoder as the substitutions are done at every 
iteration. 

Standard belief propagation decoder 
Eb/No, dB 1.5 2.0 2.5 3.0 3.5 4.0 

% 73 41 27 23 16 9 
Substitutions: 1, Trials: 50 

Et/No. dB 1.5 2.0 2.5 3.0 3.5 4.0 
% 90 94 90 82 74 61 

Su bstitutions: 8, Trials: 300 
Eb/No, dB 1.5 2.0 2.5 3.0 3.5 4.0 

% 100 100 100 100 100 100 

Table 3.1: Eb/No against mri codewords for the [63,37,9] cyclic LDPC code 
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Figure 3.3: F E R of the Codeword-Substitution belief propagation decoder 
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3.4 Other Approaches to Improve the Convergence of 
Iterative Decoder 

There are other approaches that can improve the performance of belief propagation iterative de
coder. In this section, two of such methods are described. 

3.4,1 Grouping of the Parity-Check Equations 

Recall that an LDPC code of length n and dimension A; may be seen as a concatenation of 71-A: single 
parity-check [n,ii - 1,2) codes. The belief propagation iterative decoder, in each iteration, derives 
extrinsic information independently from each of the single parity-check codes. The reHability of 
the extrinsic information may be improved by using stronger component codes and this may be 
achieved by grouping m rows, for m > 1, of the parity-check matrix. As a result of the grouping, 
the LDPC code is seen as a concatenation of - 1 subcodes of length n and dimension n - m 
and one subcode of length n and dimension m - m [^^] + (n - k). Figure 3.4 compares the F E R 
performance of standard iterative decoding and the one which groups m = 5 parity-check equations 
for a (1024,768] irregular LDPC code. From this figure, it can be seen that grouping improves the 
F E R performance, however, the gain obtained is negligible compared to the complexity involved. 

10̂  

10" 

ii. 10* 
<D 

DC 

i 10"̂  

10' 

10' 

1 1 1 1 -

: Group 1 —Q— : 
Groups —©"- : 

. . "NV 

< I 1 1 

1.5 2.5 3 
Eh/N«. d B 

3.5 

Figure 3.4: Performance improvement by grouping the component codes 
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3.4.2 The Received Vector Coordinate Modification Algorithm 

The received vector coordinate modification (RVCM) algorithm was initially introduced by Papa-
giannis et al. (2003a). The authors showed that by employing the RVCM algorithm to iteratively 
decode serial concatenated convolutional codes of low memory, a gain of 0.2 dB in the waterfall re
gion was achieved. Subsequent work on this algorithm appeared in Papagiannis et al. (2004) which 
shows that, using the same concatenated arrangement, the algorithm can achieve the maximum 
likelihood performance of serial concatenated convolutional codes in the high signal-to-noise-ratio 
region; and also in Papagiannis, Ambroze, Tomlinson and Ahmed (2005) which analyses this algo
rithm in decoding LDPC codes. Despite the RVCM algorithm was shown to give improvement on 
binary linear codes, the algorithm is applicable to any iteratively decodable [n,k,d]g linear codes. 
Other decoding algorithms that are similar to the RVCM algorithm include the work of Pishro-Nik 
and Fekri (2003) and Varnica and Fossorier (2004). 

3.5 Summary 
• The Hartmann-Rudolph decoder is an optimum symbol-by-symbol decoder based on the dual 

of a linear code. The Hartmann-Rudolph decoder requires all codewords of the dual code in 
order to arrive at optimum solution. It has not been possible to obtain an acceptable subopti-
mum performance of this decoder by using some subset of the dual code codewords. 

• The performance of the belief propagation iterative decoder may be improved by using any 
subset of n - k (or n in the case of cyclic codes) dual code codewords as the parity-check equa
tions in each iteration. The belief propagation decoder is modified such that in the beginning 
of each iteration some parity-check equations are substituted with the higher weight dual 
code codewords and they are reverted at the end of each iteration. For some short cyclic codes 
this modified decoder, which is called the Codeword-Substitution belief propagation decoder, 
results in maximum likelihood performance. 

• Grouping the parity-check equations in the parity-check matrix of an LDPC code results in 
stronger component codes. Grouping can improve the performance of iterative decoder, how
ever, the gain obtained is negligible compared to the complexity involved. 
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Good Binary Linear Codes 

Parts of this chapter are published as the following journal papers: 

1. Tjhai, C. and TomHnson, M. (2007), "Results on binary cyclic codes", Electronics Letters, 43(4), 
pp. 234-235 

2. Tjhai, C , Tomlinson, M., Grassl, M., Horan, R., Ahmed, M. and Ambroze, M. (2006), "New lin
ear codes derived from cyclic codes of length 151", lEE Proceedings Communincations, 153(5), 
pp. 581-585. 

4.1 Introduction 
As mentioned in the beginning of this thesis, the quest to Shannon's limit has been approached in 
two diflerent ways. In the previous part of this thesis, iterative decoding approach, which relies 
on long codes with low complexity decoder, was studied. In this part of the thesis, we consider 
the problem formulated by Shannon as that of construction of good codes which maximises the 
asymptotic coding gain, see (1.11). In this approach, it is assumed that a decoding algorithm always 
exists for any constructed code. 

Computing the minimum Hamming distance of a linear code is, in general, a Nondeterministic 
Polynomial-time (NP) hard problem, as conjectured by Berlekamp et al. (1978) and later proved by 
Vardy (1997). Nowadays, it is a common practice to use multi-threaded algorithm which runs on 
multiple parallel computers (grid computing) for minimum Hamming distance evaluation. Even 
then, it is not always possible to evaluate the exact minimum Hamming distance for large codes. 
For some algebraic codes, however, it is possible to obtain the lower- and upper-bounds on this dis
tance. But knowing these bounds are not sufficient as the whole idea is to know explicitly the exact 
minimum Hamming distance of a constructed code. As a consequence, algorithms for evaluating the 
minimum Hamming distance of a code is of utmost important in this subject and they are described 
in the following section. 

It is worth mentioning that a more accurate benchmark of how good a code is, is in fact its 
Hamming weight distribution. While computing the minimum Hamming distance of a code is in 
general NP-hard, computing the Hamming weight distribution of a code is even more complex. 
In general, for two codes of the same length and dimension but of different minimum Hamming 
distance, it can be considerably certain that the one with higher distance is superior to the other 
one. Unless we are required to decide between two codes of the same parameters, it is not necessary 
to go down the root of evaluating their Hamming weight distributions. 

Since in this chapter, we deal exclusively with the set of binary vector of a given length, i.e. Ham
ming space, when the terms distance and weight are used, we shall mean the Hamming distance 
and the Hamming weight respectively. 
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4.2 Algorithms to Compute the Minimum Distance of 
Binary Linear Codes 

4.2.1 The First Approach to Minimum Distance Evaluation 

For a \n, k,d\ linear code over IF2 with a reduced-echelon generator matrix Ggya — [Ik\PV where 1^ 
and P are k x k identity and -̂ x (n - k) matrices respectively, a codeword of this Hnear code can 
be generated by taking a Hnear combination of some rows of Gsys- Since, by Definition 1.6, the 
minimum distance of a code is the minimum non zero weight among all of the 2̂ ' codewords, the 
brute-force method to compute the minimum distance would be to generate codewords by taking 

(k\ (k\ (k\ ( k \ (k\ 

linear combinations of the rows in Gays, note on the weight of each codeword generated and return 
the minimum weight among these 2^ - 1 codewords. This method gives not only the minimum 
distance, but also the weight distributions, of a code. It is obvious that, as A: grows large, this 
method becomes infeasible. Having said that, if n - k is not that large, the minimum distance can 
still be obtained by evaluating the weight distributions of the [n, u - k, d!] dual code and returning 
the corresponding MacWilliams Identity. 

It is clear that there are too many unnecessary codeword enumerations involved in the above 
approach. A better approach which avoids enumerating large amount of unnecessary codewords 
can be devised. Let c = (i|p) = ( c o , c i , . . . ,Ck-\\ck: • •. , c , i _ 2 , c „ _ i ) be a codeword of a binary linear 
code of minimum distance d. Let d = (i'\p') be a codeword of weight rf, then if wtH(i') = for some 
integer w <d, wt//(p') = d - w. This means that at most 

codewords are required to be enumerated. In practice, d is unknown and an upper-bound rfub on 
the minimum distance is required during the evaluation and the minimum Hamming weight found 
thus far can be used for this purpose. It is clear that once all YT^'^x dJ') codewords of information 
weight w* are enumerated, 

• it is known that all possibilities oTd <w have been considered; and 

• if w < duby it is also known that the minimum distance of the code is at least 7/; + 1. 

Therefore, as well as having an upper-bound, a lower-bound dib = w on the minimum distance 
can also be obtained. The evaluation continues until the condition dib > dub is met and in this event, 
dub is the minimum Hamming distance. 

4.2.2 Brouwer's Algorithm for Linear Codes 

There is an apparent drawback of the above approach. In general, the minimum distance of a low 
rate linear code is greater than its dimension. This implies that Ylw=\ it) codewords would need 

74 



4.2. Algorithms to Compute the Minimum Distance of Binary Linear Codes 

to be enumerated. A more efficient algorithm was attributed to Brouwer* and the idea behind this 
approach is to use a collection of generator matrices of mutually disjoint information sets (Grass!; 
2006). 

4.1 Definition (Information Set). Let the set 5 = {0,1,2,... ,n-] be the coordinates of an {n,k',d] 
binary linear code with generator matrix G. The set X C 5 of fc elements is an information set if 
the corresponding coordinates in the generator matrix is hnearly independent and the subraatrix 
corresponding to the coordinates in Z has rank k, hence it can be transformed into akx k identity 
matrix. ^ 

In the other words, it can be said that, in relation to a codeword, the k symbols user message is 
contained at the coordinated specified by X and the redundant symbols are stored in the remaining 
71 - k positions. An information set corresponds to a reduced echelon generator matrix and it may 
be obtained as follows. Starting with a reduced-echelon generator matrix G[y\ = Gsya = [Ik\P]y 
Gaussian-elimination is applied to submatrix P so that it is transformed to a reduced echelon form. 
The resulting generator matrix now becomes Gf^^ = [A\Ik\P'l where P' is a A: x {n - 2k) matrix. 
Next, submatrix P' is put into reduced echelon form and the process continue until there exists a 
A: X (n - Ik) submatrix of rank less than k, for some integer /. Note that column permutation may 
be necessary during the transformation to maximise the number of disjoint information sets. 

Let be a collection of m reduced echelon generator matrices of disjoint information sets, = 
{p^ays^ G^sya^ • • • > ^^3y}\- Using thcso 771 matricos means that, after YZ'=\ iw) enumerations, 

• all possibilities oid< mw have been considered; and 

• if 7/tu; < duby the minimum distance of the code is at least in{w + 1), i.e. di^ = ni{w + 1). 

In this case, the lower-bound has been increased by a factor of 771, instead of 1 compared to the 
previous approach. For w < k/2, (^) » (^^J and as a consequence, this lower-bound increment 
reduces the bulk of computations significantly If rf is the minimum distance of the code, the total 
number of enumerations required is given by 

m i n i r d / m l - l . A } 

tij=i C) (4.2) 

Example 4.1: Consider the [55,15,20)2 optimal binary linear-a shortened code of the Goppa code 
discovered by Loeloeian and Conan (1984). The reduced echelon generator matrices of disjoint 
information sets are given by 

^Bya 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
oiooooooooouooo 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
(100100000000000 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0101 
1000 

/ 101 1 
1010 
001 1 
0101 
1001 
101 1 
1010 
1010 
1101 
1101 
0000 
0101 
001 1 

1011111 
1 1 1001 1 
001 1110 
10101 1 1 
1 101001 
O O O O I O I 
001 1 101 
0001001 
1 10101 I 
0001010 
1010111 
1011 101 
0100010 
1000000 
1 1 10010 

01010 
0101 1 
1 1010 
01101 
11110 
00101 
00010 
10100 
11110 
0 1 0 1 1 
10001 
01111 
1001 1 
11101 
1 1000 

01 I 10 
11010 
11101 
10111 
1101 1 
11111 
1001 1 
00000 
10100 
00000 
0 0 1 0 1 
1 1001 
101 I 1 
01111 
1 1 100 

l O l O l O 
0 1 0 0 1 1 
01 1 1 I 1 
1 I 1010 
0 1 0 0 0 1 
0001 1 1 
001 100 
1 1 1001 
100101 
111010 
111101 
110111 
001001 
001000 
101000 

l O l O l O O O O O O O O n 
1 0 0 1 0 0 0 1 1 0 0 0 0 
1 0 0 1 0 0 1 0 0 0 0 0 1 
O O l O O l O l O l O l O 
1 0 0 0 1 0 1 0 1 1 1 0 1 
0 0 0 1 0 1 0 0 0 1 1 1 0 
1 0 1 0 0 1 0 1 0 0 1 1 1 
0 1 1 0 0 1 1 1 1 0 1 0 1 
1101110100001 
111 1101 100010 
1 l O O l O l O l O l O O 
11 looooonoi 1 
1 0 0 1 0 1 1 1 0 1 1 0 1 
1 1 0 0 1 1 1 0 0 0 0 1 1 
1 0 0 0 0 0 0 1 1 1 0 1 1 

Zimmermann (1996) attributed this algorithm to Brouwer as private communication. 
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101 10100101 1001 
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 
0011 I 1 1001000) 1 
0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 
11 111 1001000100 
1 1 1 1 10010101001 
1 1 1 lOOlOOOl11 10 
0 0 0 0 0 1 1 0 0 1 11 1 1 1 
OOUOOOlOlOOOOOl 
I 1 1001100100100 
100011111001111 
0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 
0 0 1 0 1 1 0 1 1111111 
100101011001011 
1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
OOlOOOOOOOOOOOO 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
OODOIOOOOODOOOO 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
OOOOOOIOOOOOOOO 
OOOOOOOIOOOOOOO 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
UOOOOOOOOOOIOOO 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

001 I 1 1 0 0 1 1 1 1 0 1 t 1 1101 10000 
101 100011 101 11 100011 11010 
001 1 l O l O O l O I O O l I 100000101 

I 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 
OL 10011001 100101 101000100 
0 0 0 0 0 0 0 1 0 0 0 1 1 I 1 1100 1 I 0001 
l O l O O l O l l O l l O I O l l O O O l l l O l 
\ H M O O O l O O l O l O n lOOOlOOOl 
1 1 101 1000001 1 111100111 101 
I 10010011 11001 1 101 10101 1 1 
0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 I 01110 
1 1 0 1 1 1 0 1 0 1 1 0 1 l O l O l 1 1 0 0 1 0 0 
0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 U 1 11110 
0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 
0010 10001 100010000 I 111100-

and 

^ays 

0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 11 10001 1 10 
11 1 10101 I 1 1000011 11 101 11110011 
0 1 1 1 0 1 1 0 1 1 I 1001011001 1 101 10 100 
0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 I 1101 
0001 i n o i i o i o i o i i o i i o n o i o i o u 
10 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 l O l O l O O l O O O 
OlOIOlOOOllOlOOOOOOlOlI 1100110 
loo io i i o n i o i n l o o o o u o n o i o i o 
1001001 l o i o i o i 11 l o o m 100 11000 
o n o o i i o o o i i i o o i i i i i o i i i o i i i i i 
1011 10001 1 1 1 10001 1 101101 1011 1 I 
100001 101 1010100001011 101101 10 
0 1 1 10101000001000101 I 101101000 
0100111 I l O l O O O l 10001000101 1001 
1 101001 111001 1 100110011 1 101 101 

100000000000000 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
OOlOOOOOOOOOOOO 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
OOOOOOIOOOOOOOO 
OOOOOOOIOOOOOOO 
0 0 0 0 U 0 0 0 1 0 0 0 0 0 0 
oooouooooiooooo 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 100010001 
1000110111 
1 101000101 
01 10011100 
1011000101 
0 1 l O I O l O l 1 
001 1001 1 1 1 
0 1 0 0 0 0 0 0 0 1 
t 1 0 1 1 1 1 0 0 1 
0 1 1 1 1 1 1 0 1 0 
0 1 1 1 0 1 0 1 1 1 
1000110010 
1101100011 
11011 I I 1 1 1 
0 0 0 0 0 1 1 1 10. 

Brouwer's algorithm requires 29844 codewords to prove the minimum distance of this code. Mean
while, for the same proof, 32767 codewords would be needed if only one generator matrix is em
ployed. 

4.2.3 Zimmermann's Algorithm for Linear Codes and Some 
Improvements 

A further refinement to the minimum distance algorithm was due to Zimmermann (1996). Sim
ilar to Brouwer's approach, a set of reduced-echelon generator matrices are required. While in 
Brouwer's approach the procedure is stopped once a non-full rank submatrix is reached, Zimmer-
mann's approach proceed further to obtain submatrices with overlapping information sets. Let 
^ays = [>l,„|/fc|Bm+i) be the last generator matrix which contains a disjoint information set, to 
obtain matrices with overlapping information sets, Gaussian-elimination is performed on the sub-
matrix B,n+i and this yields 

W m + l ) _ 
^ays -

0 

I^k-r^ + i 0 •m+2 

where r^^+i = Rank(Bm+i). Next, G^'y^'^'^ is produced by running Gaussian-elimination on the 
submatrix B,„+2 and so on until all the n coordinates have been exhausted. 

From G ŷ), of Example 4.1, it can be seen that the last 10 coordinates do not form an information 
set since the rank of this submatrix is clearly less than k. Nonetheless, a "partial" reduced echelon 
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generator matrix can be obtained from G^^J^, 

01 1 1 1 1 l O O I O l l O l O O l O l O O l 1 0 0 0 1 l O O l O l O l O O O O 
11001100000101 10000010111 110000110 I U l 1 1 0 
10100100001 10001011 100111001 n o 100001 1lo 
0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 I 0010011 1 l U l 1 1 0 1 1 1 1 
1 0 1 1 1 1 0 U 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 
101000101 101 11011 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 
0100000 10001 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 I 0 0 1 0 0 0 1 1 1 1 
1011 l o i o i i o o i o i u o u o i o o l m i l n o o n i o n 
0 1 1 1 0 1 0 1 1 1 1 1 1 l O O U l O O M ] 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 
0 1 0 1 l O l O l 1 1 1 l O O l O O O O O l 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 l O l O U 0 0 1 0 1 1 0 0 1001111101 
100 I 001 1000001 1 l O l I O l O l 1 1 0 1 0 0 0 1 1100 I 0001 
0 1 1 l O O U O O l 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 
0 0 0 1 0 0 1 11 100001101 I l O l O O O O l 0 1 0 1 0 1 1 0 0 1 1 1 0 
1111 1 1 I 1001111 111 10000011 1 1 0 1 l O l O O O l O l 1 1 

00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
10000 
01000 
00100 
00010 
00001 

1000000000 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0000000000-

From G ŷ'̂ , it can be seen that the last k columns is also an information set, but k - Rank (G^JI\^ 

coordinates of which overlap with those in G^^J^. The generator matrix G^ î, then may be used to 
enumerate codewords with condition that the effect of overlapping information set has to be taken 
into account. 

Say that all codewords with information weight < w have been enumerated, it is known that 

• for all of full-rank, say there are 7/1 of these matrices, all cases of d < mw have been 
considered and each contributes to the lower-bound. As a result, the lower-bound becomes 

• for each G '̂J^ that do not have full-rank, the matrices Ĝ ^̂ ^ may be joined with column subset 
of G -̂j,*,, for j < i, so that an information set X.- is obtained, which of course overlaps with the 
information set I j . Therefore, for all of these matrices, say M, all cases ofd < Mw have been 
considered, but some of which are attributed to other information set and considering these 
would result in double-counting. According to Zimmermann (1996), for each matrix G^^/-'* 
with overlapping information set unless w > k - Rank(B„,+j) for which the lower-bound 
becomes = + {iw - {k - Rank {Bm+j)} + 1}, there is no contribution to the lower-bound. 

As before, let the collection of full-rank reduced-echelon matrices be denoted by 

and let denote the collection of M rank matrices with overlapping information sets m+2) 
ays 1 

^ ( m + A/) l 
^aya j 

All m -1- M generator matrices are need by the Zimmermann's (1996) algorithm. Clearly, if the 
condition w > k - Rank(B,„+j) is never satisfied throughout the enumeration, the corresponding 
generator matrix contributes nothing to the lower-bound and hence can be excluded (Grassl; 2006). 
In order to accommodate this improvement, the integer w,naxi the maximum information weight 
that would need to be enumerated before the minimum distance is found, needs to be known. This 
can be accomplished as follows. Say at information weight w, a lower weight codeword is found, 
i.e. new dub, starting from w' = w, let ^ = set d^, = m{w' + 1) and then increment it by 
(w/ - (k - Rank(B,„+j)) -t- I) for each matrix in that satisfies «/ > k - Rank(B„,+j). Each 
matrix that satisfies this condition is also excluded from SC. The weight w' is incremented, is 
recomputed and at the point when di^ > d^by tihnax is obtained and all matrices in £^ are those to be 
excluded from codeword enumeration. 
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In some cases, it has been observed that while enumerating codewords of information weight w, 
a codeword, whose weight coincides with the lower-bound obtained at enumeration step lu - 1, ap
pears. Clearly, this implies that the newly found codeword is indeed a minimum weight codeword; 
any other codeword of lower weight-if they exist, would have been found in the earlier enumera
tion steps. This suggests that the enumeration at step w may be terminated immediately. Since 
the bulk of computation time increases exponentially as the information weight is increased, this 
termination may result in a reasonable amount of time saving. 

Without loss of generality, it can be assumed that Rank(i?m+i) > Rank(B,„+j4.i). With this 
assumption, the Zimmermann^s (1996) approach to minimum distance evaluation of linear code 
over IF2-with the improvements, may be written in Algorithm 4.1. The procedure to update Wmax 
and Si^ is given in Algorithm 4.2. 

Depending on the code structure, the computation time required by Algorithm 4.1 can be re
duced. Say the binary code considered has even weight codewords only, then at the end of codeword 
enumeration at each step, the lower-bound dib that has been obtained should be rounded to the 
next multiple of 2. Similarly, for codes where the weight of every codeword is divisible by 4, the 
lower-bound should be rounded to the next multiple of 4. Aside from this improvement, there are 
also other code specific improvements, for example see Section 4.2.4 for cyclic codes and Section 5.4 
for double-circulant codes. 

4.2.4 Chen's Algorithm for Cyclic Codes 

Binary cyclic codes, which was introduced by Prange (1957), form an important class of block codes 
over IF2. Cyclic codes constitute many well-known error-correcting codes such as the quadratic-
residue codes and the commonly used in practice Bose-Chaudhuri-Hocquenghem (BCH) and Reed-
Solomon (RS) codes. A binary cyclic code of length n, where n is necessary odd, has the property 
that if r:(.T) = YJIZQ ^-i^-'y where € IF2 is a codeword of the cyclic code, then x^c{x) (mod - 1), for 
some integer j , is also a codeword of that cyclic code. That is to say that the automorphism group 
of a cyclic code contains the coordinate permutation i —* i + 1 (mod n) . 

An [n. k, d] binary cyclic code is defined by a generator polynomial g{x) of degree 71 - k and a 
parity-check polynomial k{x) of degree k such that g{x)b(x) = 0 (mod x" - 1). Any codeword of this 
cyclic code is a multiple otg(x), that is c(x) = 2i{x)g{x) where u(x) is any polynomial of degree less 
than k. The generator matrix G can be simply formed from the cyclic shifts of g{x), i.e. 

g(x) ( m o d x " - l ) 

xg{x) (mod x" - 1) 

x''-^ij(x) (mod x" - 1) 

Since for some integer i , x* = (ji{x)g{x) + r i (x ) where r , (x ) = x' (mod y(x)), we can write 

j:^- - r„.,^i{x)) = x'qi{x)g{x) 

(4.4) 
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Algorithm 4.1 Minimum distance algorithm: improved Zimmermann's approach 

Input: = [ G i l l G ^ ^ J , , } where = m 

Input: = Gi;"/^) . . . . , where = M .(m+2) 
aya i • 

Output: (/ (minimum distance) 

2 
3 
4 
5 
6 
7: 
8 
9 

10 
11 
12 
13: 
14; 
15 
16 
17 
18 
19 
20 
21; 
22 
23 
24; 
25 
26 
27; 
28; 
29; 
30 
31 
32 
33 
34 
35 
36 

A-d' d,, 
dib *— w *— I 
^ = 0 
repeat 

for all i e where wt//(i) = t i ; do 
for 1 < j < 771 do 

d'*-^.tu{^•G%\) 
ifd' < rf„6 then 

- d' 
if dub < dib then 

Goto Step 36 
end if 
w.nax^ ^ *- Update w,r,ax and Si^ (d^b.k, m,^^') 

end if 
end for 
for 1 < j < M do 

if rf' < dub then 
dub *— d' 
if dub < then 

Goto Step 36 
end if 
•Wjnax, ^ *- Update W,nax QTld St" (dub. I^y 'n/^') 

end if 
end for 

end for 
dib *- T7i(u; -f 1) 
for 1 < j < M do 

if t i ; > {k-Ylank{Bm+j)} then 
dib = dib + { w (A: - Rank (Bm+j)) + 1} 

end if 
end for 
w *— w 

until dib >dubORw>k 
d <= dub 

and based on this, a reduced-echelon generator matrix G^ya of a cyclic code is obtained, 

Gsya = 

-x"-''* (mod (j(x)) 
(mod g(x)) 
(mod g(x)) n-k+2 

.n~l (mod g{x)) 

(4.5) 

79 



Chapter 4. Good Binary Linear Codes 

Algorithm 4.2 w,naT, SC = Update u;,„ax and SC (f/„i., A;, m,(^') 
Input: d^i, k, m 
Input: {G^;:'\Gi';/'* Gi';/^')} 

Output: u;,„„x and 
1: ^ ^ 

repeat 

f o r i < j < |i^'|do 
if ^mox > - Rank(.B„,+j)} then 

Remove Gi'"/-*'' from ^" if G^';/-'* € 
^̂ /b = + Knox - (fc - Rank(B,„+_,)) + 1} 

end if 
end for 

until dib > dub OR Wmax > A-
return w,„ax and 

The matrix Gsys in (4.5) may contain more than one mutually disjoint information sets. But 
because each codeword is invariant under cyclic shift, a codeword generated by information set X,-
can be obtained from information set I j by means of simple cyclic shift. For an [n, k, d] cyclic code, 
there always exists [n/k\ mutually disjoint information sets. As a consequence of this, using a single 
information set is sufficient to improve the lower-bound to [n/k\{w + 1) at the end of enumeration 
step w. However, Chen (1969) showed that this lower-bound could be further improved by noting 
that the average number of non zeros of a weight WQ codeword in an information set is wok/n. 
After enumerating (̂ ) codewords, it is known that the weight of a codeword restricted to the 
coordinates specified by an information set is at least w -h I. Relating this to the average weight 
of codewords in an information set, an improved lower-bound of = \{w + l)7i/k] is obtained. 
Algorithm 4.3 summarises Chen's (1969) approach to minimum distance evaluation of a binary 
cyclic code. Note that Algorithm 4.3 takes into account the early termination condition suggested 
in Section 4.2.3. 

For cyclic codes, the lower bound on their minimum distance may be obtained using the BCH 
bound. That is, assuming that fi is a primitive nth root of unity, if there are S consecutive powers of 
P (taken cyclically modulo n) in the roots of the generator polynomial of a cyclic code of length n, the 
minimum distance of the cycHc code is at least 5̂ +1. With this information, Chen's (1969) algorithm 
can be terminated as soon as a codeword of weight 5 + 1 is found. It is not necessary to enumerate 
all codewords of information weights less than or equal to which may take a considerable amount 
of time, such that the condition \{w + l)n/k] > (5 + 1 is satisfied. 

It is worth noting that both minimum distance evaluation algorithm of Zimmermann (1996) 
for linear codes and that of Chen (1969) for cyclic codes, may be used to compute the number of 
codewords of a given weight. In evaluating the minimum distance d, the algorithm is terminated 
after enumerating all codewords having information weight i to where w is the smallest integer at 
which the condition dib > rf is reached. To compute the number of codewords of weight rf, in addition 
to enumerate all codewords of weight i to w in their information set, all codewords having weight 
t/;+1 in their information sets, also need to be enumerated. For Zimmermann's (1996) approach, all 
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Algorithm 4.3 Minimum distance algorithm for cyclic codes: Chen's approach 
Input: G,y, = [Ik.\P] {see (4.5)} 
Output: d (minimum distance) 

dub *— k 
dib - 1 
w 1 
repeat 

d' i-k 
for all i e F j where wt//(i) = w do 

d' ^\vtit(i-Gsys) 
if d' < dub then 

dub ^ d' 
dub < f^b then 

Goto Step 18 
end if 

end if 
end fc 
dtb 

u; *— u; + 1 
until dib > dub ORw> k 

dfor 

- g ( i / ; + l ) 

the available information sets, including those that overlap, are utilised and all codewords whose 
weight matches d arc stored. Meanwhile for Chen's (1969) algorithm, only a single information 
set is utilised, but for each codeword of weight d found, this codeword and all of the n - I cyclic 
shifts are accumulated. In both approaches, the doubly-counted codewords are removed at the end 
of enumeration. 

4.2.5 Codeword Enumeration Algorithm 

The core of all minimum distance evaluation and codeword counting algorithms lies on the code
word enumeration. Given a reduced echelon generator matrix, codewords can be enumerated by 
taking linear combinations of the rows in the generator matrix. This suggests the need of an effi
cient algorithm to generate combinations. One of the most efficient algorithm for this purpose is 
the revolving-door algorithm, see (Bitner et al.; 1976; Nijenhuis and Wilf; 1978; Knuth; 2005). The 
efficiency of the revolving-door algorithm arises from the property that in going from one combina
tion pattern to the next, there is only an element that is exchanged. An efficient implementation 
of the revolving-door algorithm is given in Knuth (2005), called Algorithm /?, which is attributed to 
Payne and Ives (1979)*. 

In many cases, using a single-threaded program to either compute the minimum distance, or 
count the number of codewords of a given weight, of a linear code may take a considerably amount 
of time. In this case, we may resort to a multi-threaded approach by splitting the codeword enu
meration on multiple computers. The revolving-door algorithm has a nice property that allows such 
splitting to be neatly realised. Let otOt-i.. . a 2 a i , where at > ot-i > . . . > a2 > ai, be a pattern 
of an t out of s combination-Cf. A pattern is said to have rank i if this pattern appears as the 

^This is the version that the author implemented to compute the minimum distance nnd to count the number of code
words of 0 given weight of a binary linear code. 
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{i + l)th element in the Hst of all CI combinations^. Let Rank(a(a(_i.. .f/so i) be the rank of pattern 
the revolving-door algorithm has the property that (Knuth; 2005) 

Rank(ata(_i ...<i2a\) = - Rank(ri(_i .. .ti.20.\) (4.6) 

and, for each integer N, where 0 < N < (̂ ) - 1, it can be uniquely represented with an ordered pat
tern (itdt-i... (i2(n. As an implication of this and (4.6), if all (j) codewords need to be enumerated, 
the enumeration can be split into ({')/A^ blocks where in each block only at most M codewords 
need to be generated. In this way, the enumeration of each block can be done on a separate computer 
and this allows a parallelisation of the minimum distance evaluation in addition to the counting of 
the number of codewords of a given weight. It is clear that, in the ith block, the enumeration would 
start from rank (/' - 1)M and the corresponding pattern can be easily obtained following (4.6) and 
Lemma 4.1 below. 

All aittt-1 . -. a2ai revolving-door patterns of Cf satisfy the property that, if the values in position 
ai grow in an increasing order, then for fixed nt the values in position grow in a decreasing order, 
moreover for fixed ajflt-i the values in position ai-2 grow in an increasing order, and so on in an 
alternating order. This behaviour is evident by observing all revolving-door patterns of C^ deft) and 
CQ (right) shown in Figure 4.1. From this figure, it can also be observed that 

C t o C f ' D . . . D C ; + * D C J , (4.7) 

and this suggests the following lemma. 

4.1 Lemma (Maximum and Minimum Ranks). Consider the a,a/_i . . . (120-1 revolving-door combi
nation pattern, if the patterns with fixed at are considered, the maximum and minimum ranks of 
such pattern are respectively given by 

Example 4.2: Say if all C4 revolving-door combination patterns (left portion of Figure 4.1), where Maximum and 

04 = 4, are considered. Lemma 4,1 yields a maximum rank of (4) - 1 = '1 and a minimum rank of minimum 

(J) = 1, and it can be seen that these rank values are correct from Figure 4.1. ranks 

Example 4.3: Consider combinations Cl generated by the revolving-door algorithm, what is the Rank of a 
combination pattern at rank 17? It is known that the combination pattern takes an ordered form of revolving-door 

0504030201, where Oi > a^-i. Starting from 05, an integer between 0 and 6 has to be found such that combination 

^ Here it is assume that the first element in the list of nil Cf combinations has rank 0. 
pattern 
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Rank «4 aa (12 O i 

0 3 2 1 0 
1 4 3 1 0 
2 4 3 2 1 
3 4 3 2 0 
4 4 2 1 0 
5 5 4 1 0 
6 5 4 2 1 
7 5 4 2 0 
8 5 4 3 2 
9 5 4 3 1 
10 5 4 3 0 
11 5 3 1 0 
12 5 3 2 1 
13 5 3 2 0 
14 5 2 1 0 

Rank as ttj n3 aj ai 
0 4 3 2 1 0 
1 5 4 2 1 0 
2 5 4 3 2 0 
3 5 4 3 2 1 
4 5 4 3 1 0 
5 5 3 2 1 0 
6 6 5 2 1 0 
7 6 5 3 2 0 
8 6 5 3 2 1 
9 6 5 3 1 0 
10 6 5 4 3 0 
11 6 5 4 3 1 
12 6 5 4 3 2 
13 6 5 4 2 0 
14 6 5 4 2 1 
15 6 5 4 1 0 
16 6 4 2 1 0 
17 6 4 3 2 0 
18 6 4 3 2 1 
19 6 4 3 1 0 
20 6 3 2 1 0-

Figure 4.1: and Cl revolving-door combination patterns 

the inequality < 17 < ('"̂ +*) - 1 is satisfied (Lemma 4.1). It follows that 05 = 6 and using (4.6), 

17 = Rank(6fl<ia3a2ai) 

Rank(a4a3a2ai) = 20 - 17 = 3. 

Rank(a4a3a2fli) 

Next, consider a4 and as before, an integer between 0 and 5 needs to be found for 04 such that the 
inequality {"̂ ) < Rank(a4a3a2ai) < C^^^^) - 1 is satisfied. It follows that 04 = 4 and consequently, 

3 = Rank(4a3a2ai) 

= (^^4^^)"^ - Rank(a3a2ai) 

Rank(a3a2ai) = 4 - 3 = 1, 

following (4.6). 

Next, find 03, which can only take any non negative integer less than 4, such that the inequality 
("3=) < RankCaaa^ai) < - 1 is satisfied. It follows that 03 = 3 and from (4.6), Rank(a2ai) = 

l e v ) -1] -1=2. 
So far it is known that G43a2ai, only n.2 and ai are unknown. Since 03 = 3, 07 can only take 

integer less.than 3. The inequality (2') < Rank(a2ai) < ("̂ ^̂ ) - 1 is satisfied if 02 = 2 and corre-
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spondingly, Rank(ai) = [ f - l ] - 2 = 0. 

For the last case, the inequality (7) < Rank(ai) < (°\+^) - 1 is true if and only if ai = 0. Thus, 
64320 is obtained as the rank 17 C j revolving-door pattern. Cross-checking this with Figure 4.1, it 
is clear that G4320 is indeed of rank 17. 

From (4.6) and Example 4.3, given a rank A^ where 0 < N < (J) - 1, an ordered pattern of 
revolving-door combination atai-i... 0301 can be constructed recursively. A software realisation of 
this recursive approach is given in Algorithm 4.4. 

Algorithm 4,4 RecursiveComputea,- (Rank(a,ai„i . . . a2a i ) ,0 
Input: i and Rank(aiai_ 1 . . . a2a]) 
Output: a, 

1: Find a,-, where 0 < < ai+i, such that {V) < Rank(oia,- i . ..020.1) < [C'^^) - 1 
2: if / > / then 
3: Compute Rank(ai_i . . .0201) = - l ] - R a n k ( a , a i _ i . . .0201) 
4: RecursiveComputeoi {Rank(a i - i . . . a 2 a i ) , i - 1) 
5: end if 
6: return a, 

4.3 Binary Cyclic Codes of Lengths 129 < n < 189 
The minimum distance of all binary cyclic codes of lengths less than or equal to 99 has been de
termined by Chen (1969), Chen (1970) and Promhouse and Tavares (1978). This was later ex
tended with evaluation of the minimum distance of binary cyclic codes of lengths from 101 to 127 by 
Schomaker and Wirtz (1992). This work is extended to include cyclic codes of odd lengths from 129 
to 189 in this thesis. The aim of this work is to provide as a reference the highest minimum distance, 
with the corresponding roots of the generator polynomial, attainable by all cyclic codes over F2 of odd 
lengths from 129 to 189. It is well-understood that the coordinate permutation a : i -* id, where // is 
an integer relatively prime to 71, produces equivalent cyclic codes (Berlekamp; 1984, pp. 1410- With 
the respect to this property, we construct a list of generator polynomials (/(x) of all inequivalent and 
non degenerate (MacWilliams and Sloane; 1977, pp. 223f) cyclic codes of 129 < n < 189 by taking 
products of the irreducible factors of i " - 1. Two trivial cases are excluded, namely g(x) = 1 + 1 and 
g(x) = ( a ; " - l ) / ( x - t - l ) , since they have trivial minimum distance and exist for any odd integer 71. The 
idea is, for each g(x) of cyclic codes of odd length n, the systematic generator matrix is formed and 
the minimum distance of the code is determined using Chen's algorithm (Algorithm 4.3). However, 
due to the large amount of cyclic codes and the fact that only those of largest minimum distance for 
given n and k are of interest, a threshold distance dth in Algorithm'4.3 is utilised. Say for given n 
and k, there is a list of generator polynomials g[x) of all inequivalent cyclic codes. Starting from the 
top of the Hst, the minimum distance of the corresponding cyclic code is evaluated. If a codeword 
of weight less than or equal to dth is found during the enumeration, the computation is terminated 
immediately and the next g(:r) is then processed. The threshold dt^, which is initialised with 0, is 
updated with the largest minimum distance found so far for the given n and k. 

Table B . l in Appendix B shows the highest attainable minimum distance of all binary cyclic 
codes of odd lengths from 129 to 189. The number of inequivalent and non degenerate cyclic codes 
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for a given odd integer n, excluding the two trivial cases mentioned above, is denoted by NQ. Note 
that Table B . l does not contain entries for primes n = 8m ± 3. This is because for these primes, 2 is 
not a quadratic residue modulo n and hence, ord2(n) = /i - 1. As a consequence, x" - 1 factors into 
two irreducible polynomials only, namely x-t-1 and (i" - l)/(x4-1) which generate trivial codes. Let 
/? be a primitive nth root of unity, the roots oT g(x) of a cyclic code (excluding the conjugate roots) 
are given in terms of the exponents of p. The polynomial m(i) is the minimal polynomial of 0 and 
it is represented in octal format with most significant bit on the lefl. That is, m{x) = 1G6761, as in 
the case for n = 151, represents + x̂*" -t- -f x*' + x'° -t- x̂  + x̂  + x*̂  + x̂  + x'̂  + 1. 

4.4 Some New Binary Cyclic Codes of Large Minimum 
Distance 

Constructing an (n, k] linear codes of largest minimum distance is one of the main problems in 
coding theory. There exists a database containing the lower- and upper-bounds of minimum dis
tance of binary linear codes of lengths 1 < n < 256. This database appears in Brouwer (1998) and 
the updated version was accessible online^. The lower-bound corresponds to the largest minimum 
distance for a given [n, k]q code that has been found to date. Constructing codes which improves 
Brouwer's lower-bounds is an on-going research activity in coding theory. Recently, tables of lower-
and upper-bounds of not only codes over finite-fields, but also quantum error-correcting codes, have 
been published by GrassI (2007). These bounds for codes over finite-fields, which are derived from 
MAGMA (Bosma et a!.; 1997), appear to be more up-to-date than those of Brouwer. 

It has been presented in Section 4.3 the highest minimum distance attainable by all binary cyclic 
codes of odd lengths from 129 to 189 and it has been found that none of these cyclic code has larger 
minimum distance than the corresponding Brouwer's lower-bound for the same n and k. The next 
step is to consider longer length cyclic codes, 191 < n < 255. For these lengths, unfortunately, it has 
not been feasible to repeat the exhaustive approach of Section 4.3 in a reasonable amount of time. 
This is due to the computation time to determine the minimum distance of these cyclic codes and 
also, for some lengths (e.g. 195 and 255), there are tremendous amount of inequivalent cyclic codes. 
Having said that, it is possible to search for improvements from lower rate cyclic codes of these 
lengths for which the minimum distance computation can be completed in a reasonable time. Many 
new cyclic codes that improve Brouwer's lower-bound were found and before they are presented, 
consider the evaluation procedure that is employed. 

As before, let p be a primitive nth root of unity and let A be a set containing all distinct (excluding 
the conjugates) exponents of p. The polynomial x" -1 can be factorised into irreducible polynomials 
/i(x) overIF2,x"- l = FliGA/'W- For notational purpose, the irreducible polynomial/,(x) is denoted 
as the minimal polynomial of /3*. The generator and parity-check polynomials, denoted by g(x) and 
h{x) respectively, are products of /i(x). Given a set T C A, a cyclic code C which has /?', t e T, as the 

^The online database is available at hctp: / /www. win. tue. n l / -aeb/voorl incod.html . 
Note that, since 12^ March 2007, A. Brouwer has stopped maintaining his database and hence it is no longer accessible. 

This database is now superseded by that maintained by GrassI (2007). 
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non zeros can be constructed. This means the parity-check polynomial h(x) is given by 

and the dimension A: of this cyclic code is ^.^p cieg(/,(x)), where dcg(/(x)) denotes the degree of /(re). 
Let r C A \ {0}, h'(x) = flier' /••(^) ^^i^) = (1 + 'J:)h'{x). Given C with parity-check polynomial 
/ i ( i ) , there exist an [n,k - l,d'] expurgated cyclic code, C , which has parity-check polynomial h'(x). 
For this cyclic code, wt//(c) = 0 (mod 2) for all c € C'.For convenience, let the code C be termed the 
augmented code of C. 

Consider an [n,k - l,d'] expurgated cyclic code C , let the set T = {P,, . . . , T^} where, for 
1 < i < Vj C \ \ {0} and deg(/,(i)) = A: - I . For each Vj e F , h'(x) is obtained and 
the corresponding code C is constructed. Having done that, the augmented code can be easily 
obtained as shown below. Let G be a generator matrix of the augmented code C, and without loss of 
generality, it can be written as 

G = (4.8) 

where G' is a generator matrix of C and the vector v is a coset of C in C. Using the arrangement 
in (4.8), d' is evaluated by enumerating codewords c e C from G'. The minimum distance of C, 
denoted by rf, is simply mincec'{f^'. wt/y(c -H v)} for all codewords c enumerated. Algorithm 4.3 is 
employed to evaluate d'. Let dBrouwcr and d'oroumcr denote the lower-bounds of Brouwer (1998) 
for linear codes of the same length and dimension as those of C and C respectively. During the 
enumerations, as soon asd< dsrouwcr and d' < (iflroumcr' evaluation is terminated and the next 
Vj in F is then processed. However, if < dorouwcr and d' > rf^rotiujcr* <*"*y evaluation for C is 
discarded. Nothing is discarded if both d' > d'^^^^^^^ and d > dBrouwcr- This procedure continues 
until improvement is obtained; or the set in F has been exhausted, which means that there does not 
exist [71, k~l] and [n, k] cyclic codes which are improvements to Brouwer*s lower-bounds. In cases 
where the minimum distance computation is not feasible using a single computer, the evaluation is 
switched to parallel version using grid computers. 

Table 4.1 presents the results of the search on new binary cyclic codes for 195 < n < 255 described 
earlier. The cyclic codes in this table are expressed in terms of the parity-check polynomial /i(x), 
which is given in the last column by the exponents of fi (excluding the conjugates). Note that 
the polynomial m(x), which is given in octal with most significant bit on the left, is the minimal 
polynomial of /?. In many cases, the entries of C and C are combined in a single row and this is 
indicated by "a/6" where the parameters a and 6 are for C and C respectively. The notation "[0]" 
indicates that the polynomial (I +x ) is to be excluded from the parity-check polynomial of C . Some 
of the improvements coincide with the lower-bounds in Grassl (2007). They are included in Table 4.1 
and are marked by "t". 

In the late 1970s, computing the minimum distance of extended Quadratic Residue (QR) codes 
was posed as a research problem in MacWilliams and Sloane (1977). Since then, the minimum 
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Table 4.1: New Binary Cyclic Codes 

["'(^)l8 71 k (i ^^Brouwcr h(x) 

17277 195 

* 66/67 42/41 40/40 (01,3,5,9,19.39,65,67 

17277 195 

• 68/69 40/39 39/38 [0),1,3,13,19,35,67,91 

17277 195 t 7 3 38 37 0.3,7,19,33,35,47 17277 195 

t 74/75 38/37 36/36 (01,3,7,19, 33,35,47,65 

17277 195 

78 36 35 3,7,9,11,19,35,39,65 

132370'12705-

30057231362-

555070452551 

199 99/100 32/31 28/28 [01,1 

6727273 205 
* 60 48 46 5,11,31 

6727273 205 
t 6 1 46 44 0,3,11,31 

3346667657 215 70/71 46/46 44/44 [01,3,13,35 

3705317547055 223 74/75 48/47 46/45 [0], 5, 9 

3460425444467-

7544446504147 
229 76 48 46 1 

6704436621 233 t 58/59 60/60 56/56 [01,3,29 

150153013 241 
• 49 68 65 0,1,21 

150153013 241 
73 54 53 0,1,3,25 

435 255 

48/49 76/75 75/72 (01,47,55,91,95,111,127 

435 255 

50/51 74/74 72/72 (01,9,13,23,47,61,85,127 

435 255 

52/53 72/72 71/68 [01,7,9,17,47,55,111,127 

435 255 

54/55 70/70 68/68 [0],3,7,23,47,55,85,119,127 

435 255 56/57 68/68 67/65 (01,7,27,31,45,47,55,127 435 255 

58 66 • 64 7,39.43,45,47,55,85,127 

435 255 

60 66 64 7,17,23,39,45,47,55,127 

435 255 

02/03 66/05 64/63 (0), 11,21,47,55,01,85,87,119,127 

435 255 

04/65 64/03 62/62 [0], 19,31,39,47,55,03,91,127 

distance of the extended QR code for prime 199 has been an open question. For this code, the bounds 

of the m i n i m u m distance were 16 - 32 in MacWill iams and Sloane (1977) and the lower-bound was 

improved to 24 i n GrassI (2000). Since 199 = - 1 (mod 8), the extended code is doubly-even self-

dual and its automorphism group contains a projective special linear group, which is known to be 

doubly-transitive (MacWill iams and Sloane; 1977). As a result, the m i n i m u m distance of the binary 

[199,100] QR code is odd, i.e. = 3 (mod 4), and hence = 23,27 or 31. Due to the cyclic property and 

the rate of this QR code (Chen; 1969), i t can be assumed tha t a codeword of weight d has max imum 
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informat ion weight of [d/2J. I f a weight d codeword does not satisfy this property, there must exist 

one of its cydic shif ts that does. Af t e r enumerating al l codewords up to (and including) in format ion 

weight 13 using gr id computers, no codeword of weight less than 31 was found, imp ly ing tha t d 

of this binary [199,100) QR code is indeed 31. Without exploit ing the property tha t (/ = 3 (mod 4), 

additional + codewords would need to be enumerated in order to establish the same result. 

Accordingly, there exists a [199,99,32] expurgated QR and a (200,100,32] extended QR codes. 

I t is interest ing that many of the improvements are contributed by low-rate cyclic codes of length 

255 and there are 16 cases of this. Furthermore, i t is interesting to note the existence of [255,55.70] 

and (255,63,65] cyclic codes, which are superior to the B C H codes of the same length and dimension. 

Both of these B C H codes have m i n i m u m distance 63 only. 

4.5 Constructing New Codes from Existing Ones 
I t is d i f f i cu l t to explici t ly construct a new code w i t h large m i n i m u m distance. However, the alterna

tive approach, which starts from a known code which already has large m i n i m u m distance, seems 

to be more f r u i t f u l . Some of these methods are described below and in the fol lowing subsections, 

some new binary codes obtained using these methods, which improve Brouwer's lower-bound, are 

presented. 

4,1 Theorem (Construction X). Let and 62 be [//, ky, f/ij and [n, k2, l inear codes over F , , respec-* 

tively, where D B2 (^2 is a subcode of ^1). Let A be an [n'.ks = ki - k2,d'] auxi l iary code over^ 

the same field. There exists an [ti.-\- n',ki,m'\n{d2,di -i-d'}] code C , Y over I F ^ . . . • 

Construction X is due to Sloane et al . (1972) and i t basically adds t a i l , which is a codeword of 

the auxi l iary code A, to Bi so that the m i n i m u m distance is increased. The effect of Construction X 

can be visualised as follows. Let Gc be the generator matr ix of code C. Since 61 D B2, GB, can be 

expressed as 

'Ha 

where V is a (ATJ - ^2) x n mat r ix which contains the cosets of B2 i n ^1. I t can be seen tha t the 

code generated by GB^ has m i n i m u m distance ^2. and the set of codewords {v + C2}, for a l l u 6 V 

and a l l codewords C2 generated by G ^ j , have m i n i m u m weight of d^. By appending non zero weight 

codewords of ̂  to the set { v + C2}, and a l l zeros codeword to each codeword of ^2, a lengthened code 

of larger m i n i m u m distance, Cx, is obtained which has a generator mat r ix given by 

(4.9) Gcx = 
0 

V 

88 



4.5. Constructing New Codes from Existing Ones 

I t can be seen that, for binary cyclic linear codes of odd m i n i m u m distance, code extension by 

annexing an overall parity-check b i t is an instance of Construction X. I n this case, 62 is the even-

weight subcode of Bi and the auxi l iary code A is the t r i v i a l (1 ,1,1)2 code. 

Construction X given in Theorem 4.1 consider a chain of two codes only. I t can be generalised by 

considering a chain of more codes and this is given in Theorem 7.1. There also exists a var iant of 

Construction X which makes use of Construction X twice and i t was introduced by Al l top (1984). 

4.2 Theorem (ConstructionXX), Consider three linear codes of the same length, Bi = [7i,A:i;f/ij, 

62 - [n,k2,d2] and = [n,k:i,d:i] where B2 C Bi and B-^ C Bi. Let B^ be an [n,fc4,d4] l inear 

code which is the intersection code of B2 and B-^, i.e. B4 = n B^. Using auxi l iary codes = 

\ii\.hi - k2,d\] and A2 = [112. - k.-^,d'2\, there exists an [n + /ii +112, ki,d\ linear code C Y A - where 

d^imn{d4,d-^-\-d\,d2 + d2,di-\-d\ :^d'2}. , ' ;j , v 

The relationship among ^ i , B2, B3 and B4 can be i l lustra ted as a lattice shown below (GrassI; 

2006). 

B2 
B, 

B, 

Since ^1 D B2, Bi D B3, B4 C B2 and ^4 c ^3, the generator matrices of B2, B-s and Bi can be 
wr i t t en as 

1 Gt3^ = and GiSi ~ 

respectively, where V j , i = 2,3, is the coset of B4 i n Bi, and V contains the cosets of B2 and ^3 i n 

Bi. Construction X X starts by applying Construction X to the pair of codes Bi D B2 using ^1 as the 

auxi l iary code. The result ing code is Cx = [n + 7Ji,A:i,min{rf2,c'i + d\}\, whose generator mat r ix is 

given by 

Gc.v = 

0 

V 
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This generator mat r ix can be rearranged such that the codewords formed f rom the first n coordi

nates are cosets of ^3 i n ^ i - This rearrangement results in the fol lowing generator mat r ix of C.v, 

OB. 0 

V 3 

V2 0 

V 

where G ^ , = 
.(») 

Next, using A2 as the auxi l iary code, applying Construction X to the pair 

B\ D B-s w i t h the rearrangement above yields a code Cxx whose generator mat r ix is 

0 0 

Vs ^Ai 
V2 0 

V ^A, 

While Constructions X and X X result i n code w i t h increased length, there also exists a technique 

to obtain a shorter code w i t h known m i n i m u m distance lower-bound f rom a longer code whose 

m i n i m u m distance and also that of i ts dual code are known explicitly. This technique is due to 

Sloane et al. (1972) and i t is called the Construction Y l . 

4,3 Theorem (Construction Yl), Given an (n, k, d] linear code C , which has an [n, n - k, d-^] code C ^ -

as its dual, an [n- d-^,k- d-^ + 1, > d] code C can be constructed. 

Given an [n, k, d\ code, w i t h standard code shortening, an [n -i^k - i,> d] code, where i indicates 

the number of coordinates to shorten, is obtained. W i t h Construction Y l , however, an additional 

dimension in the result ing shortened code can be gained. This can be explained as follows. Wi thout 

loss of generality, i t can be assumed tha t the parity-check mat r ix of C, which is also the generator 

mat r ix of C-^, H contains a codeword c-"- of weight d-^. I f the coordinates which fo rm the support of 

c-̂  are deleted f rom i f , then H becomes an (71 - k) xn-d-^ mat r ix and there is a row which contains 

a l l zeros among these n-k rows. Removing this al l zeros row yields an (71 - A: - 1) x (71 - rf-"-) ma t r ix 

H\ which is the parity-check mat r ix of an (/( -d-^,n-d^ - {n - A: - 1), >d] = \n-d^, k-d^ + !> > ^'j 

code C. 

4.5.1 New Binary Codes from Cyclic Codes of Length 151 

Among a l l cyclic codes in Table B . l , those of length 151 have m i n i m u m distance tha t were found to 

have the highest number of matches against Brouwer's (1998) lower-bounds. This shows tha t binary 

cyclic codes of length 151 are indeed good codes. Since 151 is a prime, cyclic codes of this length are 
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special as a l l of the irreducible factors of i ^ ^ ' - 1, apart f rom have a fixed degree of 15. Hav ing 

a fixed degree implies tha t duadic codes (Leon et al . ; 1984), which include quadratic residue codes, 

also exist for this length. Due to their large m i n i m u m distance, they are good candidate component 

codes for Constructions X and XX. 

4.2 Definition (Chain of Cyclic Codes). A pair of cyclic codes, Ci = {n,ki,di\ and C2 = [n,k2yd2\ 

where k^ > k2, is nested, denoted Ci D C 2 , i f a l l roots of Ci are contained in C2. Here the roots refer 

to those of the generator polynomial. By appropriate arrangement of their roots, cyclic codes of the 

same length may be parti t ioned into a sequence of cyclic codes C\ D C2 D • • • D Ci. This sequence 

of codes is termed a chain of cyclic codes. 

Given a l l cyclic codes of the same length, i t is impor tant to order the roots of these cyclic codes 

so tha t opt imum chain can be obtained. For al l cyclic codes of length 151 given i n Table B . l , whose 

generator polynomial contains 1 + 1 as a factor, an ordering of roots (excluding the conjugate roots) 

shown in Table 4.2 results i n an opt imum chain arrangement. Here /? is a p r imi t ive 151st root of 

unity. Similarly, a chain which contains cyclic codes, whose generator polynomial does not divide 

1 + -T, can also be obtained. 

Table 4,2: Order of P i n an opt imum chain of [151, fcj, rf,-) cyclic codes 

i ki di Roots of y(x), excluding conjugate roots 

1 150 2 

2 135 6 a' 
3 120 8 P' P^ 
4 105 14 P' p-> P' 
5 90 18 p° P' 0' P' P'' 
G 75 24 p° P' P^ P' ^15 

7 60 32 (f P' P' P' P'' ^15 037 
8 45 36 ff> P' P^ P' /?" ^.5 023 037 
9 30 48 p" P' P'' P" /9" 07 
10 15 60 p^ P' 0' P" P' /?>' ^15 p23 P3i 07 

AJl the constituent codes in the chain C\ D C2 D • • • D Cio of Table 4.2 are cyclic. Following 

GrassI (2001), chain of non-cyclic subcodes may also be constructed af ter a chain of cyclic codes. 

This is because for a given generator mat r ix of an [n, k, d\ cyclic code (not necessary in row-echelon 

form), removing the last i rows of this mat r ix w i l l produce an /c - i , > d] code which is not 

necessary cyclic. As a consequence, w i t h respect to Table 4.2, there exists (151, k,d] l inear codes, for 

15 < A: < 150. 

Each combination of pairs of codes in the [151, A-, d) chain is a nested pair which can be used 

as component codes for Construction X to produce another linear code. There is a chance tha t the 

m i n i m u m distance of the result ing linear code is larger than tha t of the best-known codes for the 

same length and dimension. I n order to find the existence of such case, the fol lowing approach has 

been taken. There are (i^^o-'^+ij _ 1̂30̂  dist inct pair of codes i n the above chain of linear codes, 

and for each pair say Ci = [n,ki,di\ 3 C2 = [n,A:2,'^i), is combined using Construction X w i t h an 

auxi l iary code A, which is an [71', ki - k2,d'] best-knowm linear code. The m i n i m u m distance of the 
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result ing code Cx is then compared to tha t of the best-known linear code for the same length and 

dimension to check for improvement. Two improvements were obtained and they are tabulated in 

in the top hal f of Table 4 .3. 

I n the case when k\ - is small , the minimum-distance of C\ i.e. d\, obtained f rom a chain 

of l inear codes, can be unsatisfactory. I t is possible to improve d\ by augmenting C\ w i t h a vector 

V of length 71. i.e. add v as an additional row in Gc^. I n finding a vector v tha t can maximise 

the m i n i m u m distance of the enlarged code, the fol lowing procedure is adopted. Choose a code 

C2 = [n,k2,d2\ tha t has sufficiently high m i n i m u m distance. Assuming tha t Gc^ is i n reduced-

echelon format, generate a vector v which satisfies the fol lowing conditions: 

1. Ui = 0 for 0 < I < Ar - 1 where u,- is the t th element of v , 

2. w t / / (v ) > rfi, and 

3 . w t / / ( t j + Gr) > di for al l re { 0 , 1 , . . . , A*2 - 1 } where Gc,,r denotes the r t h row of Gc^. 

The vector v is then appended to Gc^ as an additional row. Compute the m i n i m u m distance of the 

result ing code using Algor i thm 4.1. A threshold is applied dur ing the m i n i m u m distance evalu

ation and a terminat ion is called whenever: < ^ i , in which case a di f ferent v is chosen and 

Algor i thm 4.1 is restarted; or di < d^t < dn, which means that an improvement has been found. 

Using this approach, two new linear codes are found, namely [151,77,20] and [151,62,27l, which 

have higher m i n i m u m distance than the corresponding codes obtained f rom a chain of nested cyclic 

codes. These two codes are obtained by s tar t ing f rom the cyclic codes [151,76,23j-which has roots 

{/?,y9^.5 '^^35^^37Jand [ 151 ,61 ,311 -wh ich has roots { / ? , ^ ^ / 3 ^ respectively and there

fore, (151,77,201 D [151,76,231 and (151,62,27] D [151,61,31]. The second ha l f of Table 4 .3 shows the 

ingredients of these new codes. 

Note that, when searching for the [151,62,27] code, the fact that the [152,01,32] code obtained by 

extending the [151,61,31] cyclic code is doubly even, is exploited. The additional vector v is chosen 

such tha t extending the enlarged code [151,62,f/i] yields again a doubly-even code. This implies the 

congruence d\ = 0 , 3 mod 4 for the m i n i m u m distance of the enlarged code. Hence, i t is sufficient to 

establish a lower bound dib = 25 using Algor i thm 4.1 to show that di > 27. 

Table 4.3: New binary codes f rom Construction X and cyclic codes of length 151 

C2 A Cx 

Using chain of linear codes 

[151,72,24] 

[151,60,32] 
[151,60,32) 
[151,45,36] 

[23,12,7] 

(20,15,3] 

[174,72,31] 

[171,60,35] 

Using an improved subcode 

[151,77,20] 
[151,62,27] 

[151,76,23] 
[151,61,31] 

(3 , i ;3 l 

K l - 4 1 

[154,77,23) 

(155,62,31) 

What is even more, two different codes are also found, namely C2 = [151,62,27] c Ci and C3 = 

[151,62,27] C Cu where Ci = [151,63,23] and C4 = CzDCa = (151,61,31). Using Construction XX, a 

(159,63,31] code is obtained, see Table 4.4. 
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Table 4,4: New binary code f rom Construction X X and cyclic codes of length 151 

Ci C2 C3 C4 =C2nC3 Al A2 Cxx 

[151,63,23] (151,62,27) [151,02,27] [151,61,31] H a . 4 ] [159,63,31] 

4.5.2 New Binary Codes from Cyclic Codes of Length > 199 

I t is known f rom Table 4.1 tha t there exists a (199,100,31] cyclic code. The extended code, obtained 

by annexing an overall parity-check bit , is a (200,100.32] doubly-even self-dual code. As the name 

implies, being self-dual we know tha t the dual code has m i n i m u m distance 32. Us ing Construction 

Y l (Theorem 4.3), a [168,69,32) new binary code is obtained. The m i n i m u m distance of the [168,09] 

previously considered best-knov^m binary linear code is 30. 

Consider cyclic codes of length 205, i n addition to a (205,61,46] cyclic code (see Table 4.1), there 

also exists a [205,61,45] cyclic code which contains a [205,60,48] cyclic code as its even-weight sub

code. Apply ing Construction X (Theorem 4.1) to (205,61,45j D [205,60,48] pair of cyclic codes w i t h a 

repetit ion code of length 3 as the auxi l iary code, a [208,61,48] new binary l inear code is constructed, 

which improves Brouwer*s lower-bound by 2. 

Furthermore, i t was also found that the dual codes of the [255,65,63] cyclic code i n Table 4.1 and 

tha t of i ts [255,64,64] even weight subcode both have m i n i m u m distance of 8. App ly ing Construction 

Y l (Theorem 4.3), new binary linear codes (247,57,64) and [247,58,63], which improve Brouwer's 

lower-bounds by 2 and 1 respectively, are obtained. 

4.6 Summary 
o I n the search for error-correcting codes with large m i n i m u m distance, an efficient a lgor i thm 

to compute the exact m i n i m u m distance of a linear code is important . The evolution of various 

algorithms to evaluate the m i n i m u m distance of a binary linear code, f rom the naive approach 

to the efficient Zimmermann*s (1996) approach, has been discussed. I n addition to these algo

rithms, Chen's (1969) approach to compute m i n i m u m distance of binary cyclic codes has also 

been described. 

o The core of a m i n i m u m distance evaluation algori thm is on codeword enumeration. As the 

weight of the informat ion vector is increased, the number of codewords required grow expo

nentially. Zimmermann's (1996) algori thm may be improved by omi t t i ng generator matrices 

w i t h overlapping informat ion sets tha t never contribute to the lower-bound throughout the 

enumeration; and also early terminat ion in the event of a new m i n i m u m distance is found 

tha t meets the lower-bound value of the previous enumeration step. I n additions, i f the code 

considered has every codeword weight divisible by 2 or 4, the number of codewords tha t need 

to be enumerated can also reduced. 

o W i t h some simple modification, Chen*s (1969) and Zimmermann's (1996) algori thms can also 

be used to collect and hence, count a l l codewords of a given weight. 

o Given a generator mat r ix containing an informat ion set, codewords may be cfTicicntly gener

ated by t ak ing linear combinations of rows of this matr ix . This implies the faster combinations 

93 



Chapter 4. Good Binary Linear Codes 

can be generated, the less t ime the m i n i m u m distance evaluation algori thm w i l l take. One 

of such efficient algorithms to generate combinations is called the revolving-door a lgor i thm. 

This a lgor i thm has a nice property that allows the enumeration of combinations to be easily 

parallelised. This property has been discussed in detail in this chapter. 

• Having an efficient m i n i m u m distance computation algori thm, which can also be parallelised, 

allows extension of the work by Chen (1970), Promhouse and Tavares (1978), and Schomaker 

and Wir tz (1992), i n evaluating the m i n i m u m distance of cyclic codes. The highest m i n i m u m 

distance attainable by al l binary cyclic codes of odd length f rom 129 to 189 has been obtained. 

We found tha t none of these cyclic codes has m i n i m u m distance tha t exceeds the m i n i m u m 

distance of the best-known linear codes of the same length and dimension, which is given as 

the lower-bound i n Brouwer (1998), but there are 134 cyclic codes tha t meet the lower-bound, 

see Appendix B. 

• Having an efficient parallelise-able m i n i m u m distance computation a lgor i thm also allows the 

search for the existence of binary cyclic codes of length longer than 189 which are improve

ments to Brouwer's (1998) lower-bound. I t has been found tha t there arc 37 of these cyclic 

codes, namely 

[195,66,42], [195,67,41], (195,68,40), [195,69,39], [195,73,38), [195, 74,38], 

[195,75,37], [195,78,36], (199,99,32), (199,100,32), [205,00,48], (205.61,46], 

[215,70,46], [215,71,46], [223,74,48], (223, 75,47), [229, 76,48], (233,58, GO], 

(233,59,60], (255,48, 76), [255,49,75], (255,50, 74), (255,51, 74], (255,52, 72), 

(255,53, 72), (255,54, 70), [255,55,70), (255,56,68], (255,57,68], (255,58,66], 

[255,60,66], [255,62,66], [255,63,65], (255,64,64), [255,65,63], 

• From the cyclic codes above, using Construction X to lengthen code and Construction Y l 

to shorten code, four additional improvements to Brouwer's (1998) lower-bound are found, 

namely 

[168,69,32], [208,61,48], (247,57,64], [247,58,63]. 

• Five new linear codes, which are derived f rom cyclic codes of length 151, have also been con

structed. These new codes, which are produced by Constructions X and XX, are 

(154,77,23), [155,62,31], (159,63,31), (171,60,35), (174,72,31). 

• Given an [ii,k,d] code C, where d is larger than the m i n i m u m distance of the best known 

linear code of the same ii and A:, i t is possible to obtain more codes, whose m i n i m u m distance 

is s t i l l larger than tha t of the corresponding best known linear code, by recursively extending 

(annexing parity-check), punctur ing and/or shortening C. For example, consider the new code 

[168,69,32); by annexing parity-check b i t [168 + i , 69,32), for 1 < i < 3, new codes are obtained; 

by punctur ing a (167,69,31) new code is obtained; by shortening ( 1 6 8 - i , 6 9 - t , 3 2 ) , for 1 < i < 5, 

new codes are obtained. More improvements are also obtained by shortening the extended and 
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4.6. Summary 

punctured codes. Overall , using the new codes obtained i n this chapter, there are 901 binary 

linear codes which improve Brouwer's (1998) lower-bound. The improved lower-bounds are 

tabulated in Tables C.1-C.5 in Appendix C. 
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5 Double Circulant Codes based on 
Primes 

Parts of this chapter appear in the fol lowing conference proceedings: 

1. T j h a i , C , Tomlinson, M . , Horan, R., Ahmed, M . and Ambroze, M . (2006), "On the efficient code

words counting algori thm and the weight d is t r ibut ion of the binary quadratic double-circulant 

codes", i n Proceedings IEEE Information Theory Workshop, Chengdu, China, pp. 4 2 - 4 6 

2. T j h a i , C , Tomlinson, M . , Horan, R., Ahmed, M . and Ambroze, M . (2006), "Some results on 

•the weight distr ibutions of the binary double-circulant codes based on primes", i n Proceedings 
10th IEEE International Conference on Communication Systems, Singapore. 

5.1 Introduction 

Binary self-dual codes form an impor tant class of codes due to their powerful error-correcting ca

pabilities and their rich mathematical structure. As such, this fami ly of codes has been a subject 

of extensive research for many years. Much of this work is on their classification and the search 

for the extremal codes (Rains and Sloane; 1998). Many binary self-dual codes are codes w i t h the 

highest known m i n i m u m H a m m i n g distance. Recently, van D i j k et al . (2005) constructed two i n -

equivalent binary self-dual codes of length 160 tha t have higher m i n i m u m H a m m i n g distance than 

the previously known half-rate code of tha t length. 

Closely related to the self-dual codes are the double-circulant codes. Many good binary self-

dual codes can be constructed i n double-circulant form. A n interesting fami ly of binary, double-

circulant codes, which includes self-dual and formal ly self-dual codes, is the fami ly of codes based 

on primes. A classic paper for this fami ly was published by K a r l i n (1969) i n which double-circulant 

codes based on primes congruent to ± 1 and ± 3 modulo 8 were considered. Moore's (1976) PhD work 

investigated the class which is congruent to 3 modulo 8, and his work was later extended by Gul l iver 

and Senkevitch (1999) to longer codes. A n extensive discussion on these two types of circulant is 

also given by MacWill iams and Sloane (1977). The prime-based double-circulant codes can also be 

constructed over non binary fields, e.g. see Pless (1972) and Beenker (1984) for F3, and Gaborit 

(2002) for the generalisation to prime fields. 

This chapter considers the binary double-circulant codes based on primes, especially on their 

H a m m i n g weight distributions, and the remaining of this chapter is organised as follows. Sec

t ion 5.2 introduces the notation and gives a review of double-circulant codes based on primes con

gruent to ± 1 and ± 3 modulo 8. Section 5.3 describes the constriiction of double-circulant codes for 

these primes and Section 5.4 presents an improved algor i thm to compute.the m i n i m u m H a m m i n g 

distance and also the number of codewords of a given H a m m i n g weight for certain double-circulant 
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codes. The algori thm presented in this section requires the enumeration of less codewords than tha t 
of the commonly used technique (e.g. Gaborit et al.; 2005; van D i j k et al.; 2005). Section 5.5 con
siders the H a m m i n g weight dis t r ibut ion of the double-circulant codes based on primes. A method 
to provide an independent verification to the number of codewords of a given Hamming weight i n 
these double-circulant codes is also discussed in this section. I n the last section of this chapter, 
Section 5.6, a probabilistic method-based on its automorphism group, to determine the m i n i m u m 
Hamming distance of these double-circulant codes is described. 

Note that, since throughout this chapter, we consider Hamming space only, we shall omi t the 

word 'Hamming* when we refer to Hamming weight and distance. 

5.2 Background and Notation 

A code C is called self-dual i f C = C-*-, where C-̂  is the dual of C. There are two types of self-dual 

code: doubly-even or Type I I i f the weight of every codeword is divisible by 4; singly-even or Type I 

i f the weight of every codeword is divisible by 2. Furthermore, the code length of a Type I I code is 

divisible by 8. I n addit ion to self-dual codes, there also exists formal ly self-dual, abbreviated fsd, 

codes. A code is called fsd i f C 7̂  C-*- but ^ c ( - ) = ^c-^ (-)• A self-dual, or fsd, code is called extremal i f 

i ts m i n i m u m distance is the highest possible for the given parameters. The bound of the m i n i m u m 

distance of the extremal codes is (Rains and Sloane; 1998) 

< 4 j y + 4 + . (5.1) 

where 

- 2 i f C is Type-I w i t h n = 2,4, or 6, 

f = ^ 2, i f C is Type-I w i t h tt = 22 (mod 24), or (5.2) 

0, i f C is Type-I or Type-I I w i t h n ^ 22 (mod 24). 

For an fsd code, the m i n i m u m distance of the extremal case is upper-bounded by (Gaborit et a).; 

2005) 

+ 2. (5.3) 

W i t h this upper-bound, extremal fsd code only exists for n < 30 and n ^ 16 and n ^ 26 ( H u f f m a n and 

Pless; 2003). Databases of best-known, not necessary extremal, self-dual codes are given in Rains 

and Sloane (1998) and Gaborit and Otmani (2007). A table of binary self-dual double-circulant 

codes is also provided in Rains and Sloane (1998). 

As a class, double-circulant codes are [n, k] linear codes, where k = n /2 , whose generator mat r ix 

G consists of two circulant matrices. 

5.1 Definition (Circulant Matrix). A circulant mat r ix is a square mat r ix in which each row is a 

cyclic sh i f t of the adjacent row. I n addition, each column is also a cyclic sh i f t of the adjacent 

column and the number of non zeros per column is equal to those per row. 
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5.2. Background and Notation 

A circulant mat r ix is completely characterised by a polynomial formed by its first row, 

m - l 

1=0 

which is called the defining polynomial. Note tha t the algebra of polynomials modulo x"* - 1 is 

isomorphic to tha t of circulants (MacWill iams and Sloane; 1977). Let the polynomial r(a:) to have a 

max imum degree of in - 1, the corresponding circulant mat r ix R is an m x m square mat r ix of the 

form 

r(a;) (mod i ' " - 1) 

xr(x) (mod x'" - 1) 

R = 
x*r{x) (mod x"* - 1) 

(5.4) 

x^'-Wix) (mod a;"* - 1) J 

where the polynomial i n each row can be represented by an 771-dimensional vector, which contains 

the coefficients of the corresponding polynomial. 

Double-circulant codes can be put into two classes, namely pure, and bordered double-circulant 

codes, whose generator matrices Gp and Gb are shown in (5.5a) 

(5.5a) 

and (5.5b) 

1 . . . 1 a 

1 

Ik R 
; 

1 

(5.5b) 

respectively. Here, Ik is a fc-dimensional ident i ty matr ix , and o G { 0 , 1 } . 

Two binary linear codes, £ / and are equivalent i f there exists a permutat ion TT on the coor

dinates of the codewords which maps the codewords of jz/ onto codewords of ^ . These two codes 

shall be wr i t t en as ^ = 7r(£/). I f TT t ransforms C into itself, then i t is said tha t ir fixes the code, 

and the set of a l l permutations of this k i n d form the automorphism group of C, denoted as Aut(C). 

MacWil l iams and Sloane (1977) gives some necessary but not sufficient conditions on the equiva

lence of double-circulant codes, which are restated for convenience i n the lemma below. 
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5.1 Lemma, (cf (MacWill iams and Sloane; 1977, Problem 7, Ch. 16)) Let ssf and ^ be double-
cLrculant codes w i t h generator matrices [ / j t jA) and \Ik\B] respectively. Let the polynomials a{x) 
and b(x) be the def ining polynomials of A and B, The codes &/ and i^d are equivalent i f any of the 
fol lowing conditions holds: 

i) B = A ^ , or 

i i ) b(x) is the reciprocal of a(x), or 

i i i ) a{x)b{x) ~ 1 (mod x"* - 1 ) , or 

iv) 6(a;) = a{x^) where m and u are relatively prime. 

Proof. 

i ) I t can be clearly seen that b(x) ~ YT~o^ a^.r'""'. I t follows tha t 6 ( T ) = 7:(a(x)) where TT : z 

71} - i (mod 7n) and hence ,t / and .-Jf are equivalent. 

i i ) Given a polynomial a[x), i ts reciprocal polynomial can be wr i t t en as 'd(x) = J2i ~o^ aix"'"*"^ I t 

follows tha t d(x) = 7r(a(x)) where ;r : i -* 7n - i - 1 (mod in). 

i i i ) Consider the code .o/, since b{x) has degree less then m, i t can be one of the possible data 

patterns and in this case, the codeword of has the form |6 (x ) | l | . Clearly, this is a permuted 

codeword of 

iv) I f {u,in) = 1, then TT : z —• iu (mod 7n) is a permutation on { 0 , 1 , . . . , / / / - 1 } . So 6(x) = a ( . T " ) is 

i n the code 7r(,o''). • 

5.3 Code Construction 
Consider an [n, k,d\ pure double-circulant code, i t can be seen that for a given user message, rep

resented by a polynomial u(x) of degree at most A: - 1, a codeword of the double-circulant code has 

the form {u(x)\u{x)r(x) (mod x"^ - 1 ) ) . The defining polynomial r{x) characterises the resul t ing 

double-circulant code. Before the choices of r(x) is discussed, consider the fol lowing lemmas and 

corollary. 

5.2 Lemma, Let a{s) be a polynomial over F 2 of degree at most 771 - 1, i.e. a(x) = J^ilo^ where 

G { 0 , 1 } . The weight of the polynomial ( l - f3 ; )a ( j ; ) (mod x"* - 1), denoted by w t / / ( ( l - f T ) a ( T ) ) , is 

even. 

Proof. L e t u j = w t / / ( a (x ) ) = wt / /(ara(x)) and S = [i : O i+ imodm = Qi 7̂  0, 0 < z < //? - 1 } . 

w t / , ( ( l + x )a(x) ) = \vt„{a(x)) + wt / , (xa (x ) ) - 2|5| 

= 2 ( ^ . - | 5 | ) , 

which is even. • 
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6.3 Lemma, A n m x m circulant mat r ix R w i t h def ining polynomial r{x) is non-singular i f and only 

i f r(a;) is relatively pr ime to a;"* - 1. 

Proof, Suppose tha t r(3:) is relatively prime to x ' " - 1, i.e. (r(x),x"^ - 1) = 1. F rom the extended 

Euclid a lgor i thm, i t follows that , for some unique polynomials a(x) and b{x), r{x)a{x)-{-(x"^- l)b(x) = 

1, which is equivalent to T{x)a(x) = 1 (mod x*'^ - 1) and therefore r(x), under polynomial algebra 

modulo x"^ -1 (and hence R) is invertible, where r(x)~^ = a(x). Conversely, for non relatively prime 

cases, ( r ( x ) , x ' " - 1) = t{x), where t{x) ^ 1. This means r{x)~^ does not exists since r{x)a{x) = t{x) 

(mod x"* - 1) . • 

5 . i Corollary, From Lemma 5.3, 

i ) i f i t is non-singular, is an m x m circulant mat r ix w i t h def ining polynomial r ( x ) ~ ^ and 

i i ) the weight of r ( x ) or r ( x ) " * is odd. 

Proof, The proof for the first case is obvious f rom the proof of Lemma 5.3. For the second case, i f 

(1 + x ) I r (x ) (resp. (1 + x) I r ( x ) - » ) , then ( r ( x ) , x ' " - 1) = 1 + x(resp. ( r ( x ) - \ x ' " - 1) = 1 + x ) . By 

Lemma 5.2, this rules out the possibility of even weight def ining polynomial. Thus, w t / / ( r ( x ) ) (resp. 

wt / / ( r (x )~*) ) is necessary odd. • 

5,2 Definition, Let Q be a generator, of Fp where p be an odd prime, r = (mod p) is called a 

quadratic residue modulo p and so: is r ' € IFp for some integer i. Because the element a has 

(mult ipl icat ive) order p - 1 over Fp, r = has o r d e r ^ ( p - 1); A set of quadratic residue modulo/>, 

Q, and non quadratic residue modulo p, N, are defined as 

and 

Q - { r y , r ^ , r ' ^ = l } 
(5.6a) 

= {a^a^...,a^^..,a''-^a''-^ = l} . 

' ; j V . = { 7 i : V n G F p , 7i Q and n ^ 0 } . 

= .{nr, 7 i r ^ , . . . , nr\... , nr^, ii} (5.6b) 

respectively*. 

• I t is obvious that, if r € <?, r = Q*= for even e; and if n G N, n = for odd c. Hence, if n e N and r G Q, 
nr = a2»Q2j+» = € A^. Similarly, r r = o^'a^J = a^H+J) g Q and nn = a^i+i^aj+i = Q2(.+>+I) ^ Q 

Note that 

• 2 € C? if p = ±1 (mod 8). and 2 G if p = ± 3 (mod 8) 

• -1 G Q i f p = 1 (mod 8) o r p = - 3 (mod 8), and -1 G i f p s -1 (mod 8) a n d p = 3 (mod 8) 
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5.4 Lemma. Let p be an odd prime, then 

i ) p | 2 P - > - l , a n d 

i i ) the integer q for pq = 2^~^ - 1 is odd. 

Proof, From Format's l i t t l e theorem, i t is known tha t for any integer a and an odd prime p, a^"* = 1 

(mod p). This is equivalent to a^"^ - 1 = pq for some integer q. Let a = 2 , i t follows tha t 

2 P - 1 _ 1 

which is clearly odd since neither denominator nor numerator contains 2 as a factor. • 

5.5 Lemma, Let p be a prime and j{x) = 53f=o ^^^^ ' 

(1 -t- x)^"'"-' = l-\-j(x) mod (rcP - 1). 

Proof. The polynomial (1 + x)^** can be wr i t ten as 

1 + 3 ; 
2P- i_ i 

1=0 

From Lemma 5 .4, i t is known that the integer q = {2^ ^ - \)/p and is odd. I n terms o{ j{x), 

I Z i l o wr i t t en as follows 

2P- '_ i 
^ = l + a ; ( H - x + . . . + x P - ^ ) + 3 : P + * (1 +a: + . . . + 3:P-*) + . . . + 
t=o ' ^ ^ 

J(x) j ( x ) 

= 1 + X3{x){\ + xP) + a;2P+»j(3:)(l + a;P) + . . . -t- 3:(''-3)P+V(3:)(1 + a;") + a ; ( ^ - » P + > j ( x ) . 
V V ' 

Since (1 4- Z P ) (mod - 1) = 0 for binary polynomial, i t is clear tha t J{x) - 0 and 

2P->_i 
^ I * = 1 + 3;x(''-»)Pj(x) (mod - 1). 
i=0 
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5.5. Code Construction 

Because X^P (mod x** - 1) = 1, 

^ X * = 1 + xj{x) (mod x^ - \ ) 

= l + j ( x ) (mod x" - 1). 

I n the following, for the purpose of designing [2p,7j, d] pure double-circulant codes, the, choices 

of the def ining polynomial r(x) of prime degree only is considered. Let p = in be a prime, there 

are 2P polynomials ( including the zero polynomial) over F2 of degree at most p - 1. Let F denote 

the set of these polynomials, excluding the zero polynomial and the all-ones polynomial, denoted 

by j{x) = J^i~Q x\ The set F can spli t into 2^"* - 1 polynomials of odd weight and and 2""* - 1 

polynomials of even weight, denoted by Fi and F^ respectively. 

For p = ± 1 (mod 8), the polynomial a;'' - 1 = (1-f- a;) f l L i /«(^)» where the polynomials Ji{x) for 

1 < t < t and t > 2, have the same degree, say e. As a consequence, not a l l polynomials i n F are 

relat ively pr ime to xf" - 1. To design a [2p,p,d] pure double-circulant code, 1 + wt//(r(a;)) must be 

at least d and i f r(x) = j{x) = Yli=ifi{x), a [27;,7;,2) pure double-circulant code is obta ined- the 

m i n i m u m distance of 2 appears when u{x) = 1 + x. Another type of double-circulant construction, 

both pure and bordered, exists for these primes, see Section 5.3.1. 

The case for p = ± 3 (mod 8) is more interesting. For these primes, - 1 = (1 -t- x ) j ( x ) and 

as a result, the set Fi contains a l l binary polynomials which are relatively prime to X P - 1, and 

F2 contains al l binary polynomials which contain (1 + x) as a factor. The defining polynomial 7 ' (x) 

can then be chosen f rom F i , F2 or r(x) = j{x). L ike i n the previous prime case, the lat ter choice 

results i n a [2p, p, 2] double-circulant code and for other choices of r ( x ) the def ining polynomial can 

be constrained for a given m i n i m u m distance. 

For r ( x ) € Fi, i t is known tha t F i forms a mult ipl icat ive group of order | F i | = 2^"^ - 1 w i t h 

a generator a(x) and ident i ty 1. This means tha t a(x)' '^'l = 1, where | F i | is the smallest positive 

integer tha t satisfies this equality, and that r ( x ) may be represented as an integer power of a(x), 

tha t is r ( x ) = a(x) ' . The polynomial u(x)r(x) / 0 (mod x^ - 1) for any given u(x). I f wt / ,(u(x)) is 

odd, \vtH{u(x)r(x)) = wtH(a(a;)-''"*"'), hence i t is also odd, and the weight of the resul t ing codeword 

is even. Similarly, i f wt//(u(x)) is even, the weight of u{x)r(x) is even (see Lemma 5.2) and the 

resul t ing codeword weight is also even. Hence, for r{x) € F i , an even [2p, p, d\ pure double-circulant 

code is obtained. 

Note tha t F 2 also forms a mult ipl icat ive group of order I F 2 I = 2^"^ - 1. Let b(x) be a generator of 

F 2 , i t can be wr i t t en tha t 6(x) = ( H - x ) a ( x ) where a(x) is a generator of F i . Any element of F2 can be 

represented by some power of 6(x); for some integers i and j , 6(x)*6(x)-' = (( l - fx )a(x))*((H-x)a(x))- ' = 

( ( l + x)a(x))*+-' € F 2 . I t is known t h a t | F i | = IF2 I and a(x)l''2l = 1, hence 6(x)l''=l = ( (1 - t -x)a(x) ) ' ' ' ' ' = 

(1 + x ) ' ' ^ ' ' , which is equivalent to 1 + j{x) (mod x^ - 1) by Lemma 5.5. The polynomial 1 - f j{x) 

can be considered as the ident i ty of this mult ipl icat ive group since, for b{xy e F 2 , 6(x)-' ( l -f j(x)) = 

((1 + x ) a ( x ) H ( l + j ( x ) ) = ((1 + x)a{x)y + ((1 + x)aix))^j{x} = ((1 -f- x)a(x))-' (mod X P - 1) = fa(x)> 

(mod xP - 1). The polynomial r ( x ) can be represented as an integer power of 6(x), r ( x ) = 6(x)'. 

I f u{x) = j{x), the polynomial u(x)r{x) = i ( x ) ( ( l -f x)a(x))* = 0 (mod X P - 1) and the resul t ing 
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codeword is j(x), which has odd weight. For any other u(x)^ wtii{u(x)r{x)) is even and the resul t ing 

codeword has odd (resp. even) weight i f wt//(w(a:)) is odd (resp. even). Hence, for r{x) € F2, even 

and odd [2p, p, d] pure double-circulant codes can be constructed. 

A pure double-circulant self-dual code, which has the property that r{x)'^ = r{x~^} = ^(a;)~^ 

can only be constructed i f r{x) e Fi. I t is known tha t 2^"^ = 1 (mod p) for primes ± 3 (mod 8), 

and correspondingly 2^P~^^^^ - - 1 (mod p). Consider the self-dual case, i f r(x) = a{xy, r{x)'^ = 

a(3 :-M^ =a(x2*''""^')' = a(a:)^2(''-'»/> Since r(a:)-> = a( j ; ) -^ = a (x )2 ' '" ' -» -^ the equality 2 P - ^ - Z -

1 = ^(2P-^''2) is obtained, and i t follows tha t 

z — 
2"-^ - 1 

2[p-\)/2^l (5.7) 

This means tha t a{xy\ for 1 < j < \Fi\/z = 2^^-^^^^^ + 1, generates \2p,p,d] self-dual pure double-

circulant codes. Section 5.3.2 discusses more details of pure double-circulant codes for these primes. 

5.3.1 Double-Circulant Codes from Extended Quadratic Residue Codes 

The fol lowing is a summary of the extended QR codes as double-circulant codes (Kar l i n ; 1969; 

MacWiUiams and Sloane; 1977; Jenson; 1980). Binary QR codes are cyclic codes of length p over F2-

For a given p, there exists four QR codes: 

1- Qp, J^p which are equivalent and have dimension ^{p - 1), and 

2, Qp, A p̂ which are equivalent and have dimension ^{p + 1). 

The [/J -H 1, ^(p + l ) ,d ] extended quadratic residue code, denoted by Qp (resp. Afp), is obtained by 

annexing an overall par i ty check to Qp (resp. A '̂p). I f p = - 1 (mod 8), Qp (resp. JVp) is Type I I ; 

otherwise i t is fsd. 

I t is well-known that* Aut(Qp) contains the projective special l inear group denoted by P S L 2 ( p ) (MacWil l iams 

and Sloane; 1977). I f r is a generator of the cyclic group Q then a : i -* ri (mod p) is a member of 

PSL2 (p ) - Given n e N, the cycles of a can be wr i t t en as 

( o o ) ( / i , ; i r , n r 2 , . . . , n / ) ( l , r , r 2 , . . . , r 0 ( 0 ) (5.8) 

where £ = | ( p - 3). Due to this property, G , the generator mat r ix of Qp, can be arranged into 

circulants as shown i n (5.9) 

G = 

0 0 71 nr . . . /ir*~^ 77r' 1 r ... * r ' 0 

00 I 1 1 . . . 1 1 1 1 . . . 1 1 1 

p 0 1 

0 

L R 

1 (5.9) 

Pr'-' 0 1 

Pr' 0 1 

•Since Qp and jVJ, arc equivalent, considering either one is suflficient. 
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where L and R are ^{p- I) x ^(p- \) circulant matrices. The rows P,Pr,...,^r^ i n the above gener

ator mat r ix contain e/j(x),c^r(a;),. . ..epr^ix), where ei{x) = x'e(x) whose coordinates are arranged 

i n the order of (5.8). Note that, (5.9) can be transformed to (5,5b) as follows 

1 J 1 J J 1 1 

0^' L~' 
X 

0^ L R J '^ 0^ 

J + w ( L ^ ) J + w ( f i ^ ) 

w(Z,-^) ' r 
(5.10) 

where J is an all-ones vector and w(>l ) = [wt«(>lo) (mod 2 ) , w t / / ( > l i ) (mod 2 ) , . . . ) , Ai being the 

i t h row vector of mat r ix A. The mul t ip l ica t ion i n (5.10) assumes tha t i " * exists and fol lowing 

Corollary 5.1, wt//(/-^(a:)) = wt / / ( / (3; ) ) is odd. Therefore, (5.10) becomes 

G = 

J -H w ( K ^ ' ) 

1 

L-^R \ 

1 

(5.11) 

I n relation to (5.9), consider extended QR codes for primes 

1. p = Sm + 1, the idempotent e(x) = E n e N ^ " P e N. Following MacWil l iams and Sloane 

(1977, Theorem 24, Ch. 16), i t is known tha t e^r'(a;) where Pr' e JV, for 0 < i < contains 

2 / f t - f 1 quadratic residues modulo p ( including 0) and 2m - 1 non quadratic residues modulo p. 

As a consequence, wt//(r(a;)) is even, imply ing W{R'^) = 0 and r ( . T ) is not invert ible (cf Corol

lary 5.1); and wt / / ( / (x) ) is odd and/ (x) may be invert ible over polynomial modulo a;5(p-*)-l (cf 

Corollary 5.1). Furthermore, referr ing to (5.5b)i i t i s c l e a r t h a t o = ^ ( p + l ) = 4771+1 = 1 mod 2. 

2. p = 8m - 1, the idempotent e(a;) = 1 + E „ e ^ ^ " P ^ Q- Following MacWil l iams and 

Sloane (1977, Theorem 24, Ch, 16), assuming tha t there exists a set S containing 0 and 4 7 / i - 1 

non quadratic residues modulo 7?, the set /3 + 5 contains 2m -t-1 quadratic residues modulo 

p ( including 0) and 2m - 1 non quadratic residues modulo p. I t follows tha t epri(^) where 

pr* e QyToTO < i < t, contains 2in quadratic residues modulo p (excluding 0), imp ly ing tha t R 

is singular (cf. Corollary 5.1); and 2m - 1 non quadratic residues modulo p, imp ly ing L " * may 

exist (cf. Corollary 5.1). Furthermore, w{R^) = 0 and referr ing to (5.5b), i t can be seen tha t 

a = ^(7?-H) = 4m = 0 mod 2. 

For many Qp, L is invert ible and K a r i i n (1969) has shown tha t p = 73,97,127,137,241 are the 

known cases where the canonical form (5.5b) cannot be obtained. Consider the case for p = 73, w i t h 

P~beN, the def ining polynomial of the l e f t circulant l(x) is given by 

l{x) = + a;̂  + x-̂  + x*̂  + x " + x'^ + x^« + x^«+ 

The polynomial l{x) contains some irreducible factors of X S ^ P - * ) - 1 = X ^ ° - 1, i.e. (l(x),x^^ - 1) = 

1 - f x^ + x'*, and hence i t is not invertible. I n addit ion to fo rm (5.5b), G can also be transformed 

to (5.5a), and Jenson (1980) has shown that , for 7 < 7; < 199, except p = 89,167, the canonical 
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form (5.5a) exists. 

5.3.2 Pure Double-Circulant Codes for Primes ± 3 Modulo 8 

Recall that Fx is a mult ipl icat ive group of order 2^"^ - 1 containing a l l polynomials of odd weight 

(excluding the a l l ones polynomial) of degree at most p - 1, where p is a prime. I t is assumed tha t 

a(3;) is a generator of F i . For p = ± 3 (mod 8), the fol lowing lemma is obtained. 

5.6 Lemma, For p = ± 3 (mod 8), le t the polynomials q{x) = E f ^ Q and n{x) = ^^^^ x\ Self-dual 

pure double-circulant codes w i t h r(x) = q{x) or r ( x ) = 7i(a;) exist i f and only i f p = 3 (mod 8). 

Proof, Consider r{x) = q[x), for p = ± 3 (mod 8), 2 e iV and hence q{x)'^ = E i e Q ^ ^ ' = " ( ^ ) -

known tha t 1 + q{x) + n{x) = j{x), therefore q{x)^ = q(x)'^q{x) = n{x)q(x) = (1 + q{x) + j{x))q{x) = 

q{x)-\-n{x) + j ( x ) = 1, i.e. q(x)^ = n{x) = q{x)~K The polynomial q{x)'^ = q(x~^) = J^i^QX~' and for 

self-dual codes, the condition q{x)'^ = 7t(x) must be satisfied. I f p = - 3 (mod 8), -I e Q and thus 

^(a:)'^ = 9(3:). On the other hand, - 1 € iV i f p = 3 (mod 8) and thus q{x)'^^ = n(x). For r{x) = 7 I ( . T ) , 

the same arguments follow. • 

Let denote a [2p,p,d] pure double-circulant code f o r p = ± 3 (mod 8) The properties of can 

be summarised as follows: 

1. For p = 3 (mod 8), since q{x)^ = 1 and aix)^""-^ = 1, q{x) = a(3:)(2'*"'-0/3 ^^d q(xf = 

a(3:)f^''~^J^^. There are two fu l l - rank generator matrices w i t h mutua l ly dis joint informat ion 

sets associated w i t h for these primes. Let G i be a reduced echelon generator mat r ix of 

^ p , which has the form of (5.5a) w i t h R = B where B is a circulant mat r ix w i t h def in ing 

polynomial b{x) = q{x). The other fu l l - rank generator matr ix G2 can be obtained as follows 

(5.12) 

The self-duality of this pure double-circulant code is obvious f rom G 2 -

2. For p = - 3 (mod 8), (p - l ) / 2 is even and hence neither q{x) nor n{x) is invert ible, which 

means tha t i f this polynomial was chosen as the defining polynomial for ^ p , there exists only 

one ftdl-rank generator matr ix . However, either 1 + q{x) (resp. 1 + n{x)) is invert ible and the 

inverse is 1 -H n(x) (resp. 1 + q(x))y i.e. 

(1 + q(x})(l + n(x)) = 1 + q{x) + 7i{x) + q{x)7i{x) 

= 1 + q(x) + n(x) + q{x){l -J- j{x) + q(x)) 

= 1 -t- q(x) + n{x) + q{x) + q{x)j{x) + q ( x f , 

and since q{x)j{x) = 0 and q(x)^ = n(x) under polynomial modulo a;P - 1, i t follows tha t 

{1 + q(x)){l + n(x)) = 1 (mod x^ - 1). 

106 



5.3, Code Construction 

Let Gi be the first reduced echelon generator matr ix , which has the fo rm of (5.5a) where 

R ~ Ip + Q. The other fu l l - rank generator mat r ix w i t h dis joint informations sets G2 can be 

obtained as follows 

(5.13) 

Since - 1 € Q for this prime, (/p+Q)*^ = / p + Q imply ing tha t the \2p,p,d] pure double-circulant 
code is fsd, i.e. the generator mat r ix of is given by 

A bordered double-circulant construction of these pr imes-commonly known as the quadratic 
double-circulant construction, also exists, see Section 5.3.3. 

5.3.3 Quadratic Double-Circulant Codes 

Let p be a prime tha t is congruent to ± 3 modulo 8. A [2{p l),p-\- \,d] binary quadratic double-

circulant code, denoted by ^ p , can be constructed using the def ining polynomial 

6(x) = 
1 + q(x) i f p = 3 (mod 8), and 

q(x) i f p = - 3 (mod 8) 
(5.14) 

where q{x) = J^i^Q a;*. Following MacWill iams and Sloane (1977), the generator mat r ix G of ^ p is 

G = 

IQ . . . /p_J To . . . Tp-I 

1 0 

1 0 

B 

0 0 . . . 0 1 1 . . . 1 

(5.15) 

which is, i f the last row of G is rearranged as the first row, the columns indexed by and r^o 
are rearranged as the last and the first columns respectively, equivalent to (5.5b) w i t h Q = 0 and 

A: = p + 1. Let j{x) = 1 + 3; - f .T^ + . . . + x P " ^ the fol lowing are some properties of ̂ p ( K a r l i n ; 1969): 

1. f o r p = 3 (mod 8), b{xf = {l+q{x})Hl+q(x)) = {l-\-n{x))(\-\-q(x)) = l + i ( a ; ) . since^(a;)^ = n(x) 
{2 e N for this prime) and q{x)j(x) = n{x)j{x) = j{x) (wt/y(g(a;)) = wt//(n(a:)) is odd). Also, 

( 6 ( x ) + j ( x ) ) 3 = (l-^g{x)-^j(x))Hl+q(x)+j{x)) = 7 i ( x ) 2 ( l + g ( a : ) + j ( x ) ) = q{x)-\-n(x)+j(x) = 1 

because n{x)'^ = q(x). Since - 1 e N and b{x)'^ = 1 + E I G Q ^ " ' = 1 + follows tha t 

b(x)b{x)'^ = (1 + + '^(^)) = 1 + j{x). There are two generator fu l l - r ank matrices w i t h 

disjoint informat ion sets for ̂ p . This is because, although b{x) has no inverse, b{x)-^j{x) does 

and the inverse being (6(a:) + j ( x ) ) ^ . Let Gi has the form of (5.5b) where R = B, the other 
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fu l l - rank generator mat r ix can be obtained as follows 

G , = 

I 1 . . . 1 0 1 . . . 1 1 0 . . . 0 

0 1 0 
G i = 

'• B ^ ; 

0 1 0 

(5.16) 

I t is obvious tha t G 2 is identical to the generator mat r ix of and hence, i t is self-dual; 

2. for p = - 3 (mod 8), b(xf = n(x)q(x) = (1 + j{x) + q(x))q(x) = 1 + j(x) since q{x)^ = n{x) 

{2 ^ N for this prime) and q(x)j(x) = n(x)j(x) = 0 {\vtf{{q{x)} = wt//(7i(rc)) is even). Also, 

{b[xHj(x)f = {q(x)-\-j{x)ni^n(x)) = . ;( .;)2+<7(x)2u(x)+j(x)2+i(x)2n(x) = n(x)^q{xHj{x) = 

1 because n(x)^ = q{x). Since - 1 6 Q and b{x)'^ = E . e Q ^ ' " * = H^)' follows tha t is fsd, 

i.e. the generator mat r ix of is given by ^ p is given by 

G^ = 

0 1 . . . 1 1 0 . . . 0 

1 0 

; B ; 

1 0 

Since {b(x) + j(x))'^ = (b{x) + j(x))^, there exists fu l l - rank two generator matrices of dis joint 

informat ion sets for ^ p . Let G i has the form of (5.5b) where R = B, the other fu l l - r ank 

generator mat r ix G 2 can be obtained as follows 

G 2 = 

1 1 . . . 1 0 1 . . . 1 1 0 . . . 0 

0 1 0 
• G , = 

: B^ : : 
0 1 0 

(5.17) 

Codes of the form ^ p fo rm an interesting fami ly of double-circulant codes. I n terms of self-dual 

codes, the fami ly contains the longest extremal Type I I code known, n = 136. Moreover, is the 

binary image of the extended QR code over F4 (Kar l in et al.; 1978). 

The [p + 1, ^(p H- l),d] double-circulant codes for p = ± 1 (mod 8) is fixed by PSL2(p), see Sec

tion 5.3.1. This linear group PSL2(p) is generated by the set of a l l permutations to the coordinates 

( 0 0 , 0 , 1 , . . . , p - 1) of the form 

ay-\-b 
cy + d 

(5.18) 

where a,6,c,d e Fp, ad - be = I, y € FpU { 0 0 } and i t is assumed tha t ±~ = 00 and ± ^ = 0 in the 

ari thmetic operations. 
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I t is known f rom MacWill iams and Sloane (1977) tha t this form of permutation is generated by 

fol lowing transformations 

y - 2 / + i 

y-*^^y (5.19) 
1 

where a is a p r imi t ive element of Fp. I n fact, V is redundant since i t can be obtained f rom 5 and T, 

1. e. 

V = TS^'TS^TS'' (5.20) 

f o r / f = a-^ € F p ^ 

The linear group P S L 2 ( p ) fixes not only the [/; + 1, ^(p -H l),d] binary double-circulant codes, for 

p = ± 1 (mod 8), but also the [2(p-t- l ) , p + \,d\ binary quadratic double-circulant codes, as shown as 

follows. Consider the coordinates (oo ,0,1,. . . ,p - 1) of a circulant, the t ransformation 5 leaves the 

coordinate oo invar iant and introduces a cyclic sh i f t to the rest of the coordinates and hence 5 fixes 

a circulant. Let Ri and Li denote the i t h row of the right and le f t circulants of (5.15) respectively ( i t 

is assumed tha t the index starts w i t h 0), J and J' denote the last row of the right and l e f t circulant 

of (5.15) respectively. 

Consider the primes p = 87/1 + 3, / io = (o | 1 + Y.i^Q i ' * ) - Let Ci and / j , for some integers i and 

j , be even and odd integers respectively. I f i € Q, = - 1 • OP"VO°' = o^' • â ^̂ "*" € N since 

- 1 e iV for these primes. Therefore, the t ransformation T interchanges residues to non residues 

and vice versa. I n addition, i t is also known tha t T interchanges coordinates 00 and 0. Apply ing 

t ransformation T to i^o, T(Ro), results i n 

^ ( i ^ o ) = f l l E ^ ' l =Ro-¥J. 
\ J 

Similarly, for the first row of L , which has 1 at coordinates 00 and 0 only, i.e. i^o = (1 I 1) 

T{Lo) = Lo + J'. 

Let 5 e Q and let the set Q = Q U { 0 } , Rs=[o\ Zi^^ x"^') and T ( j ^ . ^ ^ x'+*^ = ^ . ^ ^ a-^/(-+*). 

Following MacWil l iams and Sloane (1977, Theorem 24, Ch. 16), i t is known tha t the exponents of 

HigQ 3;*+' contain 2m - f 1 residues and 2m + 1 non residues. Note tha t s + i produces no 0 since both 

2, s G Q§. I t follows tha t - l / ( s + z) contains 277H-1 non residues and 27u+ 1 residues. Now consider 

R-i/a = (0 I ] C i 6 < 5 ^ * ^ ~ contains 0^, 277i residues and 27/1-I-1 non residues. I t is possible 

t r 5 « r 5 ' ' r 5 < > ( y ) = TS°rS^'T{y + a) = r 5 ° r S ' ' ( - y - ' +a) = TS^'T (^--^ + = T S ^ T ( ^ w t » f ; - ' ^ = 

a^y = V{y). 

^Consider a prime p = ± 3 (mod 8), 9 € Q and an integer a where (a, p) = 1. In order for ^ + a = 0 to happen, a = —q. 
The integer a is a residue if p = 8m — 3 and a non residue If p = 8m + 3. 

^Thi8 is because all t € Q are considered and 1/s € Q. 
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to wri te - l / ( . 5 + i) as 

i / s I _ 1 

.S + l S + t 5 S 

Let / c Q be a set of al l residues such tha t for a l l z € / , z - 1/s € N . I f - l / ( s + i ) e N, z eQ and 

i t can be seen tha t z must belong to / such tha t z - 1/s € N. This means these non residues cancel 

each other i n T(Rs) + R-i/a- On the other hand, i f - l / ( s •\- i) e z e N and i t is obvious tha t 

2 - 1/s 7̂  2 - 1/5 for a l l I € Q, imply ing tha t al l 27/1+ 1 residues in T(Rs) are disjoint f rom all 2//j + 1 

residues ( including 0) i n R-i/s- Therefore, + R.^/s = (o | E ie (5^0 ' 

Similarly, T(La) = (O | l-hxr^^") and L _ i / , = ( l | x " * / * ) , which means 

r ( X , ) = L _ j ; , + Lo. 

Let t e N, i^t = (0 I EiGQ ^ ' • ^ ' ) and T (Ei€Q ^^^') = Eigg •'c"̂ *̂̂ "̂ '*- I t is known tha t i + z contains 

0, 2771 residues and 2m -H 1 non residues (MacWill iams and Sloane; 1977, Theorem 24, Ch. 16), and 

correspondingly - l / ( i + i ) contains 00, 2777. non residues and 2771+I residues. As before, now consider 

R-i/t = (0 I EteQ^*"^^')- There are 2777+ 1 residues (excluding0) and 2777.+ I non residues in i - 1 / i , 

and let / ' c Q be a set of al l residues such that, for all i € i - \/t e Q. As before, i t is possible 

to wr i te - l / { t + i ) as 2 - 1/t , where z = {i/t)/{t + i). I f - l / ( i + z) € Q, 2 € / ' and hence the 2771 + 1 

residues from - l / ( t + i) are identical to those f rom i - \ / t . I f - ! / ( £ + i ) 6 iV, 2 6 N and hence al l 

of the 2m non residues o f - l / ( £ + i) are disjoint f rom all 2777 + 1 non residues of i - 1//,. Therefore, 

r ( R O + -R-iA = (l|EieJV^0>i-e-

T(Rt) = R.i/i + Ro-\-J. 

Similarly, T(Li) = (O | 1 + x-»/*) and L_i/t = ( l I x " * ^ ' ) , which means 

For primes p = 8m -3,Ro=(o\ E.eQ and since - 1 € Q, - l / t € Q for i e Q. Thus, 

/ \ 

\ »eo / 

Similar ly for LQ, which contains 1 at coordinates 0 and 00, 

T(Lo) = Lo. 

Consider Rs = {o\ EieQ^""*"*)' ^ ^ ^ ' ^(Eieo^*"^*) = Ei€Q Th^^e are 0 (when 
t = - s G Q), 2m - 2 residues and 277i - 1 non residues in the set s + i (MacWill iams and Sloane; 
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1977, Theorem 24, Ch. 16). Correspondingly, - l / ( s + i ) = z - i/s, where z = (i/s)/(s + i ) , contains 

00, 2 m - 2 residues and 2 m - 1 non residues. Now consider R-\js = I Z^igg the set i - 1/s 

contains 0 (when i = l / s e Q), 2m. - 2 residues and 2m. - 1 non residues. Let / c Q be a set of al l 

residues such tha t for al l i e I , i - l / s e Q. I f - l / ( s + i) G Q then z-X/s G Q which means z 6 Q and 

z must belong to / . This means a l l 2J/I - 2 residues of - l / ( s -t- i) and those of i - 1/s are identical. On 

the contrary, i f - 1 / ( 5 + i ) e N,z e N and this means e - I / 5 i - 1/s for a l l i e Q, and therefore al l 

non residues i n - l / ( s + i ) and i -1 / s are mutua l ly disjoint. Thus, T(Rs)-\-R^i/s = ( l | 1 + J2ie^'^')^ 

1. e. 

r{Rs) = R.i/s + R^-\-J-

Similarly, T(Ls) = (O | 1 + a:"*^*), and this is equivalent to 

T{L,) = L.,/,-\-Lo-\-J'. 

For t G yV, H( = (0 I i : i g Q x ' + » ) and T{J^i^Qx'+^) = Zi&QX-^/^'+^l Following MacWil l iams and 

Sloane (1977, Theorem 24, Ch. 16), there are 2m - 1 residues and 2m - 1 non residues in the 

set £ + i and the same distr ibutions are contained in the set - l / { t + i). Considering R-i/i = 

(p I 5Zi6Q^*~*^*)' there are 2 m - 1 residues and 27M-1 non residues in i - l / £ . Rewr i t ing - l / ( / , + i ) = 

z - l / t , for z = ( i / £ ) / ( i + i ) . and le t t ing / ' c Q be a set of al l residues such tha t for al l i 6 / ' , i - l / t G yV, 

i t is known tha t i f - l / ( i + i ) G jV then z - l / t e N which means tha t z e Q and z must belong to 

Hence, the non residues in i - l / t and - l / { t + i) are identical. I f - \ / { t 4- i ) G Q, however, z e N 

and for al l I G Q, z - 1/i 2 - l / t , imply ing tha t the residues in -l/(t-\- i) and i - l / t are mutua l ly 

disjoint. Thus, T{Rt)-hR,i/t = (o | Eieg^*)' 

T{Rt) = R.i/t-\-R<i. 

Similarly, T(Lt) = (O | 1 + x - * / * ) , and equivalently 

r ( L ( ) = L _ i / t + Lo. 

The effect T" to the circulants are summarised as follows 

r for p = 3 (mod 8) for p = - 3 (mod 8) 

T{R<i) Ro-\-J Ro 

T{Rs) R-X/S + RQ R-i/s-^Ro-i-J 
T{Rt) R.x/t-\-Ro-\-J R-i/t + ^ 

nio) Lo 
Xz-i/fl + Lo L^l/a + LQ -\- J' 

L _ i / ( -\- Lo-\- J' 

where s G Q and t G A .̂ This shows that , for p = ± 3 (mod 8), the t ransformation T is a l inear 

combination of at most three rows of the circulant and hence i t fixes the circulant. This establishes 

the fol lowing theorem on Au t (^p) (MacWill iams and Sloane; 1977; Gaborit; 2002). 
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5.1 Theorem, The automorphism group of the [2(p + l ) ,p + \,d\ binary quadratic double-circulant 

codes contains PSL2(p) applied simultaneously to both circulants. 

The knowledge of A u t ( ^ p } can be exploited to deduce the modular congruence weight d is t r ibu

tions of ^ p as shown in Section 5.5. 

5.4 Evaluation of the Number of Codewords of Given Weight 
and the Minimum Distance: A More Efficient Approach 

I n Chapter 4, algorithms to compute the m i n i m u m distance of a binary Hnear code, which can be 

easily modified to count the number of codewords of a given weight, are described. I f the code of 

interest is not cyclic, the Zimmermann's (1996) a lgori thm is used. Assuming the code rate of the 

code is a ha l f and its generator mat r ix contains two mutua l ly disjoint informat ion sets, each of rank 

k (the code dimension), Zimmermann*s (1996) a lgor i thm requires enumeration of 

U7/2-1 

codewords i n order to count the number of codewords of weight w. Here, i t is shown tha t a more 

efficient approach exists for fsd double-circulant codes for p = - 3 (mod 8) and self-dual double-

circulant codes. This approach applies to both pure and bordered double-circulant cases. 

5.7 Lemma, Let T'„i(x) be a set of binary polynomials w i t h degree at most m. Le t Ui{x),Vi(x) € 

rj t_i(a;) , for i = 1,2; and c{x)yf(x) e T/:_2(a;). The number of weight w codewords of the forms 

ci(a;) =,(ui(a;)|?;i(a;))'and C2(a;) = (v2(a:)|u2W) are equal, where 

i ) for selfrdual piire double-circulant codes, ^2(2;) = u\(x)'^ and V2(x) = vi{x)'^; 

. i i ) for self-dual bordered double-circulant,codes, ui(x) = (c|e(a;)), vi{x) = (7 |/(a;)), U2(x) = 

. {e\e(x)T) and V2(x) = ij\f{x)'^) where 7 = wt//(e(a;)) (mod 2); 

ui) for fsd pure double-circulant codes (p.= - 3 (mod 8)), U2{x) =.ui{x)'^ and V2{x) = vi(x)^; 

iv ) for fsd bordered double-circulant codes —3 (mod 8)), ui{x) = (€\e{x)), vi(x) = (7 |/(a;)), 

U2(x)'=i "(e|e(x)2), i;2(a:) = (7 |/(a;)2) where^7 = wt//(e(a:)) (mod 2). 

Proof, 

i ) Let G i = (/fclH) and G2 = [^^l-Z^fc] be the two fu l l - rank generator matrices w i t h mutua l ly 

disjoint informat ion sets of a self-dual pure double-circulant code. Assume tha t r(x) and 

r(x)'^ are the def ining polynomials of d and G2 respectively. Given ui(x) as an input , 

G i produces a codeword ci(a;) = {ui(x)\vi{x)), where vi{x) = ui{x)r(x). Another codeword 

C2(x) can be obtained f rom G2 by using ui{x}'^ as an input , C2(x) = {vi{x)'^\ui{x)'^), where 

vi(x)'^ = ui{x)'^^r(x)'^ = (ui(x)r{x))'^. Since the weight of a polynomial and tha t of i ts trans-
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pose are equal, for a given polynomial of degree at most k - l , there exists two dist inct code

words of the same weight. 

i i ) Let G i , given by (5.5b), and G2 be two fu l l - rank generator matrices w i t h pairwise dis joint 

informat ion sets, of bordered self-dual double-circulant codes. I t is assumed tha t the form 

of G2 is identical to tha t given by (5.16) w i t h R^ = B'^. Let f { x ) = e (x)r (x) , consider the 

fol lowing cases: 

(a) e = 0 and wt//(e(x)) is odd, Gi produces a codeword 

c,(x) = ( 0 | e ( x ) | l | / ( x ) ) . 

Apply ing (O | eCx)* )̂ as an informat ion vector to G2 yields another codeword 

C2(x) = (1 I e(x)^r(x) '^ | 0 | e ( x f ) = ( l | f { x f \ 0 | e { x f ) . 

(b) e = 1 and wt/ /(e(x)) is odd, Gi produces 

c»(x) = ( l | e ( x ) | l | / ( x ) + j ( x ) ) . 

Apply ing ( l | e(x)^) as an informat ion vector to G2, a codeword C2 (x) , which has the fo rm 

C2{x) = (1 I e(x)'^V(x)^ + j(x) I 1 I e { x f ) = ( l | f { x f + j(x) \ 1 | e { x f ) , 

is obtained. 

(c) c — 0 and wt/ /(e(x)) is even, Gi produces a codeword 

c i (x ) = ( 0 | e ( x ) | 0 | / ( x ) ) . 

Apply ing (O | c (x)^) as an informat ion vector to G2, another codeword 

C2(x) =• (0 I e { x f r { x ) ' ' \ 0 | e(x) '0 = (O | f ( x f \ 0 | c { x ) ' ) 

is produced. 
(d) € = 1 and wt/ /(e(x)) is even, G i produces 

c i (x) = ( l | e ( x ) | 0 | / ( x ) + j ( x ) ) . 

Apply ing ( l | e(x)'^) as an informat ion vector to G2 yields a codeword C2(x) which has the 

form 

C2(x) = (0 I e { x f r { x f - ^ j { x ) \ 1 | e(x)^') = (O | / ( x ) ^ + i ( x ) | 1 | e ( x ) ^ ) . 

I t is clear tha t i n a l l cases, wtH(c i (x) ) = wt//(c2(x)) since \ v t f f ( v { x ) ) = \vtH{v{x)'^) and 

wt//(7;(x) + j{x)) = wt/ /(u(x) '^ + j{x)) for some polynomial t;(x). This means tha t given an 

informat ion vector, there always exists two dist inct codewords of the same weight. 
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i i i ) Let Gi, given by (5.5a) w i t h R - Ip-^Qy and G2, given by (5.13), be two fu l l - rank generator 

matrices w i t h pairwise disjoint informat ion sets, of pure fsd double-circulant codes for p = - 3 

(mod 8). Given ux(x) as input , Gi produces a codeword c\(x) - (u\(x)\v\{x)), where v\(x) = 

ux[x){l •¥q{x)), where as G2 produces a codeword C2(x) = (v2(x)\u2(x)), where U2(ii:) = ui(xy 

andi;2(x) = ui(x)^{l-\-n{x)) = tiiix^il+q(x))^ = viix^. Since the weight of a polynomial and 

tha t of i ts square are the same over F2, the proof follows. 

iv) Let Gi, given by (5.5b) w i t h B = 71, and G2, given by (5.17), be two fu l l - r ank generator 

matrices w i t h pairwise disjoint informat ion sets, of bordered fsd double-circulant codes for 

p = - 3 (mod 8). Let f { x ) = e(x)b{x), consider the fol lowing cases: 

(a) e = 0 and wt//(e(a;)) is odd, Gi produces a codeword 

cx(x) = { 0 \ e { x ) \ l \ f ( x ) ) . 

Apply ing (O | e{xy) as an informat ion vector to G2, another codeword 

C2{x) = (1 I e{xyn(x) \ 0 | e { x f ) = ( l | f ( x f \ 0 | e i x f ) 

since eix^nix) = e(a:)^6(x)2 = /(rc)^, is obtained. 

(b) e = 1 and \vtH{e{x)) is odd, G i produces 

cx{x) = { l \ e { x ) \ l \ f { x ) + j { x ) ) . 

Apply ing ( l | e(a;)^) as an informat ion vector to G2 yields a codeword C2{x) which can be 

wr i t t en as 

C2(x) = (1 I e{xfn(x)-i-j(x) | 1 | e i x f ) = ( l | f ( x f + j ( x ) \ I \ e { x f ) . 

(c) e = 0 and wt//(e(x)) is even, Gi produces a codeword 

c,(x) = ( 0 | e ( a : ) | 0 | / ( : c ) ) . 

Apply ing (O | e^x)"^) as an informat ion vector to G2, another codeword 

C2{x) = (0 I e(x)hi{x) I 0 I e { x f ) = (O | f { x f \ 0 | e(x)2) 

is produced. 

(d) € = 1 and wtH(e(a:)) is even, Gi produces 

c,{x) = { l \ c { x ) \ 0 \ f { x ) + j ( x ) ) . 

Apply ing ( l | e{x)'^) as an informat ion vector to G2 yields a codeword C2{x) which can be 

wr i t t en as 

C2(x) = (0 I e{x)Mx) + j ( ^ ) I 1 I e(x)2) = (0 | / { x f + j(x) \ I \ e ( x f ) . 
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I t is clear tha t i n al l cases, wt / / ( c i (x ) ) = wt//(c2(a;)) since wt//(w(a:)) = wt / / (v(x)^) and wt//(?;(x)+ 
j(x)) = wt//(u(a:)^ j(a;)) for some polynomial v(x). This means tha t given an informat ion vec
tor, there always exists two dist inct codewords of the same weight. • 

From Lemma 5.7, i t follows that , i n order to count the number of codewords of weight tu, only 

w/2 

codewords are required to be enumerated and i f A^j denotes the number of codewords of weight tw, 

w / 2 - l 

^tu = ati;/2 + 2 ^ a,-, (5.21) 
. i = l 

where ai is the number of weight tu codewords which have i non zeros in the first k coordinates. 

Similarly, the commonly used method to compute the m i n i m u m distance of half-rate codes w i t h 
two fu l l - r ank generator matrices of mutua l ly dis joint informat ion sets (e.g. van D i j k et al.; 2005), 
assuming tha t d is the m i n i m u m distance of the code, as many as 

d/2-l 

- s (") 
codewords are required to be enumerated. Following Lemma 5.7, only 5/2 codewords are required 
for ^ p and ^ p for p = - 3 (mod 8), and self-dual double-circulant codes. Note tha t the bound d/2 - 1 
may be improved for singly- and doubly-even codes, but a consideration for the general cases is 
given here. 

5.5 Weight Distributions 

The automorphism group of both [yj + l , ^ ( p + l ) , r f ] extended QR and (2(p-h l ) , p + l,d\ quadratic 
double-circulant codes contains the projective special l inear group, PSL2(p) . Let W be a subgroup of 
the automorphism group of a linear code, the number of codewords of weight i , denoted by Ai, can 
be categorised into two classes: 

1. a class of weight i codewords which are invar ian t under some element of and 

2. a class of weight i codewords which forms an orbi t of size the order of H. I n the other 
words, i f c is a codeword of this class, applying a l l elements of H to c, \H\ dist inct codewords 
are obtained. ••• 

Thus, Ai may be wr i t t en in terms of congruence as follows 

Ai-ni-\n\-,Am, ^5 22) 
= Ai(n) (mod \n\) 
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where ^ i ( ^ ) is the number of codewords of weight i fixed by some element of 7 .̂ This was or iginal ly 

shown i n Mykke l tve i t et al . (1972), where i t was applied to extended QR codes for primes 97 and 

103. 

5.5.1 The Number of Codewords of a Given Weight in Quadratic 
Double-Circulant Codes 

For Sp, we shall choose H = VSh2{pl which has order \n\ = ^pip"^ ~ 1). Let the mat r ix J' 

represent an element of PSL2(p), see (5.18). Since \7i\ can be factorised as \H\ = Ylj 9 '̂ . where qj is a 

prime and ej is some integer, Ai{H) (mod |7i|) can be obtained by applying the Chinese-Remainder-

Theorem to Ai(Sg^) (mod Qj') for all qj tha t divides where Sqj is the Sylow-r/j-subgroup of I n 

order to compute ^4,(5,^ ), a subcode of which is invar iant under 5̂ ^ needs to be obtained in the 

first place. This invar ian t subcode, in general, has a considerably smaller dimension than ^p , and 

hence its weight d is t r ibut ion can be easily obtained. 

For each odd prime qj, Sq. is a cyclic group which can be generated by some [° J] e PSh2{p) 

of order q^. Because 5,^ is cyclic, i t is s t raightforward to obtain the invar iant subcode, f rom which 

Ai(Sq^) can be computed. 

On the other hand, the case ofqj=2 is more complicated. For qj = 2, S2 is a dihedral group of 

order 2"*+\ where 771+1 is the maximum power of 2 tha t divides {HI (Burnside; 1955). For = Sin±3, 

i t is known tha t 

\n\ = i ( 8 / / i ± 3) ((8m ± 3f - I ) =2^ {64m^ ± 72m'^ + 2677f ± 3) , 

which shows tha t the highest power of 2 tha t divides \H\ is 2 {m = 1). Following Bumside (1955), 

there are 2"* + 1 subgroups of order 2 i n 52, namely 

H2^{hP], 

G« = { 1 , T } , and 

Gl = {l,PT}, 

where P,T € PSL2(p) , P^ = = i and TPT'^ = P-\ Let T = which has order 2. I t 

can be shown tha t any order 2 permutation, P = [" S]. constraint 6 = c is imposed, a = - d is 

obtained. A l l these subgroups, however, are conjugates in PSL2(p) (Burnside; 1955) and therefore, 

the subcodes fixed by G?, G^ and H2 have identical weight distr ibutions and considering any of 

them, say G§, is sufficient. 

Apar t f rom 2"* + 1 subgroups of order 2, 52 also contains a cyclic subgroup of order 4, 2"*"^ non 

cyclic subgroups of order 4, and subgroups of order 2^ for j > 3. Following Mykke l tve i t et al. (1972), 

only the subgroups of order 2 and the non cyclic subgroups of order 4 tha t make contributions 

towards ^^(52). For p = ± 3 (mod 8), there is only one non cyclic subgroup of order 4, denoted by G4, 

which contains, apart f rom an identity, three permutations of order 2 (Bumside; 1955), i.e. a K l e i n 

4 group, 

G4 = { i ,P ,T,pr} . 
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Having obtained Ai{G^) and Ai{G4), fol lowing the argument in Mykke l tve i t et al . (1972), the num

ber of codewords of weight i tha t are fixed by some element of S2 is given by 

Ai(S2) = 'Mi{G^2) - ^MG^) (mod 4). (5.23) 

I n summary, i n order to deduce the modular congruence of the number of weight i codewords in 

^ p , i t is sufficient to do the fol lowing steps 

1. compute the number of weight i codewords i n the subcodes fixed by C^, G4 and 5,, for al l odd 

primes q tha t divide \7i\\ 

2. apply (5.23) to ^ i (G§) and ^ i (G4) to obtain Ai{S2); and then 

3. apply the Chinese-Remainder-Theorem to Ai{S2) and al l Ai{Sg), for al l odd primes q tha t 

divide \n\, to obtain Ai(n) (mod \n\). 

Given and an element of PSL2(p), how can the subcode consisting of the codewords fixed 

by this element be found? Assume tha t Z = [^J] e PSL2(7)) of prime order Let (resp. Cr^) 

and c/., (resp. Cp . J denote the i t h coordinate and nz(i}th coordinate ( i t h coordinate w i t h respect to 

permutat ion T T ^ ) , i n the l e f t (resp. right) circulant fo rm respectively. The invar iant subcode can be 

obtained by solving a set of linear equations consisting of the parity-check ma t r ix of ̂ p (denoted by 

H), c/, c/., = 0 (denoted by 7rz{L)) and Cr, + Cr. , = 0 (denoted by nz{R)) for al l z € Fp U { « } , i.e. 

The solution to Hs^b is a mat r ix of rank r > (p -t-1), which is the parity-check mat r ix of the [2(p -h 

l ) , 2 ( p - H ) - r , t / ' ] invar iant subcode. For subgroup G4, which consists of permutations P, T a n d P T , 

the fol lowing mat r ix 

H 

7rp(7?) 

7ZT[L) 

7TPT(R) 

needs to be transformed into a reduced-echelon fo rm to obtain the invar ian t subcode. Note tha t the 
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parity-check mat r ix of ̂ p is assumed to have the fol lowing form 

IQ • •• ' p - 1 ro . . . 7-p_ 1 

0 1 

H = 

0 1 

1 1 . . . 1 0 0 . . . 0 

(5.24) 

One useful application of the modular congruence of the number of codewords of weight w is 

to provide an independent verification to the number of codewords of weight w computed exhaus

tively. Computing the number of codewords of a given weight i n small codes using a single-threaded 

algori thm is tractable, but for longer codes, i t is a common practice to use mul t ip le computers i n 

parallel to render the computation feasible. I n order to do so, the codeword enumeration task is dis

t r ibuted among these computers and each computer j u s t needs to evaluate a predetermined chunk 

of codewords. I n the end, the results are added to give the total number of codewords of the desired 

weight. There are always rooms for bugs/mistakes to be made i n this parallel scheme, perhaps 

the spht t ing may not be done properly and double-counting and miss-counting are introduced as a 

result. The importance of this modular congruence w i l l be demonstrated in Section 5.5.2 and before 

that , consider the fol lowing examples which i l lustrate the application of the modular congruence 

technique to the weight dis t r ibut ion of the quadratic double-circulant codes of primes 37 and 83. 

Example 5.1: For prime 37, there exists an fsd [7G, 38,12] quadratic double-circulant code, ^ 3 7 - The 

weight enumerator of an fsd code is given by Gleasoh*s theorem (Rains and Sloane; 1998) 

A(z) = J2 + - 2z' + z^'y (5.25) 

t=0 

for integers /<"». Hence, i n order to compute A{z) of ^ 3 7 , only A2i for 6 < i < 9 are required to 

be computed. Using the technique described in Section 5.4, the number of codewords of desired 

weights are obtained and then substituted into (5.25). The result ing weight enumerator funct ion is 

/1(c) = ( l + ^^«) 4-2109-(2*2 4.^61) + 

86469 • {z'^ + + 961704 • {z'^ + z^^) + 

7489059 • {z^^ + z^^) + 53574224 • ( 2 " + ^54^ _̂  

275509215 • {z^'^ + z^^) + 1113906312 • (2^6 + ^soj ^ (5 26) 

3626095793 • (2^^ + 2'*^) + 9404812736 • (2^** + 2'*'̂ ) + 

19610283420 • (2-^^ + 2**'*) + 33067534032 - (2^** 2** )̂ + 

45200010670 • (2^*^ + 2̂ *̂ ) 4- 50157375456 • 2^® , 

Let 7̂  = PSL2(37), i t is known that \n\ = 2^ • 3^ • 19 • 37 = 25308. Consider the odd primes factors q 

Modulo 

congruence 

weight 

distribution of 

^ 3 7 
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i n the f i r s t place. For g = 3, [SQ]] generates the fol lowing permutat ion of order 3 

(00,0,1)(2,36,19)(3,18,13)(4,12,10)(5,9,23)(6,22,7)(8,21,24) 

(ll)(14,17,30)(15,29,33)(16,32,31)(20,35,25)(26,34,28)(27). 

The corresponding invar iant subcode has a generator mat r ix G^^^* of dimension 14, which is given 

by 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 I 1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 
O O l D O O O O O O O O O O l l 1 0 1 0 1 1 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 I I I 1 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 
0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 1 1 1 1 1 1 1 1 1 1 1 
O O O O O O I O O O O O O O l I 1 0 1 1 1 0 0 0 1 1 
0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 I 1 0 0 1 1 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 U 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 I 1 1 0 0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 10 1 1 0 0 I 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 
O O O O O O O O O O O O O t O O O O l 1 I I 1 0 1 I 

1 I l O l O O I O O l O l 1 0 0 1 0 1 0 0 0 1 0 0 
10 1 1 10 1 1 0 0 0 1 O O O I O l 1 1 0 0 I 10 
1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 I 
1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 
1 0 1 0 I 0 0 1 0 I 1 1 1 I 1 1 1 1 1 0 0 0 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 O I O 0 1 O I 0 1 0 1 1 1 1 1 O 1 
O I O O O I O O O I 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 
0 1 1 1 0 1 1 l O O O I O O O l 1 1 0 1 1 1 0 1 0 
1 1 0 0 0 1 0 0 0 1 1 1 0 1 I 1 0 1 0 0 1 10 1 1 
1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 I 1 1 0 0 1 1 1 
0 1 0 1 1 ) 1 0 0 0 0 1 0 0 0 1 I 1 1 1 1 I I 10 
1 0 I 0 1 1 0 1 0 1 I 0 0 1 1 0 I 0 1 0 1 I 1 0 1 
1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 ) 1 1 1 1 

1 1 1 0 0 0 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 I 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
1 I 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
) I 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 I 
1 I 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 
I 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
1 ) l O O O O O O O O O O O O O O O I O l O O O O 
t ) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

and its weight enumerator funct ion is 

/ l ( 5 3 ) ( , ) = (1 + ^76) + 3 . (^12 ^04) _^ 24 • {z'^ + ^^«) 

54 • (z'^ - f ^^S) + 150 • (e^o + z^C) ^ . (^22 _^ ^54) _^ 

. 171 • {z^' + z " ) -t- 468 . + + 788 • {z^^ + z"^) + 

980 • {Z^"" - f Z^^) + 1386 • (2^2 + ^44) _̂  1330 . (^34 ^ ^42) ^ 

1573 (^3 '^-t-^'*°)+2136 

For q = 19, [3*jj \] generates the fol lowing permutat ion of order 19 

(00,0,25,5,18,32,14,10,21,2,1,19,30,26,8,22,35,15,3) 

(4,36,28,34,31,33,16,17,29,27,20,13,11,23,24,7,9,6,12). 

The resul t ing generator matr ix of the invar iant subcode G*^"'^ which has dimension 2, is 

(5.27) 

r^iSio) _ r 1 0 1 1 1 1 1 1 1 1 
<-» — [ 0 I 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 I 1 1 1 1 1 I I I ) 1 1 I I 1 1 I ) ] 1 1 I 1 1 ) 1 1 I I 1 1 1 J 

and i ts weight enumerator funct ion is 

For the last odd prime, = 37, a permutat ion of order 37 

(00,0,18,24,27,14,30,15,13,32,25,26,33,19, 7,4,6,23,34, 

1,12,29,31,28,16,2,9,10,3,22,20,5,21,8,11,17,35)(36) 

is generated by [^^ 3*5] and i t turns out tha t the corresponding invar iant subcode, and hence the 

weight enumerator funct ion, are identical to those of g = 19. 

For g = 2, subcodes fixed by some element of G§ and C 4 are required. We have P = [H^] and 
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T = [ I 0̂  ] , and the resulting order 2 permutations generated by P, T and PT are 

(oo,5)(0,22)(l,17)(2,21)(3,29)(4,16)(6,31)(7,18)(8,26)(9,30)(10,25) 

(11,34)(12,14)(13,36)(15)(19,28)(20,24)(23,27)(32)(33,35), 

(oo.0)(l,36)(2,l8)(3,12)(4,9)(5,22)(6)(7,21)(8,23)(10,ll)(13,17) 

(14,29)(15,32)(16,30)(19,35)(20,24)(25,34)(26,27)(28,33)(3l), 

and 

(oo,22)(0,5)(l,13)(2,7)(3,14)(4,30)(6,31)(8,27)(9,16)(10,34)(11.25) 

(12,29)(15,32)(17,36)(18,21)(19,33)(20)(23,26)(24)(28,35) 

respectively. It follows that the corresponding generator matrices and weight enumerator functions 

of the invariant subcodes are 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 l O I O l O l O l l 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 l O I O I O l l O l 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 l O O O l O O O O I O O O I 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
O O O I O O O O O O O O O O O O O O O O O l l O O I O O I I l l O l O I O l l l l O O I O O l l O l O l O O l O l O O O O O O O O O O O O I O O O O O O 
0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 l l O t l l O l l O l l l O l 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
O O O O O l O O O O O O O O O O O O O O l O l l O O I O O I O l 1 1 0 1 0 0 1 0 0 1 1 0 0 1 I I 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 11 1 I I 1 I I 1 1 1 1 11 1 I I 1 1 I 1 1 1 1 I I 1 1 11 1 1 1 I t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 l O O I O O O O O I O O l 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 1 0 1 1 0 0 1 10 0 0 1 1 I I 1 1 0 0 0 1 1 0 0 1 10 1 10 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 I 1 1 1 l O l O I O l O I O l I I 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
O O O O O O O O O O I O O O O O O O O O I O O l 1 1 1 0 0 1 1 1 l O O O O I O O O l 1 0 1 1 I I 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 l O O O O l O I O O l 1 I 1 1 I I 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 I 10 0 0 0 1 I 1 0 1 0 1 0 1 1 0 1 1 0 I 0 I 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 I I 1 l O l O O O I O l O I O l O O O O O O O O O O I O O O O O O O O O 
O O O O O O O O O O O O O O l O O O O O l 1 0 0 1 0 1 I G I O I 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 l O I O O O O O O O I O O O O O O O O O O O O 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 l O O O l O I 1 0 0 1 1 I 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
OOOOOOOOOOO0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 I I 1 1 0 0 I 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
O O O O O O O O O O O O O O O O O l O O l I 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 I 1 0 0 1 1 0 0 1 1 I 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 I 1 1 0 0 1 0 0 1 l O l O l O O l O I O l 1 0 0 1 0 0 1 t I l O l D l O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
OOOOOOGOOOOOOOOOOOO I 1 0 0 1 1 0 1 1 1 0 1 10 0 0 0 0 0 0 I I 1 1 0 0 1 10 0 1 1 1 l O O O O O O O O O O O O O O O O O I O O O O O 

which has dimension 20, with 

= (1 + + 21 • (z'^ + z"^) + 153 • (z'" + 2"°) + 

744 • (^'« + z^^) + 1883 • {z^" + r™) + 4472 • (^" + z''') + 

10119 • (ẑ '* + + 21000 • (z^" + z™) + 36885 • {z^^ + z'^) + 

58656 • {z^" + z'") + 85548 • (z"' + z'") + 108816 • {z^' + z"') + 

127534 • {z^" + z^") + 136912 • z^^ 

(5.29) 

and 

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 
O l O O O O D O O O O O O O O O O I O I O O l l 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 1 l O l l O I O I O O O O l O l 
O O O l O O O O O O O O I t 1 1 I 11 1 1 1 I I 11 1 1 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 10 I I 1 1 0 0 0 1 0 1 
0 0 0 0 0 0 10 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 I 1 I 1 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 
O O O O O O O O O O I O O O O G I O O I O I O O O I O I 
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 

0 0 0 1 1 0 1 1 1 0 1 1 I I 1 0 0 0 1 I l O O O l O O O O l O O O O O O O O O O I O O O O O O O 
1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
O O O l O O l t O D O O O O l O O O O O O O O O O O O O O O l O O O O O O O O O O O O l O l O O 

I 1 1 1 1 1 1 1 1 I I 1 1 I 1 1 I 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 O 1 0 0 0 0 l O O O O O O O O 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 l O O O O O O O O 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
l O O O O O O t 1 0 1 1 l O I O l 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 I 1 1 10 1 1 0 1 I I 1 0 0 1 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
1 l O O I O O O O O I O O l 1 1 0 1 I 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 1 1 0 0 1 1 0 1 I 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 
0 1 0 0 1 0 0 1 0 0 1 0 0 1 I I 0 0 I 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 J 
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5.5. Weight Distributions 

which has dimension 12, with 

^(^^)(^) = (1 + z'^) + 3 • + z04) ^ 11 . (̂ 10 ^ ^co) ^ 

20 • (2^« + 2^«) + 51 • (^20 + ^56) _̂  5e . (^22 ^ ^54) ^ 

111 - (̂ 24 + 2 " ) + 164 . (̂ 20 + ^50) ^ . (̂ 28 ^ ^48) ^ (5 30) 

224 • + z*»̂ ) + 294 • (̂ 32 + ^44) ^ . (̂ 34 ^ ^42) ^ 

366 (2^*^ + 2 " ° ) + 4 6 4 z^ .̂ 

respectively. Consider the number of codewords of weight 12, from (5.26)-(5.30) it is known that 

yli2(G§) = 21 and ^ 1 2 ( ^ 4 ) = 3; applying (5.23), 

^ 1 2 ( 5 2 ) = 3 • 21 - 2 - 3 (mod 4) = 1 (mod 4) 

and thus, the following set of simultaneous congruences 

^ 1 2 ( 5 2 ) ^ 1 (mod22) 

^ 1 2 ( 5 3 ) H 3 (modS^) 

^ I 2 ( 5 i 9 ) = 0 (mod 19) 

An(Sz7)=0 (mod 37) 

is obtained. Following the Chinese-Remainder-Theorem, a solution to the above congruences, de

noted hy Ax2('H), is congruent modulo Icm{22,3^, 19,37}, where lcm{22,3^, 19,37} is the least-common-

multiple of the integers 2 ,̂ 3 ,̂ 19 and 37, which is equal to 2̂  • 3^ • 19 • 37 = 25308 in this case. Since 

these integers are pairwise coprime, by the extended Euclid algorithm, it is possible to write 

l = 4 . 1 5 8 2 + H 5 ^ . ( - l ) 

l = 19.631 + H ^ . ( - 9 ) 

, = 3 7 . 3 7 . H ^ . ( - 2 ) . 

A solution to the congruences above may be given by 

AniH) = 1 • (-1) 
25308 

+ 3 (-2) 
25308 

+ 0 ( -9) 
25308 

19 
+ 0 ( -2) 

25308 
37 

= -1 -6327+ -6-2812 

= 2109 

/ l i 2 = 25308/112+ 2109. 

Referring to the weight enumerator function, (5.26), it can be immediately seen that n\2 = 0, indi

cating that A12 has been accurately evaluated. Repeating the above procedures for weights larger 

than 12, Table 5.1 is obtained which shows that the weight distributions of ^ 3 7 are indeed accurate. 
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Chapter 5. Double Circulant Codes based on Primes 

In fact, since the complete weight distributions can be obtained once the first few terms required by 

Gleason's theorem are known, verification of these few terms is sufficient. 

Table 5.1: Modular congruence weight distributions of ^ 3 7 

i / j i — i 
Ai(S2} ^•(53) -4i(537) A m iij in 

i / j i — i 
mod 2̂  mod 32 mod 19 mod 37 mod 25308 Ai = 25308/(i + AiiH) 

0/76 1 1 1 1 1 0 

12/64 1 3 0 0 2109 0 

16/60 1 6 0 0 10545 3 

18/58 0 0 0 0 0 38 

20/56 3 6 0 0 23199 295 

22/54 0 5 0 0 22496 2116 

24/52 3 0 0 0 6327 10886 

26/50 0 0 0 0 0 44014 

28/48 1 5 0 0 16169 143278 

30/46 0 8 0 0 5624 371614 

32/44 0 0 0 0 0 774865 

34/42 0 0 0 0 0 1306604 

36/40 2 7 0 0 23902 1785996 

38 0 3 2 2 7032 1981878 

Example 5.2: GuHiver and Senkevitch (1999) has shown that the [168,84,24] doubly-even self-dual Modulo 

quadratic double-circulant code is not extremal since it has minimum distance less than or congruence 

equal to 28. The weight enumerator of a Type II code of length n is given by Gleason's theorem, weight 

which is expressed as (Rains and Sloane; 1998) distribution of 

^83 
• Ln/24J 

i=0 
(5.31) 

where Ki are some integers. As shown in (5.31), only the first few terms of Ai are required in order 

to completely determine the weight distribution of a Type I I code. For ^ 3 3 , only the first 8 terms of 

Ai are required. Using the parallel version of the efficient codeword enumeration method described 

in Section 5.4, it is determined that all of these 8 terms are 0 apart from ^0 = 1, A24 = 571704 and 

A28 = 17008194. 

The correctness of the terms A24 and A28 has to be independently verified. As in the previous 

example, the modular congruence method can be used for this purpose. For p = 83, it is clear that 

= 2̂  • 3 • 7 • 41 • 83 = 285852. The odd prime cases will be considered in the first place. 

For prime g = 3, a cyclic group of order 3 53 can be generated by [§2 1] € P S L 2 ( 8 3 ) and it is 

found that the subcode invariant under 53 has dimension 28 and has 63 and 0 codewords of weights 

24 and 28 respectively. 

For prime g = 7, there exists a matrix [^2 10] which generates S7. The subcode fixed by S7 has 

dimension 12 and neither codeword of weight 24 nor 28 is contained in this subcode. 

122 



5.5. Weight Distributions 

Similarly, for prime q = 41, the subcode fixed by 541, which is generated by [s2l] ^as 

dimension 4, contains no codeword of weights 24 and 28. 

Finally, for prime q = 83, the invariant subcode of dimension 2, contains the all-zeros, the all-

ones, {0 ,0 , . . . ,0 ,0 ,1 ,1 , • • . ,1 ,1} and {1,1, • • •, 1,1,0.0,. . . , 0.0} codewords only The cyclic group ^33 

84 84 84 84 
is generated by [§281]- o 

For the case of g = 2, we have P = [l^^] and T = The subcode fixed by 5 2 , which 

has dimension 42, contains 196 and 1050 codewords of weights 24 and 28 respectively Meanwhile, 

the subcode fixed by G4, which has dimension 22, contains 4 and 6 codewords of weights 24 and 28 

respectively 

Thus, using (5.23), the number of codewords of weights 24 and 28 fixed by ^2 are 

A2a(S2) = 3 • 196 - 2 • 4 = 0 (mod 4), and 

A28{S2) = 3 • 1050 - 2 - 6 = 2 (mod 4) 

and by applying the Chinese-Remainder-Theorem to all Ai{Sg) for i — 24.28, it follows that 

A24 = 2̂4 • 285852 (5.32a) 

and 

A23 = "28 • 285852 + 142926. (5.32b) 

From (5.32), it is now known that A24 and A28 are indeed correct, since they have equality for non 

negative integers 7124 and 7123 (?i24 = 2 and 7128 = 59). Using Gleason's theorem, i.e. (5,31), the weight 

enumerator function of the (168,84,24] code is obtained and it is given by 

A{z) =(z^ + z^^^) + 571704 • (z^'* + 2^'*'*)+ 

17008194 . (2^8 + 1̂40) ^ 5507510484 • (z^^ + 2^^*^)+ 

1252615755636 • (z^^ + z^^^) + 166058829151929 • {z'^^ + z^^^)+ 

13047194638256310 • (z'*** + z^^"^) -H 629048483051034984 • (z'^^ + z^^^)-\-

19087129808556586056 • {z^'^ + z^^^) + 372099697089030108600 • {z^^ -f z^^'^)-h (5.33) 

4739291490433882602066 • {z^° -t- z^^^) + 39973673426117369814414 • (ẑ '* -f z^^'^)-h 

225696677517789500207052 • {z^^ + z^^^) -t- 860241109321000217491044 • ( 2 " + z^^)-f 

2227390682939806465038006 • (ê *̂  + z^ )̂ + 3935099587279668544910376 • (2®° + 2 ® ^ ) + 

4755747411704650343205104 • ẑ ** • 

For the complete weight distributions and their congruences of the [2(p + l) ,p + l,d] quadratic 

double-circulant codes, for 11 < p < 83, except p = 37 as it has been given in Example 5.1, refer to 

Appendix D. 
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5.5.2 The Number of Codewords of a Given Weight in Extended 
Quadratic Residue Codes 

The modular congruence approach of Mykkeltveit et al. (1972), which was originally introduced for 

extended Q R codes Qp, has been modified so that it is applicable to the quadratic double-circulant 

codes. While contains one non cyclic subgroup of order 4, Qp contains two distinct non cyclic 

subgroups of this order, namely and C 4 . As a consequence, (5.23) becomes (Mykkeltveit et al.; 

1972) 

Ai(S2) = (2'" -t- l)Ai{H2) - 2"'-M.-(GS) - 2"'-'Ai(Gl) (mod 2"^+ )̂, (5.34) 

where 7/1 + 1 is the highest power of 2 that divides Unlike where there are two circulants 

in which each one is fixed by PSL2(7j) , a linear group PSL2{p) acts on the entire coordinates of Qp. 

In order to obtain the invariant subcode, only one set of linear equations is required which contains 

the parity-check matrix of Qp arranged in the order (0,1, 2, p - l)(oo), and Cj + c,' = 0 for all 

i € Fp U { 0 0 } . Note that c; and c,-' are defined in the same manner as in Section 5.5.1. 

Before the importance of this modular congruence approach is demonstrated by proving some of 

the published results on the weight distribution of Q151 and the number of codewords of weights 30 

and 32 of Q137 are incorrect, let us consider the weight distribution of Qio?-

Example 5.3: There exists an extended QR code Qigy which has identical parameters (71 = 168, Modulo 

A: = 84 and d = 24) as the code ^S3- Since Qie? can be put into double-circulant form and it is congruence 

Type-II self-dual, the algorithm in Section 5.4 can be used to compute the number of codewords of weight 

weights 24 and 28, denoted by A24 and '̂̂ ^ convenience, from which Gleason's theorem (5.31) distribution of 

can be applied to derive its weight enumerator function, A'{z). By evaluations, it was found that Qici 

A'24 = 776216 

A'2s = 18130188 
(5.35) 

In order to verify the accuracy of A24 and 4̂33, the modular congruence method originally de

scribed in Mykkeltveit et al. (1972) is used. In this case, Aut(Qic7) D Ti = PSL2(167) and it is 

also known that |PSL2(167) | = 2̂  • 3 • 7 • 83 • 167 = 2328648. Let P = [ »2 32^ ^nd T = [? ^^^], Let 

the permutations of orders 3, 7, 83 and 167 be generated by [ loe i ] . [ IGG 19]» [ ico 4 ]» [ leo i65 

respectively. The number of codewords of weights 24 and 28 in the various invariant subcodes of 

dimension k are 

H2 C5 G\ 53 S7 583 
k 42 22 21 28 12 2 1 

A24 252 6 4 140 0 0 0 

A28 1812 36 0 0 6 0 0 

For Q i 6 7 , (5.34) becomes 

Ai{S2) = 5 • Ai{H2) - 2 . ^ ( G S ) - 2 • Ai{G\) (mod 8) (5.36) 
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It follows that 

and thus 

and 

A24(S2) = 0 (mod 8) 

^28(52) = 4 (mods) , 

^24 = "24 • 2328648 + 776216 

^28 = "28 • 2328648 + 1829652 

(5.37a) 

(5.37b) 

from the Chinese-Remainder-Theorem. 

From (5.32a) and (5.37a), it can be seen that and Qie? are indeed inequivalent. This is 

because for integers 7t24,"24 ^ 0» ̂ 24 ^24-

Equation (5.37) establishes that A'24 = 776216 (n'24 = 0) and /l^s = 18130188 (n'28 = 7). The 

weight enumerator of Q1Q7 is derived from (5.31) and it is given in (5.38). In comparison to (5.33), 

it may be seen that, Qiqj is a slightly inferior code than having more codewords of weights 24, 

28 and 32. 

A'{z) =(z" + z^^«) + 776216 • {z^" -f ẑ -̂*)-*-

18130188 . (2^8 + z^'^^) + 5550332508 • (z^^ ^ ^ i 3 6 j ^ 

1251282702264 • (z^^ + z^^^) + 166071600559137 • (z-**̂  + 2*^^)+ 

13047136918828740 • (2'*'* -H 2^24) + 629048543890724216 • (2'*^ -t- z^^^)-\-. 

19087130695796615088 • (2^^ + 2*^**) + 372099690249351071112 • (2^*^ + 2 ' * ^ ) + (5.38) 

4739291519495550245228 • (2^^ + z^°^) + 39973673337590380474086 • (z*̂ '* + z^°**)-f 

225696677727188690570184 -.(2*^^ + 2****̂ ) + 860241108921860741947676 • (2^^ ^ ^96)_^ 

2227390683565491780127428 • (ẑ *̂  -t- z^^) -\- 3935099586463594172460648 • (ẑ ** -i- z^^)+ 

4755747412595715344169376 • 2^'*. 

Modulo 

congruence 

weight 

distribution of 

Q137 

Example 5,4: Gaborit et al. (2005) gave ^2i, for 22 < 2i < 32, of Q137 and the consistency of these 

results will be checked. For p = 137, it is clear that |PSL2(137)| = 2̂  • 3 • 17 • 23 • 137 = 1285608 

and A2i{Sq), where 22 < 2i < 32, for all primes q dividing |PSL2(137)|, have to be computed. Let 

P= [^s^osi] a n d r = [? >g6]. Let [,ge { ] , [ I S G G ] ^\] be generators of permutation of orders 

3,17 and 23 respectively. It is not necessary to find a generator of permutation of order 137 as it fixes 

the all zeros and all ones codewords only Subcodes that are invariant under G2, C j , G\, 53, 5i7 and 

523 are obtained and the number of weight i , for 22 < 2i < 32, codewords in these subcodes are then 

computed. The results are shown as follows, where k denotes the dimension of the corresponding 

subcode, 
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Chapter 5. Double Circulant Codes based on Primes 

f f 2 S3 Si7 'S'23 5i37 

k 35 19 18 23 5 3 1 

A22 170 6 6 0 0 0 0 

A24 612 10 18 46 0 0 0 

A2G 1666 36 6 0 0 0 0 

A28 8194 36 60 0 0 0 0 

A30 34816 126 22 943 0 0 0 

^32 114563 261 189 0 0 0 0 

It follows that 

Ai(S2) = 5 • Ai(H2) - 2 . Ai(a\) - 2 • Ai(G\) (mod 8), 

for Q137, which is identical to that for QXQ-J since they both have 3 as the highest power of 2 that 

divides \H\. Using this formulation, the following congruences 

^22(^2) = 2 

A24(S2) = 4 

A2g{S2) = ^ 

A28(S2) = 2 

>l30(52)=0 

^32(52) = 3 

(mod 8) 

(mod 8) 

(mod 8) 

(mod 8) 

(mod 8) 

(mod 8) 

are obtained. 

Combining all the results using the Chinese-Remainder-Theorem, it follows that 

^22 = 7122 1285608 + 321402 

A2A = "24 1285608+ 1071340 

A2Q = "26 1285608 + 964206 

A28 = 'l28 1285608 + 321402 

^30 = "30 1285608 + 428536 

^32 = "32 1285608 + 1124907 

(5.39) 

for some non negative integers Ui. Comparing these to the results in Gaborit et al. (2005), it can be 

immediately seen that 7122 = 0, "24 = 1, "26 = 16, "28 = 381, and both >l3o and A:^2 were incorrectly 

reported. By codeword evaluations, it has been established that 

>l30 = 6648307504 

^32 = 77865259035, 

and hence, 7130 = 5171 and 7132 = 60566 in (5.39). 
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Modulo Example 5,5: Gaborit et al. ( 2 0 0 5 ) also gives the weight distribution of Q I B I which has also been 

congruence incorrectly reported as shown below. For Qi^i, | P S L 2 ( 1 5 1 ) | = 2^ • 3 • 5^ • 19 • 151 = 1721400 and we 

weight h a v e P = [3*1** 47] T = [? ĝo] Let [̂ 0̂  j j ^ [15027] [isos] be generators of permutation of 

distribution of orders 3, 5 and 19 respectively. The number of weight i codewords for i = 2 0 , 2 4 , in the various fixed 

O.Q, subcodes of dimension k are 

H2 G\ 53 55 
k 38 20 19 26 16 4 1 

A20 38 2 0 25 15 0 0 

A24 266 4 4 100 0 0 0 

and Ai(S2) is again the same as that for primes 167 and 137, see (5.36). Using this equation, 

A2o{S2) = -^24(52) = 2 (mod 8) and following the Chinese-Remainder-Theorem, it is found that 

^20 = "20 1 721400 + 28690 

^24 = "24 • 1721400 + 717250 
(5.40) 

It follows that >l20 has been correctly reported in Gaborit et al. (2005), but 4̂24 has been incorrectly 

reported as 717230. Using the method in Section 5.4, it has been established that 

A2Q = 28690 

A24 = 717250, 

and hence 7120 = 0 and 7124 = 0 in (5.40). Since A2Q and A24 are required to derive the complete 

weight distribution of Q151 according to Gleason's theorem for Type-II codes (5.31), the weight dis

tribution of Q i 5 i given in Gaborit et al. (2005) is no longer correct. The corrected weight distribution 

of this code, given in terms of the weight enumerator function, is 

A(z) = + + 28690 • (ê o + ^132) + 

717250 . {z'"' + 2̂ 28) + 164250250 • (̂ ŝ + 2»24 ) ^ 

39390351505 • (2^^ + z^^^) + 5498418962110 • {z^^ + z^^^) + 

430930711621830 • {z'^° + z^^^) + 19714914846904500 • (2'*'* + + 

542987434093298550 • (z"^ + z^^^) + 9222363801696269658 • (5^^ + z^^°) + 

98458872937331749615 • {z^^ + z^^) + 670740325520798111830 • (z^^ + z^^) + 

2949674479653615754525 • (z*̂ ** + z^^) + 8446025592483506824150 • (2*̂ ^ + 2̂ **) + 

15840564760239238232420 • (2^^ + ^̂ ô  ^ 19527364659006697265368 • 2̂ .̂ 

(5.41) 
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5.6 Minimiun Distance Evaluation: A Probabilistic 
Approach 

An interesting observation is that the minimum weight codewords of Qp, for p = ±1 (mod 8), and 

^ p , for p = ± 3 (mod 8) are always contained in one or more of their fixed subcodes. At least, this is 

true for all known cases (71 < 200) and this is depicted in Table 5.2. It can be seen that the subcode 

fixed by H2 appears in all the known cases. In Table 5.2, the column dy denotes the minimum 

distance upper-bound of extremal doubly-even self-dual codes of a given length and the last column 

indicates the various subgroups whose fixed subcodes contain the minimum weight codewords. The 

highest 11 for which the minimum distance of extended QR codes is known, is 168 (Grassl; 2000) 

and in this thesis, it is extended to include n = 192,194, and 200. The minimum distance of these 

extended QR codes is obtained from the parallel version of the minimum distance algorithm for 

cyclic codes (QR codes are cyclic) described in Section 4.4. Note that the fact that the code is singly-

even (71 = 194) or doubly-even (n = 192,200) is also taken into account in order to reduce the number 

of codewords that need to be enumerated, see Sections 4.2.3 and 4.4. This code property is also taken 

into account for computing the minimum distance of using the method described in Section 5.4. 

Table 5.2: The Minimum Distance of Q p and £Sp for 12 < 71 < 200 

n P p mod 8 d dy Subgroups 

12 5 - 3 4 H2, G4 
18 17 1 6 

24 23 -1 8 8 ^2r C^t Cl 
28 13 - 3 6 H2t G4, 53 
32 31 -1 8 8 

40 19 3 8 8 H2, G4, S3 

42 41 1 10 

48 47 -1 12 12 

60 29 - 3 12 

72 71 -1 12 16 ^2) S3, 55 
74 73 1 14 ^2, G^, G\j Ss 
76 37 - 3 12 H2, G4, 53 
80 79 -1 16 16 ^2i ^ 4 ' -̂ 3 
88 43 3 16 16 /̂ 2» ^3, S7 
90 89 1 18 ^2> G4, G\, S3 
98 97 1 16 H2.GI 

104 103 -1 20 20 ^2t G^y S3 
108 53 - 3 20 H21 G4 

114̂  113 1 16 ^2> G\^ Sj 
120 59 3 20 24 H2y G4, 
124 61 - 3 20 H2, C4, 53, 55 
128 127 -1 20 24 l^2t Ss 

Continued on next page 
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n P p mod 8 d 

136 67 3 24 

138 137 1 22 

152^ 151 -1 20 

168 167 -1 24 

168 83 3 24 

192 191 -1 28 

194 193 1 28 

200 199 -1 32 

du 

24 

28 

32 

32 

36 

36 

Subgroups 

^2> <^4, -Sa, 5ii 
H2, C S , G\ 

^ 2 , ^^4' ^3, 
H2. G j . Gl Ss 

H2, G4, S3 

H2, Gl S3 

H2, G°„ Gl S3 
^ Extended duadic code (Leon ct al.; 1984) has higher minimum distance 

Based on the above observation, a probabilistic approach to minimum distance evaluation is 
developed. Given Qp or the minimum distance of the code is upper-bounded by 

d < mill {d(Z)} (5.42) 

where d{Z) is the minimum distance of the subcode fixed by Z e PSL2(7^) and q runs through all odd 

primes that divide |PSL2(p)|. Note that for ^ p , G^ = G\ hence, only one is required. Using (5.42), 

an upper-bound of the minimum distance of Qp and ^ p for all codes where 71 < 450 is given and this 

is tabulated in Table 5.3. The various fixed subgroups where the minimum weight codewords are 

found are given in the last column of this table. As shown in Tables 5.2 and 5.3, there is no extremal 

extended QR or quadratic double-circulant codes for 136 < 71 < 450 and the minimum distance (or its 

upper-bound for n > 200) is plotted against the extremal bound in Figure 5.1. From this figure, it is 

obvious that, as the block length increases, the gap between the extremal bound and the minimum 

distance widens and it seems that longer block lengths will follow the same trend. Thus, it can be 

coiyectured that 71 = 136 is the longest doubly-even extremal self-dual double-circulant code. It is 

worth noting that, for extended QR codes, the results obtained using this probabilistic method are 

the same as those published by Leon (1988). 

Table 5.3: The Minimum Distance of Q p and ^ p for 204 < 71 < 450 

71 P p mod 8 d du Subgroups 

203 101 - 3 < 24 

216 107 3 < 24 40 / / 2 , G4, S3 
220 109 - 3 <30 ^ 2 , S3 
224 223 -1 <32 40 H2, Gl G\ 
234t 233 1 <26 ^2, Sis 
240* 239 -1 < 32 44 H2,Gl 
242* 241 1 < 32 ^2) ^4) -̂ S* ̂ 5 
258* 257 1 <34 H2.Gi 
264* 263 -1 <36 48 ^2» G^ 53 

264* 131 3 <40 48 ^2> G4 
272* 271 -1 < 40 48 ^ 2 i G^ C 4 , 53 

Continued on next page 
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Chapter 5. Double Circulant Codes based on Primes 

n V J) mod 8 d Subgroups 

280* 139 3 < 36 48 ^ 2 , 

282* 281 1 < 36 ^2t C4, G4, 53 
300* 149 - 3 < 36 
312* 311 -1 < 36 56 
314* 313 1 < 40 H2. G>,53 
316* 157 - 3 < 40 ^ 2 ) 

328* 163 3 < 44 56 ^ 2 J C4 
338* 337 1 < 40 ^ 2 i C\y S3 
348* 173 - 3 < 42 ^ 2 , 53 
354* 353 1 < 42 H2, 
360* 359 -1 < 40 64 ^ 2 » ^4* *^4> ^ 5 

360* 179 3 < 40 64 H2, G4, Z5 
364* 181 - 3 < 40 H2, G4, Zz 
368* 367 -1 < 48 64 ^ 2 . ^ 4 ' -^3, 

384* 383 -1 < 48 68 ^ 2 , G4, -^3 

396* 197 - 3 <44 ^ 2 , 

402* 201 1 < 42 ^ 2 i G^i G\, Z5 

410* 409 1 <48 ^ 2 , ^3 

424* 211 3 < 56 72 H2y G4, Z3, Z7 
432* 431 -1 < 48 76 G^y G j , Z3 
434* 433 1 < 38 ^ 2 , G^, Zz 
440* 440 -1 < 48 76 H2.GIGIZ3 

450* 449 1 < 56 H2.GI 

* Extended duadic code (Loon et al.; 1984) 

* The minimum distance of the subcode is 

has higher minimum distance 

computed probabilistically 

5.7 Siimmary 
o Bordered double-circulant codes based on primes can be classified into two classes: [/>+ 1, (7̂  + 

l ) / 2 ,d ] extended QR codes, for primes ± 1 (mod 8); and [2(p 4- l ) , p + l,d) quadratic double-
circulant codes, for primes ± 3 (mod 8). While quadratic double-circulant codes always exist 
given a prime p = ± 3 (mod 8), bordered double-circulant code may not exist given a prime 
p = ± 1 (mod 8). 

o There also exists (2p,p,d] pure double-circulant codes for any prime p = ± 3 (mod 8). 

o Self-dual double-circulant codes exist for primes p = - 1 , 3 (mod 8) and for other primes, the 
double-circulant codes are fsd. 

o By exploiting the code structure of fsd double-circulant codes for p = - 3 (mod 8) and also the 
self-dual double-circulant codes-both pure and bordered cases, we have shown that, compared 
to the commonly used method, the number of codewords required to evaluate the minimum 
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Figure 5.1: Minimum distance and its extremal bound of doubly-even self-dual codes 

distance or to count the number of codewords of a given weight can be reduced by a factor 

around 2. 

• The automorphism group of the [7; + 1, (p + l)/2,rf) extended QR code contains the projective 

special linear group TSh2{p) acting on the coordinates (oo)(0,1,... ,p - 2,/; - I ) . 

• The automorphism group of the [2{p + 1),/; + l,c/) quadratic double-circulant code contains 

PSL2(p), acting on coordinates (oo)(0,1,... ,7; - 2,p - 1), applied simultaneously to left and 

right circulants. 

• The number of codewords of weight i of prime-based double-circulant codes, denoted by Ai, 
can be written as Ai = lu • |PSL2(p)| + Ai(PSh2{p)) = Ai(PSh2{p)) (mod |PSL2(7j)|) where 

^j(PSL2(p)) denotes the number of codewords of weight i that are fixed by some element of 

PSL2(p). This result was due to Mykkeltveit et al. (1972) and it was originally introduced 

for extended QR codes. It has been shown in this chapter that, with some modifications, this 

modulo congruence method can also be applied to quadratic double-circulant codes. 

• The modulo congruence technique is found to be very useful in verifying the number of code

words of a given weight obtained exhaustively by computation. The usefulness of this method 

has been shown in the case of the extended Q R codes for primes 137 and 151 where corrections 

to some published results on their weight distributions have been provided. 

• The weight distribution of the [168,84,24] extended QR code, which was previously unknown, 

is given in this chapter There also exists a quadratic double-circulant code with identical 

parameters (71, k and d) and the weight distribution of this code is also given. The [168,84,24] 

quadratic double-circulant code appears to be a better code than does the [168,84,24] extended 
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Chapter 5. Double Circulant Codes based on Primes 

QR code since it has less low-weight codewords. The correctness of the weight distributions of 

these two codes are verified by the modulo congruence method. 

The weight enumerator polynomial of an extended QR code of prime p, denoted by AQ{Z), 

can be obtained using Gleason's theorem once the first few terms are known. Since PSL2(7^) 

is doubly-transitive (MacWilliams and Sloane; 1977), knowing AQ(Z) implies that AQ{Z), the 

weight enumerator polynomial of the corresponding cyclic QR code, is also known, i.e. 

where A'^{z) is the first derivative of AQ{Z) with the respect to z (van Lint; 1970). As a 

consequence, the weight distributions of QR codes for primes 151 and 167 are obtained and 

they are tabulated in Appendix E , Tables E . l and E .2 respectively. 

A probabilistic method to obtain the minimum distance of double-circulant codes based on 

primes is presented. This probabilistic approach is based on the observation that the mini

mum weight codewords are always contained in one or more subcodes fixed by some element 

of PSL2(7J). Using this approach, it can be conjectured that n = 130 is the longest extremal 

double-circulant self-dual codes. 

132 



^ Decoding of Linear Block Codes 

Unlike turbo codes or L D P C codes which have a low-complexity soft-decision decoder, constructing 

a soft-decision decoder for general linear code, which can produce good performance yet have mod

erate complexity, is a challenge. This chapter describes a flexible suboptimum method to decode 

general linear block codes. Parts of this chapter appear in the journal paper: Tomlinson, M., Tjhai, 

C , and Ambroze, M. (2007), "Extending the Dorsch decoder towards achieving maximum likelihood 

decoding for linear codes", lET Proceedings Communications, 1(3), June 2007, pp. 479-488. 

6.1 Introduction 

It is well-known from the literature that in order to bring the gap to channel capacity closer, a 

decoder that makes use of channel reliability information, a soft-decision decoder, has to be em

ployed. The hard-decision alternative which as the name implies, quantises each symbol of the 

received vector to the minimum number of levels with the loss of channel reliability information, is 

typically around 2 dB inferior. The Viterbi's (1967) algorithm and also the Maximum-A-Posteriori 

(MAP)* algorithm introduced by Bahl et al. (1974) are optimum soft-decision decoding algorithms 

for general linear codes. Both of these algorithms require trellis representation of the code consid

ered. For general (71, A:, d] linear codes over F^, there are g""*-' states in the trellis and it is obvious 

that the complexity of these algorithms is excessive for many codes. Trellis independent optimum 

decoding algorithms exist, (e.g. Hartmann and Rudolph; 1976), but these algorithms also have ex

ponential complexity. As a consequence, many suboptimum soft-decision decoding techniques have 

been devised. 

A type of suboptimum soft-decision decoding algorithm is the reliability-based reprocessing al

gorithm, which involves reordering the coordinates of the received vector. In general, this type 

of soft^-decision decoding algorithm can be classified into two categories (Fossorier; 2004): most-

reliable-positions reprocessing algorithms and least-reliable-positions reprocessing algorithms. In 

the former case, the most-reliable k information set is determined and some of these k coordinates 

are then modified. For each modification, a codeword is derived and at the end, the most-likely 

codeword is chosen. Here the term most-likely codeword refers to a codeword which has the small

est distance to the received vector in the Euclidean space. In the latter case, the decoding algorithm 

uses a different strategy in reprocessing the coordinates. Oh the basis of the fact that errors are 

more likely to occur in the least-reliable positions, a typical least-reliable-positions reprocessing 

algorithm initially obtains a hard-decision vector, denoted by 6 for convenience, from the received 

sequence, and then derives some error patterns in these least-reliable positions and subtracts these 

error patterns from 6. Each of the resulting vectors are decoded using an algebraic hard-decision 

decoder and the most-likely codeword is chosen at the end of the procedure. A notable advantage 

*It is olso commonly known as the BCJR algorithm, named after the authors. 
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of the most-reliable-positions reprocessing algorithms is clear, an algebraic decoder, which may not 

exist for a particular [n,A:,rf] linear code, is not required. 

Various least-reliable-positions reprocessing algorithms have been devised. One of them is the 

well-known Chase's (1972) algorithm which utilises an algebraic hard decision decoder in conjunc

tion with a search for errors in the least likely positions. The list size of the Chase algorithm is 

constant and an extension to this algorithm, which generates a dynamic list and which can achieve 

maximum likelihood decoding if all codewords are processed, has been proposed by Kaneko et al. 

(1994). Other least-reliable-positions reprocessing approaches include the syndrome-based list de

coding algorithms, which are more suitable for high rate codes, proposed by Snyders (1991) and 

Lous et al. (1993). 

Similarly, many most-reliable-positions reprocessing algorithms have been devised. The algo

rithm of Dorsch (1974) can be considered as the first instance of the most-reliable-positions repro

cessing algorithms. 

6.2 Dorsch Decoding Algorithm 

Dorsch (1974) described a decoding technique that can be applied to any [ti,k,d] linear block code 

using soft-decision quantised to ./ levels. Assuming an AWGN channel with binary antipodal sig

nalling, the Dorsch decoding algorithm starts by permuting the vector received from the transmis

sion channel, which contains the transmitted codeword-mapped to binary antipodal signal and 

contaminated by Gaussian noise, in a decreasing reliability order. A hard-decision vector is then 

derived fi-om this permuted received vector and candidate codewords are derived from a set of k, 

independent, most likely bits. These codewords are derived using a parity-check matrix whose co

ordinates are rearranged according to the permutation of the received vector, and which has been 

reduced to echelon canonical form by elementary row operations. After evaluation of several candi

date codewords, the most likely codeword is output. 

A soft-decision decoder using a similar principle, but without soft-decision quantisation, has 

been described by Fossorier and Lin (1995), and it is called the Ordered Statistic Decoder (OSD). 

An order-i OSD algorithm systematically reprocesses 5Z*_o ( j ) error patterns in the k most reliable 

positions of the information set. The complexity of the OSD algorithm depends on the size of the 

list containing the error patterns and various approaches have been devised to reduce the size of 

this list (see e.g. Fossorier and Lin; 1996,1999; Fossorier; 2002; Isaka et al.; 2004). 

With the introduction of turbo principles, it was shown in Sweeney and Wesemeyer (2000) that 

the Dorsch decoder can be modified to produce soft-decision outputs and thus, can be arranged in 

an iterative scheme to decode product codes. It was also shown in Sweeney and Wesemeyer (2000) 

that the Dorsch decoder can be easily adapted to decode non binary linear codes. 

The power of the Dorsch decoder arises from the relatively unknown property that most codes, 

on average, can correct almost n- k erasures (Tomlinson et al.; 2007), which is considerably more 

than the guaranteed number of correctible erasures of rf-1, or the guaranteed number of correctible 

hard decision errors of {d - l ) /2 . In this chapter, the Dorsch algorithm for decoding binary codes 

without quantisation is described. An incremental correlation approach, which features low weight 

information vectors generated using the efficient revolving door algorithm (Bitner et al.; 1976; Ni-
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jenhuis and Wilf; 1978; Knuth; 2005), and a correlation function involving a small number of terms, 

is presented. This approach is very efficient and allows many codewords to be reprocessed. It is 

also shown that maximum likelihood decoding is realised provided all codewords are evaluated up 

to a bounded information weight which may be calculated for each received vector. 

6.3 Incremental Correlation Approach to Dorsch Decoding 

Throughout this chapter, binary transmission with antipodal signalling over A W G N channel and 

unquantised received vectors are assumed. Let C denote an (u, k,d\ code over IF2, which has code

word 

C = ( c o , C i , C 2 , . . . , C „ - 2 , C n - l ) . 

In binary antipodal transmission, it is assumed that each symbol Cj of c is mapped to Vi = ^(c^) € 

K, where the mapping function ^(cj) = 2cj - 1. Let the transmitted vector be denoted by v = 

(vQ,vi^... ^Vn-i). The received vector y = {yo,yi, - • • ̂ Un-i) consists of the transmitted codeword 

contaminated by independent Gaussian noise, denoted by n, with variance a^, i.e. ?/,- = Vi + 71, for 

0 < I < 71 - 1. The received vector is also assumed to have been matched-filtered and free from 

distortion so that 

<T^~ No' 

where is the energy per information bit and NQ is the single-sided noise power spectral density. 

Accordingly, = No/2Et. 

Consider the ith position of the received vector y , its a priori log-likelihood ratio is given by, 

assuming that Cj is the ith symbol of the decoder's output, 

fPr(yi\ci = 0)\ 

^^ = ' ° ^ ^ U r ( . j a . = i ) j 
^ e x p ( - ( 7 / . + l)V2<72) 

log, 
/ I 

\ 72^ ^ e x p ( - ( 7 / ^ - l ) V 2 0 ; 

= log, (exp ( { - ( 7 ; , + 1)2 + (vi - l f } / 2 a ^ ) ) 

= ~ y i . (6.1) 

From (6.1), it can be seen that, if the vector y is hard decision decoded, the likelihood of the zth 

being correct is proportional to \yi\. 

The basic principle of Dorsch's (1974) algorithm is to treat the k most reliable bits of the re

ceived vector as correct and to treat the remaining n - k least reliable bits as erasures. Let // be a 

permutation on coordinates of y such that /*(?/) = {y^o^Vtn^- • • and \y^^\ > [y^J for integers 

0 < i , j < n - 1 and i < j . Let ^i(H) be the parity-check matrix of C whose coordinates have been 

rearranged according to the permutation fi. By means of elementary row operations, the last n - k 

columns o f / i ( i f ) may form an identity matrix, i.e. fi{H) — [P \ / n - j t ] . In this form, the aforemen

tioned 71 - k erasures can be directly solved from the remaining A; columns of /z {H) to produce a 
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codeword c = (c,|cc), i.e. Cc = C i P ^ , where Ce is an n - k tuple containing the erased bits and is 
a k tuple containing the unerased bits. 

In the event that the last n-k columns of /i {H) cannot form an identity matrix, i.e. the last n-k 
columns are linearly dependent, and hence these positions cannot be solved as erasures, the matrix 
y. (H) has to be rearranged until the last n - k columns of this matrix are linearly independent.As 
a consequence of this rearrangement, some of the more reliable bits, say s bits*, have to be erased, 
s least reliable bits have to be treated as the more reliable bits and the condition \y^,, \ > \y^. \ for 
i < j is no longer satisfied. For convenience, let TT be the final ordering of y such that the last n - k 
columns of /i (H) are linearly independent and let this reordered final matrix be denoted by rr {H). 
Note that TT is also represented as the final ordering even in the event that the initial permutation 
of y has already produced an identity matrix in the last n- k coordinates of// (H) and it is obvious 
that TT is an identity permutation in this case. 

The event that the last n-k columns of ^ (H) are solvable as erasures depends on the power 
of the code and also the positions of erasures. For binary codes, the occurrence of the opposite 
event is quite common. Only maximum-distance-separable (MDS) codes are capable of solving any 
n-k erasures, MacWilliams and Sloane (1977), regardless of their positions. Unfortunately, the 
only MDS codes over F2 that exist are trivial codes: the single parity-check codes and their dual. 
However good binary codes are almost MDS, on average. 

Without loss of generality, the codeword c can be expressed as ( C ^ Q J ^ H • • • ^^r^~^)• ^^st A: 
coordinates c,- = {cn^, Crr,, • . . , c^ .̂.,) are simply obtained from TT (y), received vector y whose coordi
nates are permuted according to TT, using the following thresholding rule 

e.. = <' (6.2) 
0 otherwise, 

where 0 < i < A; - 1. The remaining n - k coordinates Cg = (c77fc,c„fc+,,. - • ,CTr„_,), which are erased, 
are solved using n{H). The codeword c = (cj | Cc) is either equal to the transmitted codeword, 
denoted by c, or needs only small changes to produce a codeword equal to c. 

Given a received vector y, it is well-known in Proakis (2001) that a codeword most likely to be 
transmitted-denoted by c', is the one which has the smallest Euclidean distance, see Definition 3.3. 
This is equivalent to a codeword c' with the highest cross-correlation with the respect to the received 
vector 

where v'j = (̂ĉ -) and ^(c) < A:{C!) for all c e C, c ^ c'. 
The Dorsch's (1974) decoding algorithm starts by evaluating A'(c). The cross-correlation of a 

codeword and the received vector can be written in any order 

n - l 

Depending of the code, a is usually a small integer. 
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and the cross-correlation can be split into two terms, i.e. 

k-l 71-1 

PC{c) = ^ 0 „ . 7 / „ , -^Y,v„.y„.. (6.4) 

i = 0 j=k 

The first term of (6.4) may be written as 

h-l k-l 

since the signs of Cjf. and that of y„. are equal for 0 < j < A: - 1. Thus, this first term is independent 
of the code and (6.4) can be rewritten as 

k-l n - l 

^{c) = J 2 \ y ^ j \ + ^ y ^ j y n j - (6-5) 
j=Q j=k 

Let 6 be a vector over F2 which contains the hard-decision vector of y obtained using the same 
thresholding rule as (6.2). It should be noted that, in general, 6 is not a codeword. For convenience, 
let z be another vector over IF2 defined as follows 

i = (ii|-2c) = c + 6. (6.6) 

It is worth mentioning that i,- = 0 since, as mentioned earlier, ĉ ^ and y„- have the same sign for 
0 < i < A: - 1. In the case of noiseless channel, the maximum attainable cross-correlation is given 
by 

^max — I ViTj |> 

which occurs when the received vector is equal to the transmitted codeword. Let sup(a;) be the 
support of vector x and sup(a;) be coordinates of x for which the value is 0. Equation (6.5) may be 
expressed in terms of i^max as follows 

J = 0 7 r j € 5 u p ( £ . ) 7 r j e s u p ( f e ) 

k-\ 

= E I I + E I I - E 1 I + E I y-i i - E \ y - j \ 

j=0 irjeSupiS.) Trjesup{£c) Trj6si ip ( i , ) iTj€sup{£, ) 

Tr_^esup(£,) 

This is equivalent to 

A'(c) = A ' ^ . . - A ( c ) , 
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where evidently 

A(c) - 2 ^ 1 I (6.8) 
T r j e s u p ( £ e ) 

is the shortfall from the maximum achievable cross-correlation for the codeword c. Further obser
vations can be made about the vector z. Since i,- = 0, the maximum possible weight i is 7i - k and 
its average weight is (71 - k)/2 at low Eb/No values. At high Eb/No values, the average weight z is 
small because there is a high chance that c = c. It may be seen from (6.8) that, in general, wt//(i) is 
directly proportional to the values of the correlation shortfall A(c) and it is inversely proportional 
to the cross-correlation value ̂ (c). 

Of course there is no guarantee that the codeword c is always equal to the transmitted codeword 
c. The code C has additional 2'̂ ' - 1 codewords, one or more of these may produce higher cross-
correlation value than X(c) and thus, the decoder has to evaluate more codewords in order to find 
such cases. Let these additional codewords be denoted by c*'* where / = 1,..., 2̂^ - 1. Each of these 
codewords has an associated binary antipodal vector v^^^ and the first term of the cross-correlation 
given by (6.5), is bound to be 

j = 0 j=0 

because, by definition, there has to be at least one bit among the coordinates 0,1,..., - 1 of ĉ '* 
that is flipped with the respect to c. In order for A'(ct'J) to be larger than X(c), the second term of 
/f(c*'*) has to be larger than the second term of A'(c) plus the negative contribution from the first 
term. Since the coordinates of the received vector are ordered, however, the first term has higher 
magnitudes than the second term and it follows that codewords more likely to produce a higher 
cross-correlation value than X(c) will have small number of changes in the first k coordinates. As 
a consequence, codewords which have small number of differences in these first k coordinates have 
to be generated. These codewords are represented by ĉ '' = (c{'*|ci'*^ and are referred to as low 
information weight codewords. Thus, the codewords ĉ '* can be represented by 

= (ci''|c('))=c-t-c('). (6.9) 

The codewords ĉ '̂  are generated such that wt// (j^f^^ increases as / is incremented. In this way, it 
becomes less likely for a codeword with larger /, compared to a codeword which has already been 
found, to have a higher cross-correlation value. 

Similar to (6.8), the cross-correlation shortfall may be derived as a function of c*'̂  Let the binary 
vector z^'^ associated with ĉ '* be given by 

z('> =6 + c + c('>, (6.10a) 

which, following (6.6), may be simplified to 

2('* = i + c<'̂  (6.10b) 
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Following (6.7), the cross-correlation of ĉ '' may be expressed as 

j r j e s u p ( « f > ) 

and equivalently, 

X (cO) = A-^o. - A ( c C ) . 

It is clear that the shortfall from maximum cross-correlation is 

A ( C < ' ) ) = 2 \y^s\ <6.12) 
Trjesup(r<')) 

and substituting for z^^^ gives A (ĉ '*) as a function of ĉ '̂  

A (cf>) = 2 " ^ ^ -t- ^ ] (n»od 2 ) ) 12/., I . (6.13) 

It is apparent that instead of determining X (ĉ '*) for each codeword c^'\ it is sufficient for the de
coder to determine A (cC^) for each low information weight codeword c<'\ and compare the correla
tion shortfall value to the minimum value obtained so far, denoted by A^in , starting with A (c), i.e. 

A „ , „ = min { A (C) , A ( c O ) , A (c'^') , . . . , A (cO) } . 

From the above description, it can be seen that it is more efficient for the decoder to compute the 
cross-correlation of the codeword ĉ '* instead of deriving c*** by solving TT {H) and compute the 
corresponding squared Euclidean distance. Since the codeword ĉ '* has an associated binary vector 
ẑ '* whose wt// (^r) is low, the number of non zero terms that need to be evaluated in (6.12) is 
typically (71 - A:)/2 rather than 7i /2 if (6.3) is evaluated, which results in an efficient and fast, soft-
decision decoder. In practice, unless the dimension of the code is very small, only a fraction of 2*-' - 1 , 
say L, codewords can be enumerated. At the end of decoding, the decoder will produce a codeword 
(c-H c**') where ĉ '̂  is the low weight information codeword that produces i^min-

In terms of implementation, the incremental correlation Dorsch decoder may be realised in an 
efficient decoder structure and this is depicted in Figure 6.1. The codeword c<*> may be efficiently 
derived from a generator matrix of the code, which can be obtained from n(H), using the revolv
ing door algorithm described in Section 4.2.5. The revolving door algorithm has the property that 
between two successive combinations, there is only one element that is exchanged; one coordinate 
leaves and another enters the combination. Therefore, given a new codeword, the cross-correlation 
value for the first A: terms can be easily computed by subtracting 21 ijout I and adding 21 T/i„ |, where 
out is the coordinate that leaves and in is the coordinate that enters the combination. The cross-
correlation value for the remaining 71 - A: coordinates can be easily computed once the support of 
(2-l-c('>), This incremental correlation Dorsch decoder gives two levels of performance improve
ments and complexity trade-offs. Firstly, it is obvious that the number of processed low informa
tion weight codewords is directly proportional to the decoder's complexity, and also the higher the 

139 



Chapter 6. Decoding of Linear Block Codes 

RcvoIving-Door combinotion 
generator, produces low information 
weight codeword. 

BetwcHi ead) eombinatioa ihero i i ontr ooo d n a e u 
that u dunced, ouiatha dement that C M S out f n i n 
wbcTEU in is that whid) goa iaiathi, mmfainailaa. 

NO 

Received vector, y 

Generate hnrd decision vector, 6 
Reorder y and b 

Solve matrix / / using the k most 
reliable information symbols. — 
This produces c and z = b + c 

inlbnnstiiui 

Generator matrix 
produces c '̂* 

parity vnibol̂  

If number of 
correlations 
exceed the 
pro-specified 
number 

opuofial 

If 

Exit if 

vvt{ i ) = 0 

F A S T C O R R E L A T O R 

A ( c r > ) = A ( c ! ' » ) 

2{ |y,n|- | f /„^|) 
for m&rnuitien lynibaU 

F A C T C O R R E L A T O R 

A ( c < ' > ) = = 2 g ( i , , + c < ' ) ) | , , , | 

jmL-
fcr parity nynitata. 

(c<") 

Rank 
codewords/ 
correlations 

2 ^ ] \y^i.iJ>^'mn 

iti ii the wdght of cuTTOit 
inlonnsUon vector 

Most likely 
codeword 

Figure 6.1: The structure of incremental correlation Dorsch decoder 

number of processed codewords the more probable the decoder will find the maximum-likelihood 
codeword. The second level of performance trade-off is given by ^ U M . a threshold for the weight of 
vector z*'*. The higher the weight of z '̂̂  the less likely this codeword is the maximum likelihood 
solution. One can select a value for wth so that vectors 2*'* of weight higher than wtu are ignored 
and only sets of low weight information codewords are considered. 

As a summary, the incremental correlation Dorsch decoding algorithm may be outlined in the 
flowchart depicted in Figure 6.2. 

6.4 The Number of Codewords Required to Achieve 
Maximum-Likelihood Solution 

The maximum information weight lUj^ax necessary to achieve maximum-likelihood decoding may be 
upper-bounded from the magnitudes of the received vector and A (c) initially, and updated by Amin 
as the decoding progresses. It is known that 

w-l 

A ( c f ) ) > 2 ^ | w . _ . _ J (6.14) 

where wtn (^f*) = bound given by (6.14) is reasonably tight since it is possible that there 

exists a vector z^'J where wtn (^f*) = ^max and wt// (z io) = 0- Correspondingly, w^ax is the 
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Figure 6.2: Outline of the incremental correlation Dorsch decoding algorithm 

smallest integer such that 

2 £ |2/.,_,_. |> A,„i„, 
j=Q 

(6.15) 

Nevertheless, for a given integer w, it is not necessary to enumerate all (^) codewords that have 
information weight w. This is because a bound may be derived for A,nin in terms of the coordinates 
of the information vector, the weight of the information vector and the magnitude of selected coor
dinates of the received vector. For an information weight i«, let the integers t e {0,1,2,.. . , T{W)} 
and t' € {T{W) + 1, T{W) + 2,, ..,k-w] such that 

w-2 

l^min < I y^r, I + ^ I | (6.16a) 

and 

w-2 

(6.16b) 
j = 0 

Here, T{W) is the maximum position in the received vector y among the first A; coordinates such that 
(6.16a) is satisfied. The position of T{tu) in the first k coordinates may be illustrated by Figure 6.3. 
In this figure, it can be clearly seen that the permutation TT applied to the coordinates of the re
ceived vector results in decreasing order of reliability of the received vector. Using T{W), NMi(y), 
the minimum number of codewords that needs to be enumerated to achieve maximum-likelihood 
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k coopdinntes 

Figure 6.3: Position of r(7i;) in the first k coordinates of a received vector 

solution as a function of the received vector y, can expressed as 

w=0 ^ ^ 
(6.17) 

For many short codes, it is found by means of simulations that NML {y) is surprisingly small in 
comparison to the total number of codewords. 

6.5 Numerical Results of Some Binary Codes with Large 
Minimum Distance 

The decoder can be used for any linear code and best results are obtained for codes which have the 
highest minimum distance for a given block length and dimension, i.e. the best known linear codes 
which may be obtained from Grassl (2007). In the following, results for some powerful binary codes 
are presented. The numerical results for each code is compared against the Shannon's sphere pack
ing lower bound offset by binary transmission loss, see Shannon (1959) and Butman and McEliece 
(1974). This bound is obtained numerically using the method described in Ahmed et al. (2007). 

6.5.1 [136, 68, 24] Quadratic Double-Circulant Codes 

A particular good class of linear codes is the class of binary self-dual doubly-even quadratic double-
circulant codes discussed in Section 5.3.3. This class of codes includes the perfect [24,12,8] Go-
lay code, whose coordinates can be rearranged such that the parity-check matrix of this code is in 
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Figure 6.4: F E R performance of the [136,68,24) quadratic double-circulant code as a function of the 
number of codewords enumerated 

double-circulant form; the [48,24,12] extended quadratic residue code which, according to Houghten 
et al. (2003), is the only binary self-dual doubly-even code for this length; and the [136,68,24] 
quadratic double-circulant code, which is the longest extremal self-dual code known to date. 

The [136,68,24] quadratic double-circulant code is in bordered double-circulant form, see (5.5b), 
with defining polynomial of the right circulant given by 

+ X2S + X^e -H x29 + X ^ ^ + X ^ ^ + X^*^ + X ^ ^ + X ^ ^ -\- x'*« + 

The frame-error-rate (FER) of this code obtained using the incremental correlation Dorsch decoder 
and the offset sphere packing lower bound are depicted in Figure 6.4. Also shown in this figure is 
the F E R performance of this code as a function of the maximum number of codewords enumerated. 
It can be seen from Figure 6.4 that the performance of the [136,68,24] code is around 0.2 dB away 
from the offset sphere packing lower bound. 

The conclusion from Figure 6.4 is that the performance of the [136,68,24] quadratic double-
circulant code in conjunction with the incremental correlation Dorsch decoder is within 0.2 dB of 
the best achievable performance for any (136,2*^®) binary code (linear or non linear) at 10"^ FER. 
Interestingly, as observed from computer simulations, there is a significant number of maximum-
likelihood codeword errors, which have a Hamming distance of 36 or 40 from the transmitted code-

143 



Chapter 6. Decoding of Linear Block Codes 

? 0.8 

Eb/No=i.5dB 
E(/No=:3.5dB 

lO' 102 103 10̂  io8 io '° 10" 10'2 10̂ 3 10'-' ID'S 10'6 10'7 
Number of codewords evaluated 

Figure 6.5: Probabihty of maximum hkelihood decoding as a function of the number of codewords 
evaluated for the [136,68,24] quadratic double-circulant code 

word. This indicates that bounded distance decoding would not perform well for this code. 

For each received vector y, as discussed earlier, N^Liy) codewords are required to be evalu
ated, see (6.17), in order to guarantee a maximum likelihood decoding. Ailer enumerating a certain 
number of codewords and knowing A^A//>(y)i the probability of maximum likelihood decoding can 
be estimated. Figure 6.5 shows the average probability of maximum likelihood decoding of the 
[136,68,24] quadratic double-circulant code as a function of the number of codewords evaluated at 
operating points Eb/No = 1.5 dB and Eb/No = 3.5 dB. From Figure 6.5, it may be seen that eval
uating 10̂  codewords per received vector gives 66% of probability of maximum likelihood decoding 
and for the remaining 35% of the received vectors, even though maximum likelihood solution is not 
guaranteed, its likelihood is relatively small as depicted in Figure 6.4. 

A detailed operation of the decoder may be seen by considering an example of the received 
vector at the operating point of Eb/No = 2.5 dB. The magnitudes of the received coordinates, in 
the order of TT , is shown in Figure 6.6. In this particular example, the initial ordering // results in a 
singular parity-check matrix in the last /i-fc least-reliable coordinates, leaving the //osth coordinate 
dependent. The permutation TT which swaps the coordinates ^GG with //ca unlock this dependency 
issue and this change is evident by inspecting the magnitude of the ordered received vector 7r(y) 
in Figure 6.6. For this particular received vector, there are 16 coordinates that are in error and 14 
of them are on the n - k least-reliable coordinates. Using 10̂  maximum codewords, this decoder 
produces the minimum value of the cross-correlation shortfall Amin = 13.8 and this occurs at the 
640th codeword, for which the cross-correlation value X (ĉ *''****) = 126.2 and X^nax = 140. The weight 

144 



6.5. Numerical Results of Some Binary Codes with Large Minimum Distance 

ĵf ̂ (640)̂  wt/y (z*®**̂ *) = IG which corresponds to the 16 erroneously received bits. 
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Figure 6.6: Magnitudes of an example received vector, ordered by n, at Eb/No = 2.5 dB 

In practice, it is not necessary to evaluate A (ĉ '̂ ) for every low information weight codeword 
c*'' generated. In many cases, wt// (JS*'*) is sufficiently high to indicate that the corresponding 
codeword c*'* = (c -t- c*'*) = (2*'* + 6) is unlikely to be the maximum likelihood codeword. Figure 6.7 
shows the cumulative probability distributions of wt// (z*'') for the case where c*'* is equal to the 
transmitted codeword and the case where c*'' is not equal to the transmitted codeword. The plot in 
Figure 6.7 is obtained at operating point Eb/No = 3.5 dB. Considering a decoding rule that discard 
all z*'* of weight 28 or more. This means that 

^27 /68\ 
£^w~0 \wJ 

268 X 100% = 5.7% 

of total candidate codewords are considered and the remaining 94.3% candidate codewords may be 
rejected. From Figure 6.7, the probability of vector 2*') of weight 28 or more produces a correct 
codeword is approximately 10~®, and from Figure 6.4, there are 2.3 frames in error per 10̂  frames 
transmitted at Eb/No = 3.5 dB. As a consequence of this decoding rule, the F E R is degraded to 
3.3 X 10"«. 

6.5.2 [154, 77, 23] Best Known Linear Code 

In Chapter 4, it is shown that there exists a (154,77,23] binary Hnear code which improves the lower-
bound on the minimum distance of any half-rate linear code over IF2 of dimension 77 by one, i.e. the 
previously considered best known linear code was the code [154,77,22]. The F E R performance of 
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Figure 6.7: Cumulative probabihty distributions of wt// (z '̂J) at ^b/jVo = 3.5 dB 

this code, which is derived from cychc code of length 151, under the incremental correlation Dorsch 
decoder is depicted in Figure 6.8. It may be seen that, at 10"̂  FER, the [154,77,23] best known 
linear code is approximately 2.5 dB away from the offset sphere packing lower bound, 

6.5.3 [255,175,17] Cyclotomic Idempotent LDPC Code 

This code is from a class of the One-Step M^ority-Logic Decodable codes originally used in hard-
decision majority-logic decoding (Lin and Costello, Jr.; 2004). It has the same parameter as the code 
in the family of Euclidean geometry codes which are shown by Kou et al. (2001) that they are iter-
atively decodable as LDPC codes. This (255,175,17] code, which is cyclic, can be easily constructed 
using the theory of cyclotomic cosets and idempotents as shown in Section 2.2. The parity-check 
matrix of this cyclotomic idempotent LDPC code consists of 255 cyclic shifts of the following polyno
mial 

m(x)h(x) = 1 + a; + + . T ' + + + x-̂ i + + x^^-\-

Figure 6.9 shows the F E R performance of this cyclic LDPC codes under the standard belief 
propagation and incremental correlation Dorsch decoding with 5.5 x 10*̂  codewords. With this ar
rangement, the Dorsch algorithm gains around 0.4 dB over the belief-propagation algorithm at 10"'* 
FER. A hybrid decoding approach may also be utilised to decode this LDPC code, that is by execut
ing the Dorsch algorithm after the belief propagation has completed. There is an option of executing 
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Figure 6.9: F E R performance of the (255,175,17] cychc LDPC code 

147 



Chapter 6. Decoding of Linear Block Codes 

the Dorsch algorithm for the non convergent blocks or for all blocks output by the belief propagation 
decoder. A more complex hybrid arrangement can also be employed, that is by executing the Dorsch 
algorithm after every i iterations of belief propagation algorithm, see e.g. Fossorier (2001). 

6.5.4 BCH and Goppa Codes 

The extended BCH code, [128,64,22], is a powerful binary error correcting code, which has appeared 
many times in the published literature to benchmark various decoders' performance. Figure 6.10 
shows the F E R performance of this powerful extended BCH code and it is clear that it has a per
formance around 0.2 dB away from the best (128,2^ )̂ binary code over the entire range of Eb/No 
simulated. 

For relatively long codes, good F E R performance may also be obtained using the incremental 
correlation Dorsch decoder. This is shown in Figure 6.11 which plots the F E R curves of the 4-error 
correcting BCH code of length 1023, [1023,983,9] primitive BCH code, under incremental correlation 
Dorsch decoding and algebraic hard decision decoding. The offset sphere packing lower bound is 
also shown in this figure and we can see that the F E R performance of this code, using the incremen
tal correlation Dorsch algorithm with a maximum of 10® codewords , is around 1.4 dB away from 
the bound at 10"̂  FER. Although this may seem excessive compared to the other codes previously 
considered, there is a gain of approximately 1.5 dB over the hard decision decoder. 
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10 
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-0.5 2 2.5 4.5 

Figure 6.10: F E R performance of the [128,64,22] extended BCH code 

Goppa codes are commonly regarded as better codes than the corresponding primitive BCH 
codes of the same length and dimension. This is because, compared to a BCH code having the same 
number of redundant symbols, the Goppa code has one extra information symbol. As an example. 
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there exists a [511,466,11] primitive BCH code generated by generator polynomial (j(x) = 1 + + 
whose roots have order 2̂  - 1 = 31 which is relatively prime to 511. Using (j{x) as the Goppa 
polynomial, a [512,467,2deg((/(3;)) -t- 1 = 11] Goppa code can be constructed. It is clear that an 
overall parity-check bit can be annexed to this code to produce a [513,467,12] extended Goppa code. 
The F E R performance of this extended Goppa code is shown in Figure 6.12. Compared to the 
offset sphere packing lower bound, which is also shown in Figure 6.12, at 10"'* FER, the realised 
performance of the code using the incremental correlation Dorsch decoder is within 0.35 dB. 

It is relatively simple to produce a list decoder from the incremental correlation Dorsch decod
ing algorithm. In addition, this incremental correlation Dorsch algorithm may also be straightfor
wardly modified to decode non binary linear codes such as Reed-Solomon and Algebraic Geometry 
codes. Note that there also exist an alternative list decoding decoding algorithm for these non bi
nary codes: the Guruswami-Sudhan (GS) decoding algorithm, see Guruswami and Sudan (1999) 
and Guruswami (2001). The GS decoding algorithm is a type of list decoder that is capable of 
correcting more errors than a bounded-distance decoder. The GS decoding algorithm is based on 
polynomial interpolation and Koetter and Vardy (2003) has extended this interpolation concept to 
produce a soft-decision decoder for Reed-Solomon codes, which is commonly known as the Koetter-
Vardy (KV) algorithm. 

6.6 Summary 
• Dorsch's (1974) decoding algorithm may be extended to approach maximum likelihood de

coding by an incremental correlation approach in which for each received vector, a partial 
summation metric is evaluated as a function of low weight information codewords. 

• The upper-bound on the number of codewords that need to be enumerated in order to achieve 
a maximum likelihood solution may be obtained as the decoding progresses. 

• If binary transmission is employed, the extension of this decoding algorithm to non binary 
codes is straightforward by using the binary image of the non binary code. 

• It has been shown that for many powerful codes of short block lengths, performance that 
is close to the offset sphere packing lower bound can be achieved. To the best of author's 
knowledge, there are no equivalent, iteratively decodable codes that have similar performance. 

• The decoder may be efficiently implemented by employing Nijenhuis and Wilfs (1978) revolv
ing door combination generator to generate low weight information codewords, where for two 
successive codewords, there is only one element that is flipped in the k most-reliable coor
dinates. Furthermore, a threshold may be imposed on the low weight information vector in 
order to allow performance and complexity trade-off. 

• The incremental correlation Dorsch decoder may be easily modified to become a maximum 
likelihood list decoder, which as the name implied, generates a list of candidates codewords 
ranked in the order of increasing squared Euclidean distance to the received vector. A useful 
application of this maximum likelihood list decoding is in novel CRC-less error detection, 
which is discussed in Chapter 7. 
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' Y Incremental Redundancy 
Communications 

A typical communication system uses channel coding to ensure reliable transmission of information 

from source to destination. Channel coding can be employed in two different ways: error correction 

and error detection. In both ways, a message is split into several data blocks and for each data block, 

some redundant symbols are obtained (these redundant symbols are functions of the symbols in the 

data block) and appended to each data block. In transmission, instead of sending strings of data 

blocks only, strings of data and redundant symbols are transmitted. In the error correction case, 

these redundant symbols are used by the decoder in the receiving end to correct any errors that may 

have occurred during.transmission. In the error detection case, on the other hand, channel coding 

is typically used in conjunction with automatic-repeat-request (ARQ) scheme. Upon the receipt of 

the data and redundant symbols, the decoder recomputes a new set of redundant symbols based 

on the received data block. I f the recomputed redundant symbols are the same as those of the 

received symbols, successful transmission is declared by sending an acknowledgement (ACK) to the 

transmitter, otherwise an error is detected and a negative acknowledgement (NACK) results in a 

retransmission. 

While this retransmission scheme can guarantee high data transfer reliability, repeating the 

transmission of the entire block is certainly not efficient in terms of throughput. A more efficient 

system can be achieved by retransmitting a new set of redundant symbols. This technique is com

monly known as the incremental redundancy (IR) ARQ scheme. In this arrangement, two levels 

of error protection are employed: the first level employs an error-detecting code, such as a cyclic-

redundancy-check (CRC) code, to detect errors in the user message; and the second level employs 

an error-correcting code which protects both user message and its check. 

The idea of incremental redundancy dates back to the work of Davida and Reddy (1972) and 

later that of Mandelbaum (1974). A historical overview of the development of this retransmission 

scheme, which is also known as the type-II hybrid ARQ (HARQ), is given in L in and Costello, Jr. 

(2004). Since the discovery of turbo codes and the rediscovery of low-density parity-check ( L D P C ) 

codes, there is a growing interest in the IR-ARQ scheme using these iteratively-decodable codes 

(Narayanan and Stuber; 1997; L iu et al.; 2003; Sesia et al.; 2004; Soljanin et al.; 2006). These 

iteratively decodable codes form a class of low-decoding complexity codes which, in general, have 

relatively poor minimum distance. The performance gain of this class of codes comes from their 

large block length and hence, they are not suitable for short packet applications. 

This chapter discusses approaches of code construction and error detection for short packet IR-

ARQ applications. Only construction of binary, general linear codes is considered in this chapter 

and the feedback channel of the IR-ARQ scheme is assumed noiseless. 
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7.1 Overview of Incremental Redundancy Codes 

Incremental redundancy codes have the property that all symbols of the higher-rate code are con

tained in the lower-rate code. There are two approaches to construct codes with this property. The 

most commonly used approach is to use a good low-rate code, which is then successively punc

tured to produce higher-rate codes. Iteratively-decodable codes for incremental redundancy are 

constructed in this manner (Narayanan and Stuber; 1997; L i u et al.; 2003; Soljanin et al.; 2006). 

and so are the codes that appeared in Davida and Reddy (1972) and Mandelbaum (1974). Using 

this approach, the minimum distance of the punctured code can collapse unless there is a proper 

selection of puncturing patterns and to determine good puncturing patterns is non trivial. A second 

approach is to start with a good high-rate code and successively add parity check symbols to pro

duce longer lower-rate codes with higher minimum distance. Some of the codes obtained from this 

approach include the codes introduced by Krishna and Morgera (1987), the short codes of optimal 

weight structure from a computer search carried out by Cygan and Offer (1991), and the (u\u + v) 

construction of Reed-Muller codes (Wicker and Bartz; 1994a). In this chapter, some methods of 

constructing incremental redundancy codes based on the second approach are shown. 

In incremental redundancy with M transmissions, the property of an {n,k,d] incremental re

dundancy codes C implies that its codeword c e C can be partitioned into M subblocks of code

word, i.e. c = Hp(»)|p(2) | . . . |p('^')), where c*') = (u|p(i>) e C^'\ ĉ )̂ = (c(»)|p(2)) e C^^), . . 

c = ct̂ '> = (c(^'-^>|p(^'>) e C(^'> = C. Here u denotes the information block of length A:, p(») denotes 

the zth parity block of length r,- and C*'̂  denotes an [n,- = k-h Yl)=:\ ^'h code. It is desirable to 

have di > f / j- i for 2 < i < M, however, it is not trivial to append parity symbols to increase the 

minimum distance while maintaining high code-rate of the overall code. Nonetheless, this can be 

neatly achieved, as shown in Section 7.2, by applying Constructions X and X X to a chain of cyclic 

codes. 

7.2 Juxtaposition Codes: Chain of Cyclic Codes with 
Constructions X and XX 

If C is a cyclic code, there exists a generator polynomial g(x) e ^2(2:] and a check polynomial h{x) e 

]F2[x] such that g(x)fi{x) = x " - 1. Two cyclic codes, Ci with gi(x) as the generator polynomial and 

C2 with y2(x) as the generator polynomial, are said to be chained or nested, if */ i (x) | ( /2(x) , and they 

are denoted by C\ D C2. With reference to this definition, it is clear that narrow-sense B C H codes of 

the same length form a chain of cyclic codes. 

Let G = [Ik\ - fl) be an A: X n reduced-echelon generator matrix of a cyclic code with generator 

polynomial £f(x), the ith row of G is lx^'{x"~^'^*~^ - r„-k+i-\{x))] where rj(x) = x^ mod g{x). 

7.1 L e m m a . Consider a chain of cyclic codes, Cx D Co, where gi(x) = fi{x) and g2{x) = fi{x)f2{x), the 
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reduced-echelon generator matrices of these cycHc codes can be written as 

• 

-r2,n~2(x) 

-T ' 2 . « - l (3 ; ) 

0 

where Gi is the reduced-echelon generator matrix of C,-, Ik is a kxk identity matrix and the 

polynomial r i j ( . T ) = mod (7i(3;). 

Proof. It is obvious that the first k-2 rows of G\ is G 2 . The proof that the polynomials formed by 

the last k\ - k2 rows of G i do not contain /aCi) , where deg(/2(3;)) = ki - k2, as a factor, is required. 

From the (^2 + i + l)th row of Gu for 0 < i < ki - k2 - 1, Ui(x) can be expressed as 

Ui{x) = 
: ^ - ^ + ' - a ; ^ ' n , , _ , . . + ^ . , + , ( x ) 

For 0 < i < A*i - A:2 - 1, the numerator has degree at most n - k2 - I and deg(/i(3;)) = n - so the 

maximum degree of Ui(x) is A:i - A;2 - 1 and therefore, /2(x) \ Wi(x) since deg(/2(x)) = ki - k2. a 

Given a chain of two codes, using Construction X (Sloane et al.; 1972), the code with larger 

dimension can be lengthened to produce a code with increased length and minimum distance. A 

generalised Construction X which involves more than two codes is given in the following theorem, 

see also Bierbrauer and Edel (1997). 

7. i Theorem (Generalised Construction X). Let Bi be an [thki.di] code, given a chain of M codes, 

Bi D 82 O ••• D ^M, and a set of auxiliary codes Ai = for I < i < M - 1, where 

k'i = ki - ki, a code Cx = [n -\- I]f=7' code can be constructed, where d = min{</^y. f/j\/-i 4-

From Theorem 7.1, the corollary below follows. 

7,1 Corollary, Let v be a vector of length n formed by the first n coordinates of a codeword of C A - . A 
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codeword of Cx is a juxtaposition of codewords of /?, and Ai, where 

( 6A/ I 0 I 0 

{ 6 M - I I 0 I 0 

{ ^^^-2 I 0 I 0 

| . . . | 0 I 0 ) 'lfveB^^, 

I . . . I 0 I aM-i ) i f u c 6M-U 

I . . . I a^f _2 I aA/ - i ) i f u € BM 2, 

( f^2 I 0 I as i aA/-2 I o.M-\ ) i f v e 

aM-2 I aA/- i ) if u € 

Note that e and a, e A^. 

Another lengthening method is Construction XX, which uses a lattice of four codes and makes 

use of Construction X twice. This construction was introduced by AJltop (1984) and is restated in 

Theorem 4.2 in Chapter 4. 

7.2 Corollary. Lot u be a vector of length n formed by the first 71 coordinates of a codeword of C^x- A 

codeword of C X , Y is a juxtaposition of codewords of 6i and where 

{ 64 I 0 I 0 ) i f u e 

( 63 I a , I 0 ) i f v € 5 3 . 
( 62 I 0 I aa ) i f u e 82. 

( 61 I a i t 02 ) i f v e Z?,. 

From Corollaries 7.1 and 7.2, assuming that bj - (u|p***) and - (p*'"*"'*) for some positive in

tegers j and i , it is obvious that the codes obtained from Constructions X and X X follow the property 

of incremental redundancy codes. Cyclic codes of length 71, with appropriate arrangement of their 

zeros, can be put in chain form and hence, they are good candidate linear codes for Constructions X 

and XX. It is known from the literature that a cyclic code can have the highest minimum distance 

attainable by any («, k] linear code. Due to their nested structure, it is possible to extend cyclic 

codes using Construction X or XX to produce more codes which have the highest minimum dis

tance, see Bierbrauer and Edel (1997), GrassI (2001), Tjhai, Tomlinson, GrassI, Horan, Ahmed and 

Ambroze (2006), and Tjhai and Tomlinson (2007) as examples. It is also known that narrow-sense 

B C H codes are nested and so are the extended codes. 

Example 7.1: Consider the following chain of extended B C H codes of length 128, 

Bi - [128,113,0] D ^2 = (128,92,12] D B,i = [128.78.16] D B4 ^ [128,71,20] 

Chain of BCH 

codes. Con

struction X 

and 
Applying Construction X to [128,113.6] D [128,92,12] with an [32,21,0] extended B C H code as auxil- incremental 

iary code, a [160,113,12] code is obtained and it follows that , . 
redundancy 

[160,113,12] D [160,92,12] 3 [100,78,16] D [160,71,20]. "̂ ^̂ ^̂  
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Using a [42,35,4] shortened extended Hamming code as the auxiliary code in applying Construction 
X to [IGO, 113.12) D [160,78,16] yields 

[202.113,16] D [202,92,10] D [202,78,16] D (202,71,20]. 

Finally, applying Construction X to (202,113, IG] D (202,71,20] with the shortened extended Ham

ming code (49,42,4) as the auxiliary code yields 

[251,113,20] D [251,92,20] D [251,78,20) D [251,71,20]. 

A sequence of codes for IR-ARQ [128,113,6], (160,113,12], (202.113,16] and (25L 113,20] is obtained. 

The generator matrix of the [251,113,20] code may be written in a form given by 

\ / 

0 0 0 

G = -R3 G A , 

0 Il4 -

/2I 

(7.1) 

J 

On the left hand side of the double bar, the generator matrix of the code Bi is decomposed along 

the chain Bi D B2 D D B4 (see Lemma 7.1). The matrices G^, . , for 1 < t < 3 are the generator 

matrices of the auxiliary codes Ai. In this form, obtaining the generator matrices for the shorter 

codes in the sequence is straightforward. 

struction XX 

and 

incremental 

redundancy 

codes 

Chain of BCH Example 7.2; Refining the chain of extended B C H codes from Example 7.1, a lattice of extended 

codes, Con- cyclic codes shown in Fig. 7.1 can be constructed. All, except B2 and BQ, are extended primitive 

narrow-sense B C H codes. Let Bi be the cyclic code obtained by removing the overall parity-check of 

Bi and let a be a primitive nth root of unity. Let denote the representative zeros of 5,-, the cyclic 

codes B2 and ^0 have zeros Z^^ U [a^] and u {Q*^,a^^} respectively Applying Construction X X 

to the lattice of ^ i , B2, B3 and B4 with auxiliary codes ^1 = (8,7,2) (single parity-check code) and 

A2 = [20,14,4) (shortened extended Hamming code), the following chains are obtained, 

(136,113,8) D (136,92,12) D (136,78,14) D (136,71,20), 

(156,113,12] D (156,92,12) D (156, 78,14] D [156,71,20). 

Using ^ 3 = [40,28,6] and A4 = [47,35,6] (best known linear codes from GrassI (2007)) as the 

auxiliary codes in applying Construction X X to the lattice of codes [156.113,12] D [156,85,14) and 

(156,113,12) D (156,78,14), where the subcodes are obtained by padding zeros to the codes BQ and 
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Bi^ [128,113,6 

B2 = [128:106,8 

= ^ , 9 9 , 1 0 

^4 = ^2 = [128,92,12 

Bs = [128,8^14] ^ ' ' ' ^ ^ 

BG = \nS, 78,14 

^7 = ^5 0^6 = [128,71,20 

Figure 7.1: Lattice of extended cyclic codes 

^5, it follows that 

[196,113, lA] D (196.92, U] D [196, 78, M) J [196, 71,20], 

[243,113,20] D [243,92,20] D [243,78,20] D [243,71,20]. 

A sequence of code for IR-ARQ (128,113, G], (136,113,8], (156,113,12], [196,113,14) and [243,113,20] is 

obtained. 

The generator matrix of the [243,113,20] code can be written in a form given by 

6' = 

/71 - i?5 0 0 0 

\ 
0 

- R-4 

- R 3 G A . 

0 

I7 - H i J 

(7.2) 

On the left hand side of the double bar, the generator matrix of the code B\ is decomposed along 

the chain Bi D B2 D B4 D B^ D B7 (see Lemma 7.1). The matrices and G ^ . generate the 

corresponding auxiliary codes At, where as an effect of Construction XX, the matrices G ^ , do not 

have full rank. 
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7.3 IR-ARQ Protocols, Error Detection Mechanisms and 
their Performance Analysis 

The transmission stages of an IR-ARQ scheme with M maximum transmissions is illustrated in 

Fig. 7.2. For the first transmission, a codeword of C^'J is sent, and for the ith transmission, 2 < i < 

M, parity checks are transmitted such that the overall concatenated codeword is an element 

of C^*K An IR-ARQ scheme requires a mechanism of error detection so that either A C K or N A C K 

can be used to provide feedback to the transmitter An A C K signal is fed back to the transmitter to 

indicate a successful decoding and no further parity-checks are required, whereas a N A C K signal 

is sent to request for transmission of more parity-checks. Three error detection mechanisms are 

considered in this chapter; these arc error detection based on a C R C , two successive outputs of an 

error correction decoder, and confidence levels of the soft decision outputs of an error correction 

decoder. 

In this section, three approaches to error detection are described and analysed. For the conve

nience of analysis, it is assumed that the channel is perturbed by additive white Gaussian noise 

and that binary antipodal signalling, which maps the coordinates of ĉ *' = {r^'\c\'\ ... ^ 

to the real coordinate space R"*, is employed. This mapping function is defined as rp(c^*^} = 2cf'* - 1 . 

7.3.1 Error Detection based on Cyelic-Redundaney-Check 

The cyclic-redundancy-check (CRC) is the simplest and the most commonly used mechanism for 

error detection in IR-ARQ schemes. The block diagram of an IR-ARQ scheme employing C R C is 

shown in Figure 7.3. For an {k - m) bit C R C , the IR-ARQ protocol, in relation to Figure 7.2 can be 

described as follows: 

1. An m bit user message, u, is encoded by a C R C encoder to produce a codeword x = {u\z) of 

length k bits. This A;-tuple is then encoded by the forward error correction ( F E C ) code C^^'* to 

produce c = (w|z|p(^)|p(2)|... |p{^^)). 

n = riM 
m. symbols crc 1 2 M 

k-^n 

1̂ * transmission: 

2"'' transmission: I 2 

M**̂  transmission: 

"1 

m symbols crc 1 

7*1 • 

2 

Hi = nt_i + r 

"— rxj —-
M 

Figure 7.2: Transmission stages of a typical incremental redundancy ARQ scheme 
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u 

m k n 
symbols CRC symbols FEC symbols 

U encoder X encoder 
C 

ACK 

NACK 

Transmission 
controller 

1 V 

Channel 

1 
ACK/NACK CRC c FEC y Rcccrvcd 
generator detection decoder buffer 

y 

Figure 7.3: Incremental redundancy system employing C R C 

2. The codeword ĉ '* = (u|z|p('^) 6 C<*̂  is transmitted and received as y = y '̂* at the input to 

the receiver. The vector is decoded as C*^* using the F E C decoder and c*'̂  is obtained at 

the end of decoding. 

3. If c*'* passes the C R C check, an A C K is sent to the transmitter to indicate successful trans

mission and the process stops here; otherwise y^^J is kept in the buffer and a N A C K signal is 

transmitted to request for additional parity-check bits. 

4. In the case of N A C K , the transmitter sends parity-check p(̂ ^ of length r2 and received as y'. 

At the receiving end, the vector y*̂ * = (y^^*|y') is decoded as C*^* to produce c*^\ 

5. I f c* '̂ passes the C R C check, c*̂ * is accepted as the correct codeword and an A C K is sent to the 

transmitter; otherwise ŷ *̂ is kept in the buffer and a N A C K signal is transmitted requesting 

for more parity-check bits. This process then continues until cither the C R C is satisfied or the 

maximum number of transmissions per message M is reached. 

The length of the C R C provides a trade-off between throughput and the error probability. A 

short C R C increases throughput, but the undetected error probability increases and results in an 

early error-floor which dominates the frame-error-rate ( F E R ) of the system. Let V be the C R C code 

and assume that d' eV '\s the correct message. Then the probability of undetected error of C R C is 

d"€l?, d"^d' 
(7.3) 

where Pr(d"\d) is the probability of d" is output by the F E C decoder, given the input d. Using 

similar arguments, the probability of detected error is given by 

Pr(lc\d)= Pr(d"\d). (7.4) 

7.3.2 Error Detection based on Two Successive F E C Decoding 

In order to overcome the error-floor of C R C , consider a CRC-lcss approach that makes a feedback 

decision based on the output of two successive F E C decoding output. Note that since no C R C is 
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symbols symbols FEC 
encoder 

Transmission 
conlrollcr 

NACK 

ACWNACK 
generator 

rator comp 

Delay 

Channel 

FEC y Received 
buffer 

y' 
decoder 

Received 
buffer 

Figure 7.4: CRC-less incremental redundancy system, using output of two successive F E C decoding 
for error detection 

employed, m = k. The block diagram of this CRC-less incremental redundancy scheme is shown 

in Figure 7.4. In relation to Figure 7.2, the IR-ARQ protocol using this CRC-less error detection 

approach can be described as follows: 

1. A A: bit user message, u, is encoded by an F E C encoder of the code C*^'* to produce a codeword 
C = H p ( ' ) | p ( 2 ) | . . . | p ( M ) ) . 

2. The codeword ĉ '̂  = (u|p*^*) e C^'' is transmitted and received as y = y*** at the input to the 

receiver. The vector y '̂* is decoded by an F E C decoder of the code C*'* to produce c*̂ ^ and the 

corresponding information block is u^^\ Both y '̂* and u*̂ * are kept in the receiver's buffer 

and a N A C K is sent to the transmitter. 

3. The transmitter sends parity-check p^^^ of length r2 and it is received as y' at the receiving 

end. Using a concatenation of received vector yf^) = (y*^*|y'), the F E C decoder outputs a 

codeword ĉ *̂ € C*^* which corresponds to an information block ii^'^K I f u*^* = u*'* is 

accepted as the correct information block and an A C K is sent to the transmitter to indicate 

successful transmission; otherwise ŷ '̂ and u^^^ are kept in the receiver's buffer and a N A C K 

signal is transmitted to request for additional parity-check bits. 

4. In the case of N A C K , the transmitter sends parity-check pt̂ * of length and received as y* 

at the receiving end. The vector y* '̂ = (y*^*|y') is decoded as C^^* to produce ĉ *̂ with the 

corresponding information block vf'^K 

5. I f u*̂ * = u^^\ iiS^^ is accepted as the correct information block and an A C K is sent to the trans

mitter; otherwise both y(^) and u*̂ * are kept in the buffer and a N A C K signal is transmitted. 

This process then continues until either = for 4 < i < A'/, or the maximum number 

of transmissions per message M is reached. 

Assuming that a maximum-likelihood (ML) list decoder is employed at the receiving, let the 

event that this M L decoder outputs a codeword c***, c*** ^ c^^\ where ĉ '* is the transmitted code

word, at ith transmission be denoted by MLi(c^**). Then the probability of undetected error of this 
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approach is given by 

Prd.c) = Pr (ML..+t((c('>|p('-^»))) 1 ML,(c<'>)) , (7.5) 

and the probability of detected error is simply 

Pr(7 . ) = ^ P r (MLi+,(c(-+')) j MLi(c^'^)) . (7.6) 

7.1 Definition (Cross-correlation). The cross-correlation between a received vector y and a code

word c is defined as 

A'(y,v(c)) : ^ ( 2 ( : , - 1 ) / / , 
J. 0 

7.2 Definition (Cross-correlation difference). Given a received vector y, the cross-correlation dif

ference between two codewords, c and c', is defined as 

rt(c,c') A^(y,v(c)) -A^(y,v(c')). 

Let ĉ '̂  and c*** be the most likely and the next most likely codewords respectively in the list 

output by the M L list decoder at the ith transmission. Following Definitions 7.1 and 7.2, the cross-

correlation difference between these two most likely codewords is given by 

= 2 ' I ; y r ( ^ ^ ^ » - c y ) ) 
j::0 

where ^ {sup(c^'* G ĉ **) nsup(c)}, 5a = {sup(c*'' ::: c*'*) nsup(c)}, and sup(c) = {i : a ^ 0 < i < 
n - 1 } , the support of codeword c. Now, at the (z+l)th transmission, suppose that (ĉ ^̂ lp*'"*"̂ *) G C*'+'' 

is the most likely codeword and (ct*>|p*'"*''*) e Ĉ *"*"̂ * is the next most likely codeword. Then the 

probability of undetected error is related to 6(c^^Kc^*^) and (J(p^** '̂\pt'"*"'*). At the ith transmission, 

A(y('),v(c(^J))> A(y(^\^(c(^))) 

and at the (i + l)th transmission, 

A(ty'>,^)(c(^>)) + A(y^ 0(p(''+'))) > A(i/),^^^^^^ 
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k 
symbols 

U 
FEC 

encoder 

n 
• symbols Transmission 

controller 
1 

ACK Channel 

I A = 4'(2/.c2)-4(y>cO 
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Figure 7.5: CRC-Iess incremental redundancy system, using confidence of F E C output for error 
detection 

where = (y(*>|y'), which means d*(p('+ )̂,p*'+**) < <5(c^'\c(*)). Therefore, (7.5) can also be 
expressed as 

,je5a iGSe jeSp i^Sp 
(7.8) 

where, as before, 5^ = {sup(pt*'̂ ** ep^'+**)nsup(pf*+^'} and 5p = {sup(pt'+^* ©p(*+' ) )nsup(p( '+ ' ) } . 

7.3.3 Error Detection based on the Confidence of F E C Output 

Another approach to error detection without using C R C is based on the reliability of the output of 
an F E C decoder. Similar to the previous approach, m = k and it is also assumed that an M L list 
decoder is employed. 

7.5 Definition (Squared Euclidean distance). The squared Euclidean distance between the re-^ 
ceivcd vector y(') e K"' and a codeword c*'"' G C^^\ is defined by ] 

Ni-I 

j=0 

7.4 Definition (Confidence of FEC output). Given a received vector y and let c and c' be the most 
likely and the next most likely codewords respectively output by an M L list decoder, the confidence 
of F E C output is defined as 

A = 4(2/.^^{c))-4(y,^(c)). 

Let A *̂* and T; G R be the F E C output confidence (see Definition 7.4) and a predefined threshold 

respectively, at the ith transmission. The block diagram of this scheme is depicted in Figure 7.5. 
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Based on Figure 7.2, the IR-ARQ protocol of this approach can be described as follows: 

1. An k bit user message, u, is encoded by an F E C encoder of the code C^^'' to produce c = 
Hp(') |p(2) i . . . |p(^')) . 

2. The codeword c*̂ ^ = (u|p(**) e C^** is transmitted and received as y = y*'* at the input to the 

receiver The vector y^^^ is decoded as C*** using the F E C decoder and c*'̂  is obtained at the 

end of decoding. 

3. I f I At''I > T i , c*** is accepted as the correct output and transmit an A C K to the transmitter; 

otherwise a N A C K is transmitted to request for additional parity-check and y^^^ is kept in the 

buffer. 

4. In the case of N A C K , the transmitter sends parity-check p(̂ ^ of length r2 and received as y'. 

At the receiving end, the vector yf̂ * = (y^^^ly') is decoded as C^ *̂ to produce c*^^ 

5. I f | A ( ^ J | > 72, c*̂ * is accepted as the correct codeword and an A C K is sent to the transmitter; 

otherwise y ( ^ J is kept in the buffer and a N A C K signal is transmitted requesting for more 

parity-check bits. This process then continues until either the condition |Af'*| > T,, for 3 < 7 < 

iW, is satisfied or the maximum number of transmissions per message M is reached. 

Clearly, the threshold If provides a trade-off between the throughput and the error probability. 

The higher the threshold T,, the lower the probability of error and, consequently, the lower the 

throughput of the system. 

Let Vj = ip(cj), A^*' may be expressed as 

A(') = A = dliy^'K ./;(c('>)) - dl(y^'\ V (̂c<'>)) 

71 

because i : ; i o ' = E ; i o ' ( * ^ " ' ) ' = ".--
Assume that c '̂' is the correct codeword at the ith transmission. Since, for 0 < j <ni - 1, 

and 

! / « = vf ' + fl(" (7.9a) 

i(0 = v.(4" + e « ) 

= vj'' + 2 e f (7.9b) 

164 



7.3. IR-ARQ Protocols, Error Detection Mechanisms and their Performance Analysis 

where ê '* € C^'* and flj** is the Gaussian noise at the j th position, A *̂* can also be written as 

r i i - l 

(7.10) 

Let e^'J = c< ' J 0 c**> and = | sup(e<'J) | , equation (7.10) becomes 

A(0 = E 1 Y: ( -1) - n , + ^ ±2n(" 

_ 
71 2 x: ŵ -̂ f̂) 

\ jes..p(i-<0) / \je8..p(c<')) / 
(7.11) 

and by definition, < 0. 

Without loss of generality, assume that ĉ ** = (0)"' (all zeros codeword of length n.) and c*'* = 
c**\ e ( ' J = (O)"' and (7.11) simplifies to 

\ j€s..p(a(')) / 
(7.12) 

On the other hand, if c*** c**', equation (7.11) now becomes 

jesiip(«(')) V€s« ip(c ( ' ) ) 

Wi E 4 (i) 

j€siip(i-(0) i€siip(fl('>) 

(0 (7.13) 

where Wi = |sup(e***)(. 
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7.2 Lemma. The first term of (7.13), 

Proof. In the case where ĉ *' c^'\ it is obvious that A i = 0. 
For other case, c*'* / c*'̂  and ĉ '* / c**^ by definition it is known that 

4(!/'".i'")< 4(!/"',s<'>)< 

Following Definition 7.3 and (7.9a), it can be written that 

r».-l n , " i - l 

2r<-M-)^2.j-).<-> + (^-) )n<'g( .<-) )^ 
j - 0 

Since the assumption t>j'* = • 1 for 0 < ./ < ih 1 is made, 

J 0 j 0 

£ ' ( 2 - ^ 2 n j ' ^ f 2 f ; j ' ' - 2 r y V i y * ) < 0 
JO 

By rearranging the above equation, it follows that 

j : (2 .2 .< - ) )<^(2n<- ) , 2r<- ) .< - ' ) 
r- 0 j : 0 

j: 0 

jesiip(c<')) 

and hence, A i > 0. 
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7.3' Corollary. The second term of (7.13), 

^^ = U " ^ - ^ <o 

and 

j6.snp(c(0) 

| A 2 | > | A , : 

Proof. The proof follows from Lemma 7.2 and AI'* < 0. • 

From Equations (7.12) and (7.13), Lemma 7.2 and Corollary 7.3, it is possible to characterise the 

behaviour of A^**. It can be said that ' 

• for the case c**' = c^*\ decoder produces a correct codeword 

- the noise components in (7.12) at the support of the next most likely codeword ĉ '̂  arc not 

that severe and as such Wi > Ejesup(cc>) "j^> 

- consider (7.12), 6 = |rî -'*| < 0.5 on average, hence 

j€8n|>(«<')) 

> f . 

• for the case ĉ ** c*'\ decoder produces an incorrect codeword 

- the magnitude of the noise components in (7.13) at the support of the most likely candi

date codewords c('* is relatively large as such iw,- < i;jgsi.p(5(')) * < E j € 3 u p ( c ( ' > ) "j '*^ 

- consider A2 of (7.13), S' - \rSj\ > 0.5 on average^ hence 

jes..p(c<')) 

< f 

and the same arguments can be applied to A i of (7.13); 

• since on average \&c\ > \^c\\ \^c^\ > | A c ' | and this claim is supported by Figure 7.6. 

Figure 7.6 shows the distribution of A^*' and A i * \ under the ordered-reliability soft-decision list de

coding using Dorsch's (1974) algorithm, see also Section 6.3, for the. extended B C H code (128,113,6) 

as well as the lengthened code jlSG, 113,8) at Eb/I^o 2.0 dB and 5.5 dB. This figure clearly shows 

that as the length of the code or the Ei,/No is increased, the average value of | A i ' * | increases; on the 

contrary, the average value of |A^*'| stays on a relatively the same value regardless of the increase 

'This difTcrcnce is even large in the case where A i > 0. 
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A>'', msan -0.Q1453 

A?' , mean -0 00471 
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Figure 7.6: Comparison of A^'^ and Ac'^ under soft-decision list decoding. They are normalised so 
that the highest peak between A^*^ and A^'* is 1.0. 

of code length and/or the Eb/No. It is this characteristic that led to the use of a threshold at the i th 

transmission. 

Ti = — K , 
ni 

where K 6 [R, for error detection. This error detection mechanism produces a 

no error detected if ]A(»)| > Ti, 
decision = 

error detected otherwise. 

(7.14) 

168 



7.4. Numerical Results 

The probability of undetected error, Pr (7uc ) , and the probability of detected error, P r ( 7 c ) , are re
spectively given by 

\ \ jGsup(c(*)) jesi.p(n('>) / / 

(7.15) 

and 

j€3iip(C<'>) >GsMp(cC)) 

Pr(7c ) = Pr V n^p - V n - (w, - u;.) < K . (7.16) 

7.4 Numerical Results 
Computer simulations of the CRC and CRC-less IR-ARQ schemes using sequence of codes given in 
Examples 7.1 and 7,2 have been carried using the incremental correlation Dorsch decoder, sec Sec
tion 6.3, with 10̂  codewords as the list decoder with hard and soft decision outputs and which has 
quasi ML performance. For code sequences in Example 7.2, all three approaches to error detection 
described in Section 7.3 were simulated, whereas for the code sequences in Example 7.1, only the 
CRC approach was simulated. An 8 bit CRC polynomial (1 + .r)(\ + :r} + + .7:** + -j-J) was used for 
the CRC case. The protocol assumes that an ACK is transmitted if no error is detected or a maxi
mum number of transmission has been reached; and a NACK is transmitted otherwise. Fig. 7.7 and 
7.8 show the F E R performance and the throughput respectively of the simulated IR-ARQ schemes. 
The CRC approach shows good throughput, but exhibits an early error-floor of the FER, which is 
caused by undetected error events. Comparing the F E R jDcrformance and the throughput of the 
sequence of codes given in Examples 7.1 and 7.2, the sequence of codes of Example 7.1 has lower er
ror probability and higher throughput than that of Example 7.2 at low SNR. This can be explained 
by comparing the sequences of codes in the two examples; the code [196,113,14) in Example 7.2 is 
weaker in terms of minimum distance than the code [202,113,16] in Example 7.1. However, the 
advantage of having higher-rate codes and also more codes in the sequence becomes evident in the 
middle SNR region of both figures. 

In comparison to the CRC approach, the first CRC-less approach, indicated by Method B in the 
figures, can only provide gain in the high SNR region and is relatively useless at lovv SNR. On 
the other hand, the second CRC-less approach, indicated by Method C in the figures, provides an 
attractive scheme to tradc-ofTFER performance against throughput. The confidence level factor « 
may be set to achieve the required F E R and throughput. 

7.5 Adding CRC to CRC-less Error Detection Approach 
It has been shown graphically that the CRC-less approach, Method C, which compares the con
fidence of F E C decoder's output with some predefined threshold or confidence level exhibits good 
performance and attractive throughput. In this approach, the F E C decoder produces a list of L 
most-likely codewords ranked based on the their Euclidean distance to the received vector. The 
codeword which is closest to the received vector appears on the top of the list. An undetected error 
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Figure 7.7: F E R performance of the IR-ARQ scheme based on extended BCH codes of length 128 
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Figure 7.8: Average throughput of the IR-ARQ scheme based on extended BCH codes of length 128 
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Figure 7.9: Incremental redundancy system, using combined CRC and the confidence of F E C output 
for error detection 

occurs if the closest codeword is not equal to the transmitted codeword; and the first two codewords 
are not so close to the received vector in the Euclidean space such that their difference in squared 
Euclidean distance is greater than the predefined threshold. Clearly, one way to improve this is to 
simply increase the threshold. However, this may result in many correct decisions being discarded. 
An alternative approach, which can avoid this situation, is to combine CRC with Method C. With 
CRC, the F E C decoder still produces L most-likely codewords, but before their Euclidean distance 
is compared, those that do not satisfy the CRC will be discarded. This, in effect, leaves us with 
L' most-likely and CRC-satisfied codewords, where L' < to process. Assuming that these L' 
codewords are ranked such that the one closest to the received vector comes first, if the difference 
in squared Euclidean distance between the first two codewords with respect to the received vector 
is greater than the threshold, the first codeword is declared correct and an ACK is transmitted; 
otherwise additional parity checks are requested. The pictorial representation of this approach is 
illustrated in Figure 7.9, where A denotes the confidence level or threshold. 

The F E R and throughput performance of this combined approach look encouraging, as shown 
in Figures 7.10 and 7.11 respectively. As expected, the overall F E R performance is superior than 
that of either CRC only or Method C for the same confidence level factor. It has been shown that 
the throughput of a CRC only system is limited due to the high probability of undetected error. 
By combining the error detection with Method C, an increased in throughput is evident from Fig
ure 7.11. Due to rate loss attributed to CRC, as can be anticipated, the throughput of the combined 
system is lower than that of Method C in the higher E^/No region. These results are obtained from 
computer simulations using code sequences given in Example 7.2 and an 8 bit CRC polynomial 
(l-t-a;)(l+i2+a:5+a:G + x 7 ) . 

7.6 Summary 

• Chain of cyclic codes in conjunction with Constructions X and XX can be use to construct a 
sequence of linear codes for incremental redundancy two-way communications scheme. Us
ing this construction, a sequence of codes with increasing length and minimum distance is 
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C R C - Conventional approach 

CRC-less - Thresholding approach (K-=1 .0) 

C R C - Thresholding approach (ic=1.0) 

Figure 7.10: F E R performance of the approach using CRC combined with confidence of F E C output 
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7.6. Summary 

obtained. 

• Conventional incremental redundancy scheme uses CRC as a mechanism to decide whether 
to feed an ACK or NACK back to the transmitter. Two new CRC-less approaches and a hybrid 
approach to error detection are introduced: 

1. The first CRC-less approach does error detection based on the output of two successive 
F E C outputs. If two successive F E C outputs return the same frame, a correct codeword 
is declared. 

2. The second CRC-less approach introduces a confidence level to the F E C output. If the 
difference of the squared Euclidean distance, with respect to received vector, of two most-
likely codewords is greater than the confidence level, a correct codeword is declared. 
This approach to error detection, by adjusting the confidence level factor, provides a 
way to trade-off error-rate and throughput of an incremental redundancy communica
tion scheme. 

3. In the hybrid approach, error detection using CRC is combined with the second CRC-less 
approach (Method C). This combined approach reduces the probability of undetected error 
of CRC and also that of the second CRC-less approach, and as a consequence, produces 
the best F E R performance among the other error-detection approaches considered in this 
chapter. 
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8 Conclusions and Future Research 
Directions 

Since Shannon*s landmark paper in 1948, we have seen two main development streams of channel 
coding, namely probabilistic coding and classical coding. Probabilistic coding theory is the modem 
approach to channel coding which puts emphasis on low complexity decoding of long codes which are 
made up of simple component codes. On the other hand, the classical approach to channel coding 
focuses on the algebraic structure of codes and particularly, on the maximisation of the asymptotic 
coding gain. In this thesis, extensive studies have been carried out on these two approaches and 
various contributions to the field of coding have been made. 

Motivated by the fact that the majority of research work on LDPC codes is aimed at long codes, 
two algebraic construction techniques for binary cyclic LDPC codes of short block length using the 
theory of cyclotomic cosets, idempotents and Mattson-Solomon polynomials have been developed. 
An attractive feature of these constructions is the incremental trade-off between the minimum 
Hamming distance and the sparseness of the parity-check matrix of an LDPC code. Starting with 
a set of idempotents for a corresponding code of a given minimum Hamming distance, one may 
include additional idempotents to increase the minimum Hamming distance. Since the sparse
ness of the parity-check matrix of the code is proportional to the number of idempotents in the set, 
adding more idempotents in effect reduces the sparseness the parity-check matrix. It is worth not
ing that these two construction techniques-although they work in different domains, produce the 
same LDPC code, and are complementary. The construction technique described in Section 2.2.1 
is more useful to search for codes of certain minimum Hamming distance with girth of at least 6, 
whereas the one described in Section 2.2.2 is better suited for construction of cyclic LDPC codes 
(regardless of the girth) of given code rate and minimum Hamming distance. We may also regard 
the advantage of having complementary construction methods of different domains as analogous to 
that of representing a signal in time and frequency domains; one is able to gain a better insight 
to code construction from different perspective. It is interesting to note that the algebraic con
struction methods discussed in Chapter 2, in addition to producing some new cyclic LDPC codes, 
provide simple alternatives to generate codes which have equivalent parameters as the Euclidean 
and projective geometry codes. We have also shown that non binary cyclic LDPC codes may be 
easily constructed using the same concept. 

While short block length cyclic LDPC codes have superior performance compared to irregular 
LDPC codes-such as codes constructed using the PEG algorithm, of the same block length and code 
rate, this is not true for longer block length cyclic LDPC codes. The algebraic structure of the cyclic 
LDPC codes-assuming that their girth is at least 6, guarantees increases in minimum Hamming 
distance of these codes as the block length is increased. For these algebraic codes, the minimum 
Hamming distance is proportional to the weight of the parity-check equations and thus the density 
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of the corresponding parity-check matrix. Consequently, the advantage of having relatively large 
minimum Hamming distance becomes counter-productive in the low SNR region where errors are 
dominant. Given these errors and a large number of participating symbols in each parity-check 
equation, it is difficult for these parity-check equations to agree on a solution causing convergent 
problem for the iterative decoder, and this shifts the threshold in the waterfall region for the frame 
error performance curve to a higher SNR value. However, for an irregular LDPC code of the same 
length and code rate which has a good variable node degree distribution, the parity-check matrix 
is still relatively sparse. As a result of this, convergence is not as much of a problem in the low 
SNR region. The advantage of having large minimum Hamming distance becomes apparent in the 
high SNR region. Irregular LDPC codes show signs of an error floor in their performance which is 
partly attributed to minimum Hamming distance error events. Whereas for algebraic LDPC codes, 
there is no such sign-at least this is true in the frame error region where simulations have been 
performed. 

The minimum Hamming distance of a linear code is one of the important parameters, particu
larly in classical coding theory. This distance which dictates the number of errors a code can correct, 
is a benchmark for comparing codes of the same block length and code rate. In this work, the ex
isting algorithms to compute the minimum Hamming distance of linear codes have been studied. 
Advances in computing technology has enabled the possibility to harness spare computing resources 
to create a grid computer. It has been shown in detail how to convert a minimum Hamming distance 
evaluation algorithm to one that can be deployed in the grid of computers by making use of one of 
the properties of the revolving-door combination generator. The advantage of this is apparent, it en
ables one to compute the minimum Hamming distance of a longer code that is otherwise impractical 
to compute, in a reasonable amount of time. A notable example is the evaluation of the previously 
unconfirmed minimum Hamming distance of the binary extended quadratic residue code for prime 
199; a single-threaded evaluation would take months to complete, whereas using grid computing, 
the evaluation time reduces to several days. In addition to this extended quadratic residue code, 
grid computing has also enabled many binary cyclic codes to be found which have larger minimum 
Hamming distance than the previously considered best known linear code. 

Several methods to lengthen (Constructions X and XX) codes and to shorten (Construction Y l ) 
codes have been studied, and are aimed at producing codes of large minimum Hamming distance. It 
was found in this work that Constructions X and XX can be ineffective for a certain set of component 
codes and accordingly, a more effective strategy has been devised. This has enabled the construction 
of several codes which have larger minimum Hamming distance than the highest known. Overall, 
this work has resulted in as many as 901 codes to be determined which are better than the best 
known linear codes. Another important result that emerged from this work is a tabulation of the 
highest minimum Hamming distance attainable by all binary cyclic codes of odd lengths from 129 to 
189. This table together with those of Chen (1969), Promhouse and Tavares (1978) and Schomaker 
and Wirtz (1992) serve as useful references for those who are interested in binary cyclic codes. 

Double-circulant codes based on primes congruent to ±1 and ±3 modulo 8 have also been ex
plored. Various choices of defining polynomial of a circulant matrix have been examined and the 
link to the self-duality of a code was established. Furthermore, simplifications to an algorithm to 
compute the minimum Hamming distance as well as an algorithm to compute the number code
words of a given Hamming weight for certain double-circulant codes have been established. A 
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complete proof that the projective special linear group fixes the automorphism group of the double-
circulant codes based on primes congruent to ±3 modulo 8, has been given. Using this in conjunction 
with the work of Mykkeltveit et al. (1972), the weight distributions of the double-circulant codes for 
primes congruent to ±3 modulo 8 have been characterised. There are two useful applications of 
this result, it provides an independent verification of the number of codewords of a given Hamming 
weight that have been previously computed exhaustively; and it gives an accurate estimate of the 
minimum Hamming distance of prime-based double-circulant codes. For the first application, it has 
been shown that some of results reported in Gaborit et al. (2005) were incorrect; and the weight 
distributions of two incquivalent double-circulant codes have also been obtained and independently 
verified, the (168,84.24)2 codes, and these were previously unknown. The second application has 
enabled the conjecture to be made that there are no extremal doublo-circulant self-dual codes of 
length longer than 13G. 

Soft-decision decoding algorithms have been addressed in this work. The optimal algorithm of 
Hartmann and Rudolph (1976) was initially investigated. The optimum solution of the Hartmann 
and Rudolph (1976) algorithm requires the complete set of codewords of the dual code and the 
results from this investigation have revealed that it is not possible to trade off complexity against 
suboptimum performance by taking a subset of all the dual code codewords. This investigation, 
however, did lead to an improved iterative decoder for LDPC codes-the codeword substitution belief 
propagation decoder, which substitutes a subset of the low weight parity check equations for those 
of higher weight at the beginning of each iteration replacing them at the end of each iteration. 
Although this modification produces near maximum likelihood performance for short cyclic LDPC 
codes, it has been found to be unsuitable for long LDPC codes. 

For decoding general linear codes, the algorithm by Dorsch (1974) was studied. A detailed de
scription of an incremental correlation approach to this algorithm was given in Chapter 6 as well as 
the derivation of the upper-bound on the complexity to achieve maximum likelihood performance. 
Various half-rate binary linear codes of large minimum Hamming distance were simulated and the 
results showed that the frame-error performance of these codes under the incremental correlation 
Dorsch decoder is very close to the Shannon's sphere packing lower bound constrained for binary 
transmission. In the author's opinion, with advances in semiconductor technology, the implemen
tation of this type of decoder will herald a new era in channel coding which emphasises on the 
optimality of codes rather than the simplicity of decoding. Figure 8.1 plots the Ei/Nq values of var
ious LDPC and best known linear codes at which F E R performance of 10"̂  is achieved*. Plotting 
the sphere packing lower bound clearly shows the importance of designing codes for optimality as 
opposed to that for ease of decoding. 

It was shown to be straightforward to build a soft-decision list decoder from of the incremental 
correlation Dorsch algorithm. The application of this type of soft-decision list decoder has created 
a new approach to the area of error detection, which so far has been dominated by error detecting 
codes such as a CRC used with hard-decision detector. Error detection can be realised by com
paring the squared Euclidean distance of the two most likely outputs of the list decoder. This is 
another mtyor contribution that emerged from this work. This idea has been applied to the incre
mental redundancy communication system and promising results-both in error rate performance 
and throughput, have been obtained. With this method, increases in throughput are possible as the 

Some of the points arc obtained from the figures in Chapter 6 
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Figure 8.1: Distance to the sphere packing lower bound at 10 F E R of rate 1/2 LDPC codes and 
best known linear codes 
All of the L D P C codes, excluding the that of the DVB-S2, are constructed using the P E G algorithm. Al l L D P C codes 

are decoded using the belief propagation decoder with maximum iterations of 100, whereas the best known linear codes 

are decoded using the incremental correlation Dorsch decoder. Note that 'lOOG, 3 x lO". 3 x 10**, 10^, 10^, 10^ and a x 

10^ correlations respectively have been employed for decoding the [24,12,8) extended quadratic residue (cQR), [-IStai, 12] 

eQR, [80,-10, 16] cQR, [128,61,22] extended B C H (eBCH), [1.%,68,21] quadratic double-circulant (QDC), [151,77,23] (see 

Chapter 4) and [200,100,32] eQR codes. 

error detecting code is no longer mandatory. It is also interesting to note that for the case when an 
error detecting code is employed, it is still possible with the method to trade performance level off 
for a reduced throughput. 

The novel idea of constructing a sequence of codes suitable for incremental redundancy commu
nication has been introduced in this thesis. The sequence of codes can be obtained by recursively 
applying Construction X, Construction XX, or both constructions, to a chain of cyclic codes. Us
ing these constructions, it is possible to guarantee the sequence of codes, which consists of codes 
of different block length, to have satisfactory minimum Hamming distances for each code in the 
sequence. This is not the case for the method of applying puncturing patterns to a low rate code 
which is the standard method used in incremental redundancy communication. 

During the course of this work, several problems have arisen that have not been answered as 
well as new ideas which suggest several areas for further investigation. These are listed below and 
are proposed as potentially useful topics for future work. 

• Given the existence of algebraic structure in the cyclic LDPC codes, the exact minimum Ham
ming distance of cyclic LDPC code is known in many cases. In depth mathematical studies 
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into the weight distributions as well as the automorphism group of these codes would be of 
interest. The knowledge of the weight distribution of a code would allow one to estimate the 
error floor from the union bound argument. 

• The performance of irregular LDPC codes is limited by an error floor which is not necessar
ily caused by minimum Hamming weight error events. It has been observed from numerical 
simulations that for this type of error event, the number of failed parity-check equations oscil
lates with each iteration as do the number of symbol errors. The configuration of the bipartite 
graph of the LDPC code that causes this problem should be analysed and it is desirable to 
have a code construction method that can avoid problem configurations. Instead of tackling 
this problem from the code construction side, another possible strategy is to modify the it
erative decoder to trap and break the oscillations in the number of unsatisfied parity-check 
equations. Alternatively, matched code-decoder design is another strategy worth investiga
tion. 

• The family of irregular LDPC codes which are constructed from a protograph by using circu-
iant expansion i.e. the IRA family, has quasi cyclic structure, in addition to a zig-zag pattern 
in the parity-check matrix. It may be possible to exploit these constraints to determine the ex
act minimum Hamming distance of the code. An estimate or bound of the minimum Hamming 
distance would also be useful. 

• Extending the table of the highest minimum Hamming distances attainable by binary cyclic 
codes of length longer than 189. Tables for cyclic codes over larger fields should also be consid
ered. 

• Searching for improvements to the best known linear codes is a useful area of research. Many 
best known linear codes have been derived from generalised concatenated codes, see Blokh 
and Zyablov (1974) and Zinov'ev (1976), whose minimum Hamming distance is explicit as 
long as the minimum Hamming distances of the constituent codes are known. This is mainly 
attributed to the limitation of single-threaded minimum Hamming distance computation al
gorithm. It is possible that other family of codes such as cyclic and algebraic geometry codes, 
may have larger minimum Hamming distances, but it is impractical to verify this distance 
using a single-threaded approach. However, grid computing now makes this approach a prac
tical proposition. 

• A great deal of efTort has been devoted to rate I/zn quasi cyclic codes, for integers m > 2, in 
searching for good linear codes. Little has been devoted to the higher rate codes and it is likely 
that these codes will also produce linear codes of large minimum Hamming distance. 

• Investigations to double-circulant codes of larger fields with the extension of the modular 
congruence approach to their weight distributions is also a useful area. Having seen the 
benefits that the modular congruence approach can provide, it would also be useful to consider 
the potential application of this approach for other family of codes. To be effective, the code 
considered should have large automorphism group. 

• In order to allow the incremental correlation Dorsch algorithm to be used for longer codes, 
various strategies that reduce the number of required correlations should be investigated. 
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In a sequence of codes constructed using either Construction X or XX, the code of longer length 
is less optimal that that of shorter length. Different construction approaches that maintain 
the code optimality as the code length is increased should be investigated. 

A simpler derivation of the probability of undetected error given by (7.15) as a function of SNR 
appears to be possible. 
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A Quasi-Cyclic LDPC Codes and 
Protograph 

Despite irregular LDPC codes have lower error rate than the regular counterparts, see Luby 
et al. (2001), the extra complexity of the encoder and decoder hardware structure has made this 
class of LDPC codes less attractive from industry point of view. In order to encode an irregular 
code which has a parity-check matrix / / , Gaussian elimination has to be done to transform this 
matrix into a reduced echelon form. Irregular LDPC codes, as shown in Section 2.3, may also be 
constructed by constraining the n - k low degree variable vertices of the Tanner graph to form a 
zig-zag pattern, see Ping et al. (1999). Translating these n-k variable vertices of the Tanner graph 
into the form of matrix, we have 

1 

1 1 

1 1 

1 1 

(A.1) 

The matrix Hp is non singular and the columns of this matrix may be used as the coordinates of 
the parity-check symbols of an LDPC code. 

The use of zig-zag parity does simplify the encoding complexity as the Gaussian elimination 
process is no longer necessary and the encoding, assuming that 

H = (/f„|//pl 

Vl Vk-2 Vk Vk+l . . . Vu-2 Vtt-l 

"0,0 "0.1 1 

Ul , 0 " l , / : - 2 1 1 

U f i - f c - 2 . 0 Wn-fc -2 ,1 • • • Wr i - i t -2 .A : -2 Uu-k-2,k-l 1 1 

U n - f c - 1 . 0 Un^k-l,k-2 y^n-k-l,k-l 1 1 
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can be performed as follows 

k-\ 

Vk = ^ Wj"o,7 (mod 2) 

Jt-i 
vi = Vi^x + ^ v^Ui-k,3 (»»od 2 ) for A- + 1 < I < 71 - 1 . 

Nevertheless, zig-zag parity does not give significant reduction in storage space as the matrix H„ 
still needs to be stored. By introducing some structure in , say quasi-cyclic structure, the storage 
requirements may be considerably simplified. 

A.1 Quasi-CycUc LDPC Codes 

Quasi-cyclic codes have the property that a codeword is a //i-sized cyclic shift of any codeword, 
where vi is an integer. The existence of this structure allows a simple feedback shift registers to 
be employed for efficient encoding of this type of codes. Refer to Chapter 5 (Definition 5.1) for the 
definition of a circulant matrix. A quasi-cyclic code can be built from concatenation of circulant 
matrices to define the generator or parity-check matrix. 

Example A.1: A quasi-cyclic code with defining polynomials ri(3:) = l + x-fx^ andr2(a;) = l + + 
x̂ , where both polynomials have maximum degree of 7, may have the parity-check matrix in the 
following form 

H = 

1 1 0 1 0 0 0 

0 1 1 0 1 0 0 

0 0 1 1 0 1 0 

0 0 0 1 1 0 1 

1 0 0 0 1 1 0 

0 1 0 0 0 1 1 

1 0 1 0 0 0 1 

1 0 1 0 0 1 0 

0 1 0 1 0 0 1 

1 0 1 0 1 0 0 

0 1 0 1 0 1 0 

0 0 1 0 1 0 1 

1 0 0 1 0 1 0 

0 1 0 d 1 0 1 

Quasi-cyclic 

code 

A.1 Definition (Permutation Matrix). A permutation matrix is a type of circulant matrix where 
each row or column has weight of 1. A permutation matrix, which is denoted by P„(._, , hasr(.T;) = 
(mod x'" - 1) as the defining polynomial and it satisfies the property that Pf„j = /,„ where /,„ is 
an m x m identity matrix. 
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A.2. Construction of Quasi-Cyclic Codes using Protograph 

Due to the sparseness of permutation matrix, they are usually used to construct quasi-cyclic 
LDPC codes. The resulting LDPC codes may have their parity-check matrix in the following form 

m.Oo.o »n.Oo.i P"t,Oo.t-i 

Pm,Oi.t-i 
(A.2) 

From (A.2), we can see that there exists asxt matrix, denoted by O, in H. This matrix is called an 
offset matrix and it represents the exponent of r(x) in each permutation matrix, i.e. 

0 , n 0,1 

1,1 

where 0 < Oij < 771 - 1, for 0 < t < s - 1 and Q < j < t - I. The permutation matrix P ,„j has tn 
rows and 771 columns, and since the matrix H contains s and i of these matrices per row and column 
respectively, the resulting code is a [mt, ni{t - 5 ) , d] quasi-cyclic LDPC code over F j . 

In general, some of the permutation matrices P,.j in (A.2) may be zeros matrices. In this case, 
the resulting quasi-cyclic LDPC code is irregular and Oij for which Pij = O may be ignored. If 
none of the permutation matrices in (A.2) is a zero matrix, the quasi-cyclic LDPC code defined by 
(A.2) is a (s, t) regular LDPC code. 

A.2 Construction of Quasi-Cyclic Codes using Protograph 

A protograph is a miniature prototype Tanner graph of arbitrary size, which can be used to construct 
a larger Tanner graph by means of replicate and permute operations (Thorpe; 2003). A protograph 
may also be considered as an [71', k'] linear code V of small block length and dimension. A large code 
may be obtained expanding code V by an integer factor Q so that the resulting code has parameter. 
[n = 7i'Q, k = k'Q] over the same field. A simplest way to expand code V and also to impose structure 
in the resulting code is by replacing a non zero element of the parity-check matrix of code V with 
a Q X Q permutation matrix, and a zero clement v/ith a Q x Q zero matrix. As a consequence, 
the resulting code has a quasi-cyclic structure. The procedure may be described in more detail in 
Example A.2. 

Example A.2: Consider a code P = [4,2] over IF2 as a protograph. The parity-check matrix of code 
V is given by 

H' = Co 

Vo Vi V2 

(A.3) 
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Let the expansion factor Q = 5, the expanded code, which has parameter (20,10], may have a parity-

check matrix given by 

VQ V\ V2 U 3 V4 U 5 V7 "8 VQ V\O V\\V\2Vi-^ U14 V 1 5 ^10^17^^18 ^19 

CO 1 1 1 

C[ 1 I 1 

f'2 1 1 I 

C 3 1 1 1 

1 1 1 

C5 1 1 1 

cc 1 1 1 

1 1 1 

I 1 1 

Co 1 L 1 

. (A.4) 

where the zero elements have been omitted. This protograph construction may also be described 

using Tanner graph representation as shown in Figure A . l . 

Vi) V2 

Tanner graph 
ofcode7^ 

Replicate Q = 5 rimes — 

vu v^ V2 

Vi] V] V2 W3 V4 Vr, 7;c V7 

r.A r-. 
Permute the edges 

Q replicas of 
the above 

Tanner graph 

Wl2 Wl3 7JH Wi:, yK,V\-Vx^Vy<) 

Tanner graph 
of the 

expanded code 

C(| Ci C2 Cj^ C4 C;-i Cc C7 Cg Co 

Figure A . l : Code construction using a protograph 

Initially the tanner graph of code V is replicated Q times. The edges of these replicated Tanner 

graphs are then permuted. The edges may be permuted in many ways and in this particular ex

ample, we want the permutation to produce a code which has quasi-cyclic structure. The edges in 

Figure A . l or equivalently the non zeros in (A.4) which are printed in bold represent the code V. 
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The minimum Hamming distance of code P is 2 and this may be seen from its parity-check 

matrix, (A.3), where the summation of two column vectors, those of v\ and U 3 , produces a zero 

vector. The fact that in the expansion, only identity matrices are employed, the expanded code will 

have the same minimum Hamming distance as the protograph code. This is obvious from (A.4) 

where the summation of two column vectors, those of and uis, produces a zero vector. In order 

to avoid expanded code of small minimum Hamming distance, permutation matrices may be used 

instead and the parity-check matrix of the expanded code may have the form given by (A.5), 

Co 1 1 1 
Cl 1 1 1 

C2 1 1 1 

C 3 1 1 1 
1 1 1 

C 5 1 1 1 
Co 1 1 1 

1 1 1 
1 1 I 

Co 1 1 1 

(A.5) 

and the corresponding code defined by this parity-check matrix has minimum Hamming distance 

of 3. In addition, the cycle structure of the protograph is also preserved in the expanded code 

if only identity matrices for expansion. Since the protograph is such a small code, the variable 

vertex degree distribution required to design a good target code, which has much larger size than 

a protograph does in general, dictates many inevitable short cycles in the protograph. By using an 

appropriate permutation matrices in expansion, these short cycles may be avoided in the expanded 

code. 

In the following, we describe a construction of a long quasi-cyclic L D P C code for applications in 

satellite communications. The standard for digital video broadcasting (DVB), which is commonly 

known as DVB-S2, makes use of a concatenation of L D P C and B C H codes to protect the video 

stream. The parity-check matrices of DVB-S2 L D P C codes contain a zig-zag matrix on the n - k 
parity coordinates and quasi-cyclic matrices on the remaining k coordinates. In the literature, the 

code with this structure is commonly known as the Irregular Repeat Accumulate (IRA) code (Jin 

et al.; 2000). The code construction described below-using a protograph and greedy P E G expansion, 

is aimed at improving the performance compared to the rate 3/'l DVB-S2 L D P C code of block length 

G4800 bits. Let the (64800,48600] L D P C code that we will construct be denoted by Cj . A protograph 

code, which has parameter [540,405], is constructed using the P E G algorithm with a good variable 

vertex degree distributions obtained from Urbanke (2001), 

.12 AA, (x) = p.QQ185l85x- + 0.248148x''-}-0.55x'^ + 0.0592593:/;^ + 0.0925926x** + 0.00555556.7;" + 
for zig-zag matrix 

0.00185185x*^ + 0.01G6667i^^ + 0.00185I85i^'* + 0.00185185x2^ + 0.0203704x^^ 
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10' 

£ 1 0 - ^ 

T 1 1 

Standard - Rate 3/4. n=64800 • 
Design - Rate 3/4, n=64800 x 

Offset sphere packing lower bound 

1 " ^ 

10" V 

10-

10" 
1.5 2.5 3.5 

Figure A.2: F E R performance of the D V B - S 2 and the designed [61800,48600] L D P C codes 

The constructed [510,405] protograph code has a parity-check matrix H' — | H^] where / / J , is a 

135 X 135 zig-zag matrix, see (A.l) , and H'^ is an irregular matrix satisfying AA, (X) above. In order 

to construct a [61800,48600] L D P C code Cu we need to expand the protograph code by a factor of 

Q •- -- 120. In expanding the protograph code, we apply the greedy approach to construct the offset 

matrix O in order to obtain a Tanner graph for the [64800,48600] L D P C code C\, which has local girth 

maximised. This greedy approach examines all offset values, from 0 to Q - 1 , and pick an offset that 

results in highest girth or if there are more than one choices, one of them is randomly chosen. A 

16200 X 48600 matrix can be easily constructed by replacing a non zero element at coordinate 

(i, j ) in with a permutation matrix PQ^Q.J- The resulting L D P C code Ci has a parity-check 

matrix given by H - [Hu \ Hp], where, as before, Hp is given by (A.l ) . 

In comparison, the rate 3 / 4 L D P C code of block length 61800 bits specified in the D V B - S 2 stan

dard takes a lower Q value, Q — 45. The protograph is a [1440,1080] code which has the following 

variable vertex degree distributions 

Ax^(x) - 0.0OOG94X -f 0.249306x2 -t-0.66G667r^ + 0.083333t 12 

for zig-zag matrix 

For convenience, we denote the D V B - S 2 L D P C code by C2. 

Figure A .2 compares the F E R performance of Ci and C2 using the belief propagation decoder 

with a maximum iteration of 100. Binary antipodal signalling and AWGN channel are assumed in 

the simulation. Note that, although the outer concatenation of B C H code is not used, there is still 

no sign of error floor at F E R as low as 10"^. It may be seen from Figure A.2 that the designed L D P C 
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code, which at 10 ^ F E R performs approximately 0.35 dB away from the sphere packing lower bound 
offset for binary transmission loss, is 0.1 dB better than the D V B - S 2 code. 
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P Binary Cyclic Codes of Odd 
Lengths from 129 to 189 

The highest minimum distance attainable by all binary cyclic codes of odd lengths 129 < n < 189 

is tabulated in Table B . l . The column "Roots of g{x)" in Table B . l denotes the exponents of roots 

of the generator polynomial g{x), excluding the conjugate roots. All cyclic codes with generator 

polynomials 1 + x and ( i " - 1)/(1 + x), since they are trivial codes, are excluded in Table B . l 

and since primes n = 8m ± 3 contain these trivial cyclic codes only, there is no entry in the table 

for these primes. The number of permutation inequivalent (see Section 4.3 for the details on the 

permutation) and non degenerate cyclic codes, excluding the two trivial codes mentioned earlier, for 

each odd integer n is given by A ĉ- In Table B . l , there is no cyclic code that improves Brouwer*s 

(1998) lower-bound, but there are 134 cyclic codes that meed this lower-bound and they are printed 

in bold. 

Table B . l : The Highest Attainable Minimum Distance of Binary Cyclic Codes of Odd Lengths from 129 to 189 

k d Roots of (7(1) h d Roots of *7(l) k d Roots of g{x) 
n = 129, m ( i ) = 77277, Nc = 388 

127 2 43 84 14 0,1,19,21,43 42 30 0,1,3,7,9.11,19,43 
115 3 1 73 15 1,3,7,19 31 32 1,7,9,11,13,19,21 
114 6 0.1 72 18 0,1,7.9,19 30 38 0.1.3,7,9.11,13,19 
113 4 3,43 71 17 1,3,7,19,43 29 37 1,3,7.11.13.19,21.43 
112 6 0.1.43 70 18 0,1,3,7,19,43 28 40 0,1,3,7,11,13.19.21,43 
101 8 1.9 59 22 1,3,7,9,19 17 43 1,3,7.9,11.13,19.21 
100 10 0,1.3 58 22 0,1,3.7,9,19 16 52 0,1,3.7.9,11.13,19.21 
99 8 1,9,43 57 22 1.3,7.9,19,43 15 54 1.3.7,9.11,13,19,21.43 
98 10 0,1,3.43 66 24 0,1,5.9.19,21,43 14 54 0,1.3,7,9,11,13,19,21,43 
87 13 1.13^1 45 29 1,3,7.9.11,19 2 86 0.1.3,5,7,9,11,13.19,21 
86 14 0.149,21 44 30 0,1,3.7.9,11,19 
85 13 1,19,21,43 43 29 1,3.7,9,11,19,43 

n = 133, m(a:) = 1334325, Nc = 198 
130 2 57 91 8 1,7,19.57 43 19 1.7,9,15.31 
129 2 0,57 90 10 0,1,19,31.57 42 28 0,1,5,7,9,31 
127 2 19,57 79 14 1.7.31 40 32 1,5,7.9,31,57 
126 2 0,19,57 78 14 0,1,5,9 39 32 0,1,5,7.9,31,57 
115 3 1 76 16 1,7,31,57 37 32 1,5.7,9,19,31,57 
114 4 0.1 75 16 0.1.7,31,57 36 32 0,1.5,7,9.19,31,57 
112 6 31,57 73 16 1.7.19,31,57 25 19 1,3,5.7,9,31 
111 6 0,31,57 72 16 0.1.7,19,31,57 24 38 0,1.3,5,7,9,31 
109 6 1.19,57 61 19 1,7.9,31 22 44 1,5,7,9,15,31,57 
108 6 0,1,19,57 60 24 0.1.3.7.9 21 44 0,1,5,7,9,15,31,57 
97 7 1,31 58 24 1.7.9,31.57 19 48 1,3,5,7,9,19.31,57 
96 10 0,1,31 57 24 0.1.7,9,31.57 18 48 0.1,3,5.7,9.19,31.57 
94 8 7,31,57 55 24 1,7,9,19,31,57 4 57 1,3,5.7.9,15.31,57 
93 10 0,1.31.57 54 24 0,1,7,9,19,31,57 3 76 0,1,3.5.7.9,15,31,57 

Continue on next page 
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Table B. l (continued) 
k d Roots of g(x) fc d Roots of g{x) k d Roots of g{x) 

ri = 135, m(x) = 1000000001001, A'c = 982 
133 2 45 89 6 1.15,63 45 10 1.7,21,45,63 
132 2 0,45 88 6 0,1.15,63 44 10 0,1.7,21,45,63 
131 2 63 87 6 1,15,45,63 43 10 1,7,15.21,45 
130 2 0,63 86 6 0,1,15.45,63 42 10 0,1,7,15,21,45 
129 2 45,63 85 6 1,21,45 41 10 1,7,15,21,63 
128 2 0,46,63 84 6 0,1,21.45 40 10 0,1,7.15,21,63 
127 2 15,45 83 6 1,15,27,45,63 39 10 1,7,15,21,45,63 
126 2 0,15,45 82 6 0,1,21,63 38 10 0,1,7,15.21,45,63 
125 2 15,63 81 6 1,21.45,63 37 10 1,3,7,21,45 
124 2 0,15,63 80 6 0,1,21,45,63 36 10 0,1,3,7,21,45 
123 2 15,45,63 79 6 1.15,21.45 35 12 1.5.7,15.63 
122 2 0,15,45.63 78 6 0,1,15,21,45 34 12 0.1,5.7.15.63 
121 2 21,45 77 6 1,5,63 33 12 1,5.7,15.45.63 
120 2 0.21.45 76 6 0.1,5.63 32 12 0,1,5,7,15,45,63 
119 2 21,63 75 6 1.5.45.63 31 12 1.5,7.21,45 
118 2 0.21.63 74 6 0.1.5,45.63 30 12 0,1.5,7,21,45 
117 2 21,45,63 73 6 1,3,21.45 29 15 1,5,7,21,63 
116 2 0,21.45,63 72 6 0,1,3.21,45 28 18 0,1.5,7,21,63 
115 2 5,45 71 8 1,5,15.63 27 18 1.5,7,21,45,63 
114 2 0,5,46 70 8 0,1,5,15.63 26 18 0,1,5,7,21,45,63 
113 4 5,63 69 8 1,5,15,45,63 25 15 1.5.7,21,27,63 
112 4 0,5,63 68 8 0,1,5,15.45.63 24 18 0,1,5,7,21,27,63 
111 4 5,45,63 67 8 1,5,21,45 23 21 1,5.7,15,21,63 
110 4 0,5,45,63 66 8 0,1.5,21,45 22 24 0,1,5.7.15,21.63 
109 4 5,27,63 65 8 1.5.15,27,45,63 21 24 1,5,7,15,21,45,63 
108 4 0.5,27.63 64 8 0.1.5,21,63 20 24 0,1,5,7.15,21,45.63 
107 4 5.15.63 63 8 1,5,21,45,63 19 21 1.5,7,15.21,27,63 
106 4 0,5,15.63 62 8 0,1,5,21,45,63 18 24 0.1,5.7.15,21,27,63 
105 4 5.15.45,63 61 8 1,5.15,21,45 17 24 1,5,7,15,21.27,45,63 
104 4 0,5.15,45,63 60 8 0,1.5,15,21.45 16 30 0.1,3,5,7,21,63 
103 4 5.21.45 59 8 1,5,15,21.63 15 30 1,3,5,7,21,27,45 
102 4 0,5,21,45 58 8 0.1,5,15,21,63 14 30 0,1,3,5,7,21,45,63 
101 4 5,21,63 57 8 1.5,15.21.45,63 13 24 1,5,7,9,15,21,27,45.63 
100 4 0,5,21,63 56 8 0.1.5.15,21,45,63 12 30 0,1,3,5,7.21,27.63 
99 4 5,21,45,63 55 8 1,3,5.21,45 11 30 1,3,5,7,21,27,45.63 
98 4 0,5,21,45,63 54 8 0,1,3.5.21,45 10 36 0,1,3,5,7.15,21,63 
97 4 1.45 53 10 1,7,15.63 9 36 1,3,5,7,15,21,27,45 
96 4 0,1,45 52 10 0,1,7.15,63 8 36 0,1,3,5,7.15,21,45,63 
95 5 1,63 51 10 1,7,15,45,63 7 45 1,3,5,7,15,21,27,63 
94 6 0.1,63 50 10 0,1,7,15,45,63 6 54 0,1,3.5,7,15,21,27,63 
93 6 1,45.63 49 10 1,7,21,45 5 63 1,3,5,7,15,21.27,45,63 
92 6 0.1.45,63 48 10 0,1,7,21,45 4 72 0,1,3,5,7,15,21,27,45,63 
91 5 1.27.63 47 10 1,7,15,27,45,63 
90 6 0,1.27,63 46 10 0,1.7,21.63 

n = 137, ml x) = C7357330373267606675C73, V̂c = 5 
69 21 1 68 22 0,1 

n = = M l , m(a:) = 21464176G6311013, iV^ = = 30 
139 2 47 93 4 3,15,47 47 24 1,3.15,47 
138 2 0,47 92 6 0,1.47 46 24 0,1,3,15,47 
118 2 3 72 21 3,5 26 33 1.3.5 
117 2 0.3 71 22 0,3,5 25 36 0,1,3,5 
116 4 3,47 70 21 3,5,47 24 33 1,3.5,47 
115 4 0,3,47 69 24 0,3,5,47 23 36 0,1,3,5,47 
95 3 1 49 22 1.3,15 
94 6 0.1 48 22 0,1,3,15 

Continue on next page 
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Table B.l (continued) 
k d Roots of «7(l) k d Roots otf}ix) k d Roots of fl{z) 

n = 143, m ( i ) = 145236760547324505061, A'c = 16 
133 2 13 83 11 1 61 24 1.11,13 
132 2 0,13 82 12 0.1 60 24 0,1,11,13 
131 2 11 73 11 1,13 23 11 1,5 
130 2 0,11 72 16 0,1,13 22 22 0,1,5 
121 4 11,13 71 13 1,11 
120 4 0.11.13 70 18 0,1,11 

n = 145. m(x) = 3572445367, A'c = 40 
141 2 29 89 14 1,5 57 26 1,5.11,29 
140 2 0,29 88 14 0,1,5 56 26 0,1,5,11,29 
117 5 1 85 14 1,5,29 33 29 1,3,5.11 
116 8 0.1 84 14 0,1,5.29 32 44 0,1,3,5,11 
113 5 1.29 61 24 1.5,11 29 46 1,3,5,11,29 
112 10 0,1,29 60 24 0.1.5,11 28 46 0,1,3,5.11.29 

n = 147. m(a:) = 100002000040201. Nc - 488 
145 2 49 96 4 0.1,35,49 48 8 1.3,7,9,21,35 
144 2 0,49 95 4 0,1,21,35 47 8 0.1,3.7,9,21.35 
143 2 0,21 94 4 1.21,35,49 46 8 1.3.7.9.21.35,49 
142 2 21,49 93 4 0,1,21,35,49 45 8 0,1.3,7,9,21,35,49 
141 2 35 92 4 0,1,7,35 44 8 0,1,3.7,9,21,35,63 
140 2 0,35 91 4 1,21,35.49,63 43 8 1,3,7,9,21,35,49,63 
139 2 35,49 90 4 1.7,21.35 42 8 0.1,3.7.9,21,35.49,63 
138 2 0,35,49 89 4 0.1.7.21.35 40 9 1,5,9,49 
137 2 0.7,21 88 4 1,7,21,35,49 39 12 0.1.5,9.49 
136 2 21,35,49 87 4 0,1,7,21,35.49 38 10 0,1,5,9,21 
135 2 7,35 86 4 0,1,7.21,35,63 37 12 1.5.9.21.49 
134 2 0,7.35 85 4 1,7,21.35.49.63 36 12 0,1.5,9.21,49 
133 2 21,35.49.63 84 4 0.1.7,21.35,49.63 35 12 0,1,5,9.35 
132 2 7,21,35 82 5 5,9.49 34 12 1,5.9,21,49,63 
131 2 0,7,21,35 81 8 0,5.9,49 33 12 0,1,5,9,35,49 
130 2 7,21,35.49 80 6 0,5.9,21 32 12 0.1,5.9,21,35 
129 2 0,7.21.35,49 79 8 6,9,21.49 31 12 1,5,9,21,35,49 
127 2 7,21,35.49,63 78 8 0,5,9,21.49 30 12 0,1.5.9.21,35.49 
126 2 0,7,21,35,49,63 77 8 0,5,9,35 29 12 0,1.5,7.9.35 
124 3 9.49 76 8 5.9.21,49,63 28 12 1,5,9,21,35,49,63 
123 4 0.9.49 75 8 0,5.9,35,49 27 12 1,5,7.9,21,35 
122 2 0,9.21 74 8 0,5,9,21,35 26 12 0.1,5.7,9,21,35 
121 4 9,21,49 73 8 5,9,21.35.49 25 12 1.5.7,9,21,35.49 
120 4 0,9,21,49 72 8 0,5,9,21,35,49 24 12 0,1.5,7,9,21,35,49 
119 4 0,9,35 71 8 0,5,7.9.35 23 12 0,1.5.7.9.21,35.63 
118 4 9,21,49,63 70 8 5,9,21,35,49,63 22 12 1,5,7,9,21.35,49,63 
117 4 0,9,35,49 69 8 5.7,9,21,35 21 12 0,1,5,7,9,21,35,49,63 
116 4 0,9.21.35 68 8 0,5,7,9,21,35 19 14 1.3,5.9.49 
115 4 9,21,35,49 67 8 5,7,9.21,35,49 18 14 0,1.3,5.9,49 
114 4 0,9,21,35,49 66 8 0,5,7,9.21.35.49 17 14 0,1.3,5.9.21 
113 4 0,7,9,35 65 8 0,5,7,9,21,35,63 16 21 1,3,5,9,21.49 
112 4 9,21,35,49,63 64 8 5.7.9,21,35,49,63 15 28 0,1,3,5.9.21,49 
111 4 7,9,21,35 63 8 0,5,7,9,21,35,49,63 14 28 0,1,3,5,9,35 
110 4 0,7.9,21,35 61 8 1,3,9,49 13 28 1,3,5,9,21,49.63 
109 4 7,9,21,35,49 60 8 0,1,3,9,49 12 35 1.3,5.7.9,21 
108 4 0,7,9,21,35,49 59 6 0,1,5.21 11 42 0.1.3.5.7,9.21 
107 4 0,7,9,21,35.63 58 8 1,3,9.21.49 10 35 1,3.5.7.9,21,49 
106 4 7,9,21,35.49,63 57 8 1.3.9.35 9 56 0,1.3,5.7.9,21.49 
105 4 0,7,9,21,35, 49,63 56 8 0,1,3.9.35 8 42 0,1,3.5,7,9,35 
103 4 3.9.49 55 8 1.3.9,35,49 7 56 1,3,5,9,21,35,49,63 
102 4 0,1.49 54 8 0,1.3,9,35,49 6 56 0.1,3,5,9,21,35,49,63 
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Table B.l (continued) 
k d Roots of 5 (1) k d Roots of g(x) fc d Roots of 

101 4 0.1,21 53 8 0,1,3,9,21,35 5 70 0,1,3,5,7,9,21,35 
100 4 1.21,49 52 8 1.3,9.21,35,49 4 63 1,3,5.7.9,21,36,49 
99 4 0.1.21,49 51 8 1.3,7,9,35 3 84 0,1,3,5,7,9,21,35,49 
98 4 0,1.35 60 8 0,1,3,7,9,35 
97 4 1,21,49.63 49 8 1,3,9,21,36,49,63 

n = = 151, m { i ) = 166761, Nc = = 212 
136 5 1 91 17 1,5,16,37 46 31 1,5,7,11,15,23,37 
136 6 0,1 90 IS 0,1,5,15,37 45 36 0,1,5,7,11,15,23,37 
121 8 1,5 76 23 1,6,15,36,37 31 47 1,5,7,11,15,17,23,37 
120 8 0,1.5 75 24 0,1,5,15,35,37 30 48 0,1,5,7,11,15,17,23,37 
106 13 1.3,5 61 31 1.3,5,11,15,37 16 60 1,6,7,11,16,17,23.35,37 
105 14 0,1,3,6 60 32 0,1,3,5,11,15,37 15 60 0.1,5,7,11,15,17,23,35,37 

n = 153, m{x) = 110110001. Nc = 2114 
151 2 61 99 8 1,9.15.17.27 61 19 1,5,9,11,15,17,27 
150 2 0,51 98 8 0.1.9,15,17.27 50 24 0,1,5,9,11,16,17,27 
145 2 9 97 9 1,6,16 49 24 1,5,9,11,15,17,27,51 
144 2 0,9 96 10 0,1,5,15 48 24 0,1,5,9,11,15,17,27,61 
143 2 9,51 95 10 1.5,9.51 47 18 1,6,9,11,15,27,33,51 
142 2 0.9,51 94 10 0.1.5,9,61 46 18 0.1,5,9,11,15,27,33,51 
139 4 9,17 91 9 1.5,15,17 43 19 1,5,9,11,15,17,27,33 
138 4 0,9,17 90 10 0,1,5,15.17 42 24 0.1,5,9,11,15.17,27,33 
137 4 9,17,51 89 13 1,6,9,67 41 24 1,5,9,11,15,17,27,33,51 
136 4 0,9,17.51 88 14 0,1,6,9,57 40 24 0,1,5,9,11,15,17,27,33,51 
135 2 9,27.51 87 14 1.5,9,51,67 39 18 1,5,9,11,15,19,51 
134 2 0,9,27,51 86 14 0,1,5,9,61,67 38 18 0,1,5,9,11,15,19,51 
131 4 9,17,27 83 16 1,6,9.17,57 35 19 1,5,9,11,15,17.27,33,67 
130 4 0.9,17,27 82 16 0,1,5,9,17.67 34 • 24 0.1,5,9,11,15,17,27,33,57 
129 4 9,17,27,51 81 16 1,6,9,17,51,57 33 24 1,5,9,11,16,17,27.33,61,67 
128 4 0,9,17,27.51 80 16 0,1.5,9,17.51,57 32 30 0,1,5,9,11,15,19,57 
127 4 1,51 79 14 1,5,9,15,27,61 31 30 1,6,9,11,15,19,51,57 
126 4 0.1,51 78 14 0.1.5.9,15,27,51 30 30 0,1,5.9.11,16,19,51,57 
123 4 9.15,17,27 75 16 1,5.9.15.17.27 27 27 1,5,9,11,15,17,19,57 
122 4 0,9,15,17,27 74 16 0,1,5,9.15.17,27 26 30 0,1,5,9,11,15,17,19,57 
121 5 1.9 73 16 1,5,9,16,17,27.51 25 30 1,5,9,11,16,17,19,51,57 
120 6 0,1,9 72 16 0,1,6,9.16,17.27.51 24 34 0,1,5,9,11,15,19,27,67 
119 6 1,9,51 71 14 1.5.9,16,27,33,61 23 34 1,5,9,11,15,19,27,33,61 
118 6 0,1,9,51 70 14 0,1.5,9,15,27,33.51 22 34 0,1,5,9,11,15,19,27.33,51 
115 6 1.9,17 67 16 1.6.9,15.17.27,33 19 42 1,5,9.11.15,17,19,27,57 
114. 6 0,1.9,17 66 16 0,1,5.9,15,17,27,33 18 42 0,1,5,9,11,15,17,19,27,57 
113 8 1,9,57 65 16 1,6,9,16,17,27.33.51 17 48 1,5,9,11,15,17,19.27,51,57 
112 8 0,1,9.57 64 18 0,1,6,9,11,57 16 48 0,1,5,9,11,15,17.19, 27,61,57 
111 8 1.9,27,51 63 18 1.5,9,19,51,67 15 34 1,5,9,11,15,19,27,33,51,57 
110 8 0,1,9,27,51 62 18 0,1,5,9,11,61,67 14 34 0,1.5,9,11,15,19, 27,33,51,67 
107 8 1,9,17.57 69 16 1,6,9.15,17,27,33,57 11 51 1,5,9,11,15,17,19,27,33,57 
106 8 0,1,9,17,57 68 18 0,1,5,9,11,17,57 10 54 0,1,5,9.11,16,17. 19.27,33,57 
105 8 1,9,15.27 57 18 1,5,9,11,17,51,57 9 67 1,5.9,11,15.17,19, 27,33.51,57 
104 8 0,1,9.15.27 56 18 0,1,6,9,11,16,27 8 72 0,1,5,9,11.15,17,19. 27.33.51,57 
103 8 1,9.15,27,51 65 18 1.5.9,11,15,27,51 7 34 1,3,5.9,11,15,19, 27,33,51,67 
102 8 0,1.9,15,27,51 54 1 18 0,1,5,9,11,15,27,51 6 34 0,1,3,5,9,11,15,19, 27,33,51,57 

n = 155, m ( i ) = 7154113, Nc = 2768 
151 2 31 101 12 1,3,26,31,76 51 24 1,3,9,23,25.31,36,55,76 
160 2 0,31 100 12 0,1,9,26,31,75 50 24 0,1,3,9,23.25,31,35.66,75 
149 2 0,25 99 10 0.1.9,25,35,75 49 22 0,1,3.5,11,23,26,36,66,75 
146 4 25,31 96 12 1.9,25,31,35,75 46 24 1,3,5.11,23,25.31,35,55,75 
146 4 0,25,31 95 12 0,1,9,25.31,35,75 46 25 1,3,9,11,23,25.75 
144 2 0,25.75 94 10 0,1,11,25,35,55.75 44 28. 0.1,3,9.11,23.25,75 
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Table B. l (continued) 
k d Roots of (7{x) k d Roots of <7(x) k d Roots of g{x) 

141 4 25.31.75 91 12 1,11,25.31,35,55,75 41 25 1.3,9.11.23,25,31,75 
140 4 0,25,31,75 90 12 0,1,11,25,31,35.55,75 40 30 0.1.3,9,11,23,25.31,75 
139 2 0,25.35,75 89 12 0,1.3.11,25 39 30 0,1,3,9,11,23,25.35,75 
136 4 25,31,35.75 86 12 9.11.23,25,31 36 31 1,3,9,11,23.25,31,35.75 
135 4 0,25,31,35,75 85 14 1.3.9,25,75 35 32 0.1,3.9,11,23,25,31,35,75 
134 4 0,1 84 14 0.1.3,9,25,75 34 30 0.1,3.9.11,23.25,35,55,75 
131 4 1.31 81 16 1,3,9,25,31,75 31 32 1,3,9,11,23,25.31,35,55,75 
130 5 1.25 80 16 0,1,3.9,25,31,75 30 32 0,1,3,9,11.23,25. 31.35,55,75 
129 6 0,1,25 79 14 0,1,3,9,25,35,75 29 30 0,1,3,5,9,11,23,25,35,55,75 
126 6 1,25,31 76 16 1,3,9,25,31,35,75 26 32 1,3,5.9,11,23,25,31,35,55,75 
125 6 0,1,25,31 75 16 0,1,3,9,25,31,35,75 25 32 0.1,3.5,9,11.23, 25,31,35,55,75 
124 6 0,1,25,75 74 14 0,1,3,9,25,35,55,75 24 30 0,1,3,7.9,11.23,25,75 
121 8 1,25,31,75 71 16 1,9,11.25.31.35.55,75 21 32 1,3.5,9,11.15.23, 25.31,35,55.75 
120 8 0,1,25,31,75 70 16 0,1,9.11.25.31,35,55,75 20 32 0,1,3,5,9,11,15,23, 

25,31,35,55,75 
119 6 0,1,25,35,75 69 16 0,1.9,11,23,25 19 40 0,1,3,7,9,11,23,25,35,75 
116 8 1,25,31,35.75 66 16 1,5,9,11,25,31,35,55,75 16 35 1,3.7,9,11,23,25,31,35,75 
115 8 0,1,25,31,35,75 65 16 0,1,3.9.11,25.31 15 40 0,1.3,7,9.11.23.25,31.35,75 
114 6 0,1,11 64 20 0,1,9.11,23,25.55 14 60 0,1,3,7,9,11,23,25,35.55.75 
111 8 1,25,31,35, 55,75 61 20 1.3,9.23,25.31,75 11 55 1,3,7,9,11,23,25, 31,35.55,75 
110 8 0.1.25,31, 60 22 1.3,9.23.25.35.75 10 60 0,1.3.7,9,11,23, 25,31.35,55.75 

35,55,75 
109 8 0,1,11,25 59 22 0,1.3,9,23,25.35,75 9 62 0.1.3,5.7,9,11,23. 25,35,55,75 
106 8 1.11.25,31 56 24 1,3,9,23,25,31.35.75 6 75 1.3.5,7,9.11,23,25. 31,35,55.76 
105 10 1,3,25,75 55 24 0,1,3.9.23,25,31,35.75 5 80 0.1.3,5.7,9,11, 

23,25,31.35.55,75 
104 10 0,1,9,25.75 54 22 0.1,3.9.23. 25.35,55,75 

n = : 157. m{x) = 352125723713652127. jVc = 4 
105 13 1 53 26 1.3 
104 14 0,1 52 26 0,1.3 

n = 159, m(x) = 303007410520550411. A'c = IG 
157 2 53 105 4 3.53 53 32 1,3,53 
156 2 0.53 104 6 0.1,53 52 32 0.1,3,53 
107 3 1 55 30 1.3 
106 6 0.1 54 30 0,1.3 

n = 161, m ( i ) = 150536353761, Nc = 156 
158 2 23 106 4 1,7,35 56 7 1,3,5,23,69 
157 2 0.23 105 4 0.1,7,35 55 14 0,1,3,5,23,69 
165 2 23,69 103 8 5.7,23,35 51 23 1,5,11.35 
164 2 0.23,69 102 8 0,5.7,23,35 50 28 0,1,5.11.35 
150 2 35 100 8 1,7,23,35,69 48 32 3,5,11,23,35 
149 2 0,35 99 8 0,1,7,23,35,69 47 32 0,3,5,11,23.35 
147 4 23.35 95 7 1,5 45 32 1,5,11,23,35,69 
146 4 0,23,35 94 14 0,1,5 44 32 0,1,5,11,23,35,69 
144 4 23,35,69 92 7 1,3.23 40 23 1,3,5,7,35 
143 4 0,23,35,69 91 14 0.1.5,23 39 28 0.1.3.5.7.35 
139 2 7,35 89 7 1,5.23,69 37 32 1.3.5.7.23.35 
138 2 0,7,35 88 14 0,1,5,23,69 36 32 0.1.3,5,7,23,35 
136 4 7,23,35 84 14 1,5,35 34 32 1.3,5,7,23,35,69 
135 4 0,7,23,35 83 14 0,1,5.35 33 32 0,1,3,5,7,23,35,69 
133 4 7,23,35,69 81 16 5,11,23,35 29 7 1,3,5,11 
132 4 0,7.23,35,69 80 18 0,3,11,23.35 28 14 0,1,3,5.11 
128 3 1 78 18 1.5,23,35,69 26 7 1,3,5,11,23 
127 4 0,1 77 18 0,1.5,23,35,69 25 14 ,0.1,3.5,11,23 
125 6 5,23 73 23 1,5.7,35 18 23 1.3.5,11,35 
124 6 0,5,23 72 24 0,1.5,7,35 17 46 0.1.3,5.11,35 
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Appendix B. Binary Cyclic Codes of Odd Lengths from 129 to 189 

Table B . l (continued) 
k d Roots of <;(i) k d Roots of (/(x) k d Roots of g(x) 

122 6 1,23,69 70 24 1,5,7,23,35 15 49 1,3.5,11,23,35 
121 6 0,1,23,69 69 24 0,1,5,7,23,35 14 56 0.1,3,5,11,23,35 
117 4 1,35 67 28 1,6.7,23,35,69 12 49 1,3,5,11,23,35,69 
116 4 0,1,35 66 28 0,1.5,7,23,35,69 11 56 0,1.3.5,11,23,35.69 
114 8 5,23,35 62 7 1,3,5 4 69 1,3,5,7,11,23,35 
113 8 0,5,23,35 61 14 0,1.3,5 3 92 0,1,3,6,7,11.23,36 
111 8 1,23,35,69 59 7 1,3.5,23 
110 8 0,1,23,35,69 58 14 0,1.3,5,23 

n = 165, m(x) = 6223427, Â c = = 4800 
163 2 65 109 12 5,9,29,55,77 55 32 1,5,7,9.15.29,33,55,77 
162 2 0,55 108 12 0,5.9,29,55,77 54 32 0,1,5.7,9,15,29,33,55.77 
161 2 77 107 12 5,9,29,33,77 53 32 1,5,7,9,11,15,29,33,77 
160 2 0,77 106 12 0,5.9,29,33.77 52 32 0,1,5,7,9,11,15,29,33,77 
159 2 66,77 105 12 5,9.29.33.55,77 51 32 1,5,7,9,11,15,29,33,55.77 
158 2 0,56,77 104 12 0,5,9,29,33,55,77 50 32 0,1.5,7,9,11,15,29,33,55,77 
157 2 33.77 103 12 1,5,9,11,33,77 49 28 1,5.7,9,15.25,29,55,77 
156 2 0,33,77 102 12 0,1.9,29,55 48 30 0.1,3,5,7,9,29,55,77 
155 2 5 101 12 5.9.15,29.77 47 32 1,5,7,9,15,25,29,33,77 
154 2 0,5 100 12 0.1.9,29,77 46 32 0,1,5.7,9,15,25,29,33,77 
153 2 5.55 99 12 1.9.29,33,55 45 32 1,5.7,9,15,25,29,33,55,77 
152 2 0,5,55 98 12 0,5.9.15,29.55,77 44 32 0,1,5,7,9,15.25.29,33,55,77 
161 4 16,77 97 16 5,9,15,29.33,77 43 32 1,5,7,9,11,15,25,29,33,77 
150 4 0,5,77 96 16 0,5,9,15,29.33,77 42 32 0,1.5,7.9,11.15,25.29,33.77 
149 4 15.55.77 95 16 5,9,15,29,33,55,77 41 33 1.3.5,7,9,15,29.77 
148 4 0,5,55,77 94 16 0,5,9.15.29,33,55.77 40 38 0,1,3,5,7,9,15,29,77 
147 4 5,33,77 93 16 1.3,5,7.55 39 39 1,5.7,9,15,19.29,33.55 
146 4 0.5.33.77 92 16 0,1,5,9,29,55 38 44 0,1.3,5,7,9,16,29,55.77 
145 4 5,33,55,77 91 16 5,9,19,29,77 37 40 1,3,5,7,9,15,29,33,77 
144 4 0,1 90 18 0,1,5,9,29,33 36 44 0,1,5,7,9,15,19,29,33,77 
143 4 9,55 89 19 1,3,7,15,55.77 35 44 1,3,5,7,9,15,29,33.55,77 
142 4 0,1,55 88 20 0,1,5,9.29.55,77 34 44 0.1,3.5.7.9,15,29,33^55,77 
141 5 1,33 87 16 5,9.15,25.29.33,77 33 44 1,3,5,7,9,11,15,29,33,77 
140 6. 0,29,77 86 20 0,1,5,9,29,33,77 32 44 0,1,3,5,7,9,11,15,29,33,77 
139 6 1,33,55 85 20 1,3,7,15,33,55,77 31 44 1,3.5,7.9.11,15.29,33.55,77 
138 6 0,29,55,77 84 20 0,1,5,9,29,33,55,77 30 44 0.1.3,5,7.9,15,25,29.77 
137 5 29,33,77 83 17 1,5,9,15,29,55 29 44 1,5.7,9,15.19.25.29,33,55 
136 6 0,1,33,77 82 20 0,1,5,9,15,29,55 28 44 0.1.3,5,7,9,15,25.29,55,77 
135 6 1,33,55.77 81 21 1,5,9,15,29,77 27 48 1,3.5,7,9,15,25,29,33,77 
134 6 0,1.33,55,77 80 24 0,1,3,6,7,15.77 26 48 0,1,3,5,7,9,15,25.29,33,77 
133 5 1,11,33,77 79 23 1,3,5,7,15,55,77 25 48 1,3,5,7.9,15,25.29,33.55,77 
132 6 0,1.11,33,77 78 24 0,1,3,5,7,15,55,77 24 48 0,1,3,5.7,9.15, 25,29,33,55,77 
131 7 3,5,77 77 24 1,5,9,15,29,33,77 23 48 1.3.5.7.9,11,15,25.29.33.77 
130 8 0,5,9,77 76 24 0,1,5.9.15.29.33.77 22 48 0.1.3,5,7,9.11,15, 25,29,33,77 
129 8 1,15,33,55 75 24 1.5.9,15,29,33,55,77 21 48 1,3,5,7,9,11,15, 25,29,33,55,77 
128 8 0,5,9,55,77 74 24 0,1.5,9,15, 29,33,55,77 20 48 0,1,3,5.7,9,11, 15,25.29,33,65,77 
127 8 5,29,33,77 73 24 1,5,9,11,15,29,33,77 19 44 1,3,5,7,9,15,19,29,33.55 
126 8 0,1,5,33,77 72 24 0,1,5,9,11, 15,29,33,77 18 44 0,1,3,5,7,9,15,19.29.55.77 
125 8 5.29.33,55,77 71 24 1,3,5,7,15,25,77 17 50 1,3,5,7,9,15,19,29,33,77 
124 8 0,1,5,33,55,77 70 24 0,3,5,7,19,29,77 16 50 0,1.3.5.7.9.15.19,29,33.77 
123 8 1,9,55 69 24 1,7,9.15.29,55.77 15 55 1.3.5.7.9.15.19.29.33,55.77 
122 8 0,1,9,55 68 24 0,1,5,7,9.29,55,77 14 60 0,1,3,5,7,9,15,19, 29,33.55,77 
121 8 5.9,15,77 67 24 1,5,9,15,25,29,33,77 13 50 1.3,5.7.9.11,15,19,29.33,77 
120 10 0,7,9.77 66 26 0.1.5,9,19,29,33,77 12 50 0,1,3,5,7,9,11,15, 19,29,33,77 
119 10 7.9.55,77 65 24 1,5,9,15,25, 29.33.55,77 11 55 1,3.5,7,9,11,15, 19,29,33,55,77 
118 10 0.7,9,55,77 64 28 0,1,5,9,19, 29,33,55,77 10 60 0,1,3,5,7,9,11,16, 19,29,33,56,77 
117 8 1,5,15,33,77 63 24 1,5.7.9,15,29,55 9 44 1,3,5,7,9,15,19,25,29,33,65 
116 10 0,9,29,33,77 62 28 0,1.5,9,11, 19.29,33,77 8 44 0,1,3.5,7,9.15. 19.25,29,55,77 
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Table B . l (continued) 
k d Roots orf;(x) k d Roots of (7(x) k d Roots of g{x) 

115 10 9,29.33.55,77 61 27 1,5,7.9,15,29.77 7 55 1,3,5.7,9,15.19,25,29,33,77 
114 10 0.9,29,33,55.77 60 28 0,1,5.7.9,15.29,77 6 66 0.1,3,5.7,9.15, 19,25,29.33,77 
113 8 1,9.15,55 59 28 1.5,7,9,15,29,55,77 5 77 1.3,5,7.9,15,19, 25,29,33.55,77 
112 10 0.1,9,11.33.77 58 28 0.1,5.7,9, 15.29,55,77 4 88 0,1,3,5,7,9,15, 

19,25,29,33,55,77 
111 11 5.7.9,77 57 32 1.5,7,9.15.29,33.77 
110 12 0,5,7,9,77 56 32 0,1.5,7.9, 15,29,33,77 

n = 167, m ( i ) = 5122022544G67121505742432523, A'c = 2 
84 23 1 83 24 0,1 

n = 169, m ( i ) = = 19000400020001000040002000100004000200010000400020001. A'c = 2 
157 2 13 12 26 0,1 

n = 171. m{x) = 1167071, A'c = 802 
169 2 57 111 12 1,3,9,19 57 35 1.3,5.7.9,13,19 • 
168 2 0,57 110 16 0,1,3,5,19 66 36 0,1,3,5,7,9,13,19 
163 2 19.57 109 12 1,3.9.19.57 55 36 1.3.5.7.9,13.19,57 • 
162 2 0.19.57 108 16 0.1,3,5,19,57 54 36 0.1.3.5.7,9.13,19.57 
153 3 1 99 18 1,3,9.13 45 19 1.3.5,7,9,15,17 
152 6 0.1 98 18 0,1.3,9.13 44 38 0.1,3.5.7,9.15.17 
151 5 1.57 97 18 1,3,9,13,57 43 38 1.3,5.7,9,15.17,57 
150 6 0,1,57 96 18 0,1,3.5,7,57 42 38 0.1.3.5.7,9.13.17.57 
147 4 9,19 93 20 1.3,5,9.19 39 45 1,3.5,7,9,15,17,19 
146 6 0.1.19 92 20 0.1,3,5.9,19 38 48 0,1,3,5,7,9,15,17,19 
145 6 1,19,57 91 21 1.3.5,9,19.57 37 48 1,3,5,7,9,15,17,19,57 
144 6 0,1.19,57 90 22 0,1,3,5,9,19,57 36 48 0,1,3,5,7.9,15.17,19.57 
135 9 1,3 81 19 1,3.5,7,9 27 19 1,3,5,7,9.13,15,17 
134 10 0,1,3 80 26 0,1,3,5,7,9 26 38 0,1,3,5,7,9,13.15.17 
133 9 1.3,57 79 23 1,3.5,9,17,57 25 38 1,3,5,7,9,13,15,17,57 
132 10 0,1,3.57 78 26 0,1.3,5,7.9,57 24 38 0,1.3,5,7,9,13.15,17.57 
129 9 1.3,19 76 27 1,3.5,9,17,19 21 55 1,3,5,7,9,13,15,17,19 
128 10 0,1,3.19 74 28 0,1,3,5,9,17,19 20 64 0,1,3.5,7,9,13,15,17,19 
127 10 1,9,19,57 73 28 1,3,5,9,17,19.57 19 68 1,3,5,7,9,13,15,17,19,57 
126 12 0,1,16,19,57 72 28 0,1,3,5,9,17,19,57 18 68 0,1,3,5,7,9,13,16,17,19,57 
117 10 1.3,9 63 19 1.3.5.7,9,25 7 38 1,3,5.7,9,13.15,17.25,57 
116 14 0,1,3.5 62 32 0,1,3,5,9,17,25 6 38 0.1,3,5,7,9,13,15,17,25,57 
115 12 1.7.9,57 61 32 1,3,5,9,17,25.57 
114 14 0.1,7.9.57 60 32 0,1,3.5,9,17.25.57 

n = 175, m(x) = 100041020400004002041, A' : = 242 
172 2 25 112 6 3,25 60 8 0,1.5,7.15.25,35.76 
171 2 0,25 111 6 0,3,25 52 7 1.3.25 
170 2 0,35 110 4 0.1,35 51 10 0.1.3,25 
169 2 25,75 109 6 1.25,75 50 10 0,1.3,35 
168 2 0,25,75 108 6 0.1,25,75 49 7 1,3.26,76 
167 2 0.25,35 107 6 0,3,25,35 48 14 1,3.25,35 
165 2 25,35,75 105 6 1,25.35,75 47 14 0,1.3,25,35 
164 2 0,25,35,75 104 6 0,1.25,35,75 45 14 1,3,25,35,75 
163 2 5 103 6 1.5 44 14 0,1,3.25,35.75 
162 2 0.5 102 6 0.1.5 43 7 1,3,5 
160 2 5,25 100 6 1,5.25 42 14 0,1,3,5 
159 2 0,5,25 99 6 0.1.5,25 40 7 1,3,5,25 
158 2 0,5,35 98 6 0.1,5,35 39 14 0,1,3,6,26 
157 2 5,25,75 97 6 1,5.25,75 38 14 0.1,3,6,35 
156 2 0,5,25.75 96 6 0,1,5,25,75 37 7 1.3,5,26,76 
155 2 0,5,25.35 95 6 0,1.5,25,35 36 14 0,1,3.5,25.75 
153 2 5.25.35,75 93 6 1,5,25,35,75 35 14 6,1,3,5,25,35 
,152 4 7.25 92 7 3,7,25 33 14 1,3,5.25,35,75 
151 4 0.7.25 91 8 0,3,7,25 32 14 0,1,3.5,25,35.75 
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Appendix B. Binary Cyclic Codes of Odd Lengths from 129 to 189 

Table B . l {continued) 
k d Roots of ff(x) k d Roots of g{x) k d Roots of g{x) 

150 2 0,7,35 90 6 0,1,5,15 31 10 0.1,3,7,25 
149 4 7,25,75 89 8 1,7,25,75 30 14 0,1.3,5,15 
148 4 0,7,25,75 88 8 0,1,7,25,75 29 10 1,3,7,25,75 
147 4 0,7,25,35 87 8 0,3,7.25.35 28 20 1,3,7,25,35 
145 4 7,25,35,75 86 6 0,1,5.15.35 27 20 0,1,3.7,25,35 
144 4 0,7.25,35,75 85 8 1,7.25,35,75 26 14 0,1,3.5.15.35 
143 4 5,7 84 8 0.1,7.25,35,75 25 20 1.3.7.25.35.75 
142 4 0.5,7 83 7 1.5.7 '24 20 0,1.3,7,25,35,75 
141 2 5.15,25.35,75 82 8 0.1.5.7 23 15 1,3.5,7 
140 4 5.7.25 81 6 1.5.15.25.35.75 22 20 0.1,3.5,7 
139 4 0,5.7,25 80 8 1.5.7.25 21 14 1,3,5.15.25.35.75 
138 4 0,5.7,35 79 8 0,1,5.7.25 20 30 1.3,5.7.25 
137 4 5,7.25,75 78 8 0,1.5.7,35 19 30 0.1.3.5.7,25 
136 4 0,5,7,25,75 77 8 1.5.7,25,75 18 20 0,1,3.5.7,35 
135 4 0,5,7,25,35 76 8 0.1.5.7,25,75 17 30 1.3.5,7.25.75 
133 4 5,7,25.35,75 75 8 0,1,5.7,25,35 16 35 1,3.5,7,25,35 
132 4 0.5.7.25.35.75 73 8 1,5.7,25.35,75 15 40 0,1,3,5,7,25,35 
131 4 5,7,15 72 8 0,1.5.7.25.35,75 13 40 1,3,5,7,25,35,75 
130 4 0,5.7,15 71 8 1,5,7.15 12 40 0,1,3,5,7,25,35,75 
128 4 5.7.15,25 70 8 0,1.5.7.15 11 25 1,3,5.7,15 
127 4 0,5.7,15,25 68 8 1,5,7.15.25 10 50 0.1.3.5,7,15 
126 4 0,5.7,15,35 67 8 0.1.5.7.15,25 8 35 1.3,5.7.15.25 
124 4 5,7,15,25,35 66 8 0.1.5,7,15,35 7 70 0.1.3.5.7,15,25 
123 4 0,5,7,15,25,35 64 8 1.5.7.15,25,35 4 75 1.3.5,7.15.25,35 
121 4 5,7,15,25,35,75 63 8 0,1.5.7,15,25.35 3 100 0,1,3,5,7,15,25,36 
120 4 0,5.7,15, 25.35,75 61 8 1.5.7.15.25.35,75 

n = 177, m ( i ) = 23563311065422331671, Nc = 16 
175 2 59 117 4 3,59 59 30 1,3,59 
174 2 0,59 116 6 0.1,59 58 30 0,1,3,59 
119 3 1 61 28 1,3 
118 6 0,1 60 28 0.1.3 

n = 183, m ( i ) = 131010354441637571637, Nc = 16 
181 2 61 121- 4 3.61 61 36 1,3,61 
180 2 0,61 120 6 0,1.61 60 36 0,1,3,61 
123 3 1 63 34 1.3 
122 6 0.1 62 34 0.1.3 

n = 185, m ( i ) = 1761557733077, Nc = 40 
181 2 37 113 14 1,5 73 32 1.3.5.37 
180 2 0.37 112 14 0,1,5 72 32 0,1.3.5.37 
149 5 1 109 16 1,5,37 41 37 1,3,5,19 
148 8 0,1 108 16 0,1.5,37 40 . 48 0.1.3.5,19 
145 5 1,37 77 28 1.3.5 37 37 1,3,5,19.37 
144 8 0,1.37 76 28 0,1.3,5 36 54 0.1,3,5,19,37 

n = 187, m ( i ) = 36000132706'173, jVc = 78 
179 2 33 129 12 3,17,33 59 17 1,3,9,33 
178 2 0,33 128 12 0,3,17,33 58 30 0,1,3,23,33 
177 2 17 121 12 1,11,17,33 57 11 1,3,9,17 
176 2 0,17 120 12 0,1,11,17,33 56 22 0,1,3.9,17 
171 2 11.33 107 11 1.3 51 17 1,3,9.11.33 
170 2 0,11.33 106 14 0.1.3 50 34 0,1,3,9,11,33 
169 4 17,33 99 17 1.3,33 49 38 1,3,9,17.33 
168 4 0,17.33 98 22 0,1,3,33 48 38 0,1,3,9,17,33 
161 4 11,17,33 97 11 1,3.17 41 48 1,3,9,11,17,33 
160 4 0,11,17.33 96 16 0.1.3.17 40 48 0,1,3,9,11,17,33 
147 5 1 91 17 1.3.11.33 27 11 1,3,9.23 
146 6 0,1 90 22 0,1,3,11.33 26 22 0,1,3,9,23 
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Table B . l {continued) 
k d Roots of gix) k d Roots of (7(x) k d Roots of f;(x) 

139 9 3,33 89 24 1,3,17,33 19 17 1,3,9,23,33 
138 10 0,3,33 88 24 0.1,3,17,33 18 34 0,1.3,9,23,33 
137 6 1.17 81 24 1.3,11,17,33 9 55 1,3,9,17,23,33 
136 6 0,1,17 80 24 0,1,3,11,17.33 8 66 0,1,3,9,17,23,33 
131 10 1,11,33 67 11 1,3,9 
130 10 0,1,11.33 66 22 0.1.3.9 

n = 189, m(x) = 1100111, Nc = 175286 
187 2 63 125 12 0,1,3.5.31,81 63 24 0,1,3,6,7,11,13.31,39.63,81 
186 2 0,63 124 12 1,3,5,7,63,81 62 24 0,1,3,6,7,9,11,13,16,31 
185 2 0,81 123 12 0,1,3,5,7.63.81 61 24 1,3,5,7,11,13,21,23,27,63,81 
184 2 63,81 122 12 0,1,3.5,7.9 60 24 0,1,3,5,7,9,11,13,31,39.63 
183 2 3 121 12 1.3,5,7,9,63 59 24 0,1,3,5,7,9,11,13,16,31.81 
182 2 0,3 120 12 0,1.3,5,7,9,63 58 24 1,3,5.7,11,13,21, 31,63,69,81 
181 2 3,63 119 12 0,1,3,5.7,69,81 57 27 1,3,5,7,9,11,13,15,21,23 
180 2 0,3,63 118 14 1,3,5,31,39,63,81 56 28 0,1,3,5,7,9,11,13,16,21.23 
179 2 0,3,81 117 14 0,1,3.6.31,39,63,81 55 27 1,3,6,7,9,11,13,21,23,39.63 
178 2 3,63.81 116 14 0,1,3,5,9,31,39 54 31 1,3,5.7,11,13,21, 23,39.45,81 
177 2 3,69 115 14 1,3,5,9,31,39,63 53 32 0,1,3.5,7,11,13,21, 23,39,46,81 
176 2 0,3,69 114 14 0,1,3,5,9,31,39,63 52 32 1,3,5.7,11,13,21, 23.39,45,63.81 
176 2 3,63,69 113 14 0,1,3,6,31,39,69,81 51 32 0,1,3,5.7,11.13,21, 

23,39.45,63,81 
174 2 0,3,63,69 112 14 1,3,5,31,39,63,69,81 50 32 0,1,3,5.7,9,11,13, 15,21,23,27,81 
173 2 0,3,69,81 111 14 0,1,3,5,31,39,63,69,81 49 32 1,3,6,7,11,13,21, 

• 23,27,39,63,69,81 
172 2 3,63,69,81 110 14 0,1,3,5,9,31,39.69 48 32 0,1,3,5,7,11.13,21.23, 

27.39,63,69.81 
171 2 3,21,69 109 14 1,3,5,9,31.39,63,69 47 32 0,1,3,5,7,11,13,21, 

23.39,46,69,81 
170 2 0,3,21,69 108 14 0.1.3.5,9, 31,39,63,69 46 32 1,3,5,7,11.13.21, 

23,39,46,63.69,81 
169 4 1,63 107 14 0.1.3,11,13,21,39,69,81 45 32 0,1,3.5,7,11,13,21, 

23.39.46,63.69,81 
168 4 0,1.63 106 14' 1,3.11,13,21, 44 32 0,1,3.5,7,9.11. 13.21.23.39.45,69 
} 

39,63,69,81 
167 4 0,1,81 105 14 1,3,9,11,13,21,39,45 43 32 1,3,5.7,9,11.13,21,23, 

27.39.63,69.81 
166 4 1,63,81 104 14 0,1,3,5,7,9,11 42 32 0,1,3,5,7,9,11.13,21. 

23,39,45,63,69 
165 5 1,3 103 14 1.3,5,7,9,11,63 41 32 0,1,3,5,7,9,11,13,21, 

23.39.45,69.81 
164 6 0,1.3 102 15 1,3,5,7,11.21,81 40 32 1.3.5,7.9,11.13,21,23, 

39.45,63,69,81 
163 6 1,3,63 101 16 0,1,3.5,7.11,21,81 39 32 0,1.3,5,7.9,11.13,21. 

23,39,46,63,69,81 
162 6 0,1,3,63 100 16 1,3,5,7,11,21,63,81 38 32 0,1,3,5,7,9.11,13.16, 

21,23,39,45,69 
161 6 0,1.3,81 99 17 1,3,7,11.27.31,39,81 37 32 1,3,5,7,9,11,13,15,21, 

23,27,39,63,69,81 
160 6 1,3.63,81 98 18 0,1,3,7.11. 27,31,39,81 36 33 1,3,5,7,11,13,21, 23,31,39,45,81 
159 6 3.9.13 97 18 1,3,7.11,27.31, 39,63,81 35 36 0,1,3,6,7,11,13,23, 

31,45,69,81,93 
158 6 0,1.3,69 96 18 0,1,3.7.11,27, 34 33 1,3,5.7,11.13,23.31. 

31,39,63,81 39,45,63,69,81 
157 6 1.3.63,69 95 18 0,1,3,7,11,21,31,39,81 33 36 0,1,3,5,7,11,13,23,31. 

39,45,63.69,81 
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Appendix B. Binary Cyclic Codes of Odd Lengths from 129 to 189 

Table B. l (continued) 
k d Roots of (7(x) k d Roots of (7(1) k d Roots of 5(1) 

156 6 0,1,3,63,69 94 18 1,3.7,11,21, 31.39.63,81 32 36 0.1.3.5,7.11,13.21. 
23,31,39,45,69 

155 6 0.1.3.69.81 93 18 3.5,7,9,11,13,39,45 31 36 1.3,5.7,11.13,21,23. 
27.31,39.63,69,81 

154 6 1.3.63,69.81 92 18 0.1.3,7,9, 11.21,31,39 30 39 1,3.5,7,11,13,21, 
23,31,39,45,69,81 

153 6 3.9,13.69 91 18 1.3.7,9,11,21,31.39.63 29 42 0,1,3,5,7,11,13,21, 
23.31,39,45.69.81 

152 6 0,1.3,21,69 90 18 0,1,3.7.9,11, 
21,31.39.63 

28 45 1.3,5.7,11,13.21,23, 
31.39,45,63,69.81 

151 6 1,31,63 89 18 0,1,3.7.11.21. 
31.39.69.81 

27 48 0.1.3.5.7.11,13,21.23, 
31,39.45.63,69.81 

160 6 0,1,31.63 88 18 1,3,7.11.21,31, 
39.63.69.81 

26 42 0.1.3.5.7.9.11.13.21, 
23,31,39.46,69 

149 6 0.1,5.81 87 18 1.3,7,9,11,21.31,39,45 25 45 1.3.5,7.9.11,13.21.23, 
27,31,39,63.69,81 

148 6 1.5,63,81 86 18 0.1.3.7,11,13,31,93 24 48 0,1.3.5,7.9,11,13,21.23. 
27,31,39,63,69,81 

147 7 1.3.6 85 18 1.3,7.9,11,21, 
31,39,63,69 

23 48 0,1,3.5,7,9.11,13.21,23, 
31.39,45,69.81 

146 8 0.1.3.6 84 18 0,1,3,7.11.13,31,39,63 22 48 1,3,5.7,9,11.13,15,21.23, 
31.45,63,69.81 

145 8 1.3,5,63 83 18 0,1,3.5.11.13.21,31.81 21 64 0.1.3.5.7.9.11.13,21.23. 
31.39.45.63,81.93 

144 8 0,1,3.6,63 82 20 1,3,5.7.11.13. 39,63,81 20 64 0,1,3,6,7.9,11.13,15,21. 
23.31.45.69,93 

143 8 0,1,3.5.81 81 21 1,3,5,7.9.11,13.15 19 67 1,3.5,7,9.11,13.15.21.23. 
27,31.63.69,81.93 

142 8 1.3,5,63.81 80 22 0.1.3,5,7.9.11.13.15 18 63 1,3.5,7,9.11,13.15.21, 
23,31.39.45,69,81 

141 8 1.3,7,39 79 21 1,3.5,7,9,11. 13,39,63 17 66 0,1,3.5,7.9.11.13.16,21. 
23,31,39.45.69,81 

140 10 0,1,3,7,39 78 22 0,1.3,5,7,9, 11,13.39.63 16 69 1,3,5,7,9,11,13,15.21, 
23,31,39,45,63,69.81 

139 10 1,3.7,39,63 77 22 0,1.3.5,7,9. 11,13,15,81 16 72 0,1,3.5,7,9.11,13.15,21. 
23.31,39,45,63,69.81 

138 10 0,1.3,7,39,63 76 24 1,3,5.7.11.13. 
21,39,63,81 

14 66 0.1,3.5,7,9,11,13.15,21, 
23.27,31.39.45,69.81 

137 10 0,1,3,7,39,81 75 24 0,1,3.5,7.11, 
13.21.39.63.81 

13 72 1.3.5.7,9.11.13,15,21.23, 
27.31,39,63,69.81,93 

136 10 1.3.7.39.63,81 74 24 0.1.3,5,7,9,11.13,15,21 12 72 0.1.3,6,7,9,11.13,16,21, 
23,27,31.33,39.63,69.81 

135 10 1.3.9,31,39 73 24 1.3.5,7,9,11. 
13.21.39,63 

11 78 0.1,3,5,7.9,11.13,15,21. 
23,31,33.39,46,69,81 

134 10 0,1.3,31,39,69 72 24 0,1.3.5,7,9. 
11,13,21,39,63 

10 81 1,3,6,7,9.11,13,15,21, 
23,31,39,45,63,69,81,93 

133 10 1,3,31,39,63,69 71 24 0,1.3,6,7,9. 
11,13,15,21,81 

9 84 0,1,3,5,7,9,11,13.15,21, 
23,31,33,39,45,63,69,81 

132 10 0,1,3.31, 39.63,69 70 24 1,3,5.7,11.13, 
21,39,63,69,81 

8 78 0,1,3.5,7,9,11,13.15, 
21,23,27,31.33.39,45,69.81 

131 10 0,1,3.31,39.69.81 69 24 1,3,7.9.11. 
13,21.31.39,45 

7 93 1,3,5.7,9,11.13,15,21,23, 
27,31,33,39.45,63,69,81 

130 10 1,3,31.39. 
63.69,81 

68 24 0,1,3.5.7.9, 
11.13.21,39.69 

6 96 0,1,3,5,7,9,11,13,15,21,23, 
27,31,33,39,45,63,69,81 
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Table B. l {continued) 
k d Roots of g{x) k d Roots of k d Roots ofg{x) 

129 10 1,3,9,21,31,45 67 24 1,3.5,7,9,11,13, 5 90 0,1,3,5,7.9.11,13,15,21, 

128 10 0,1,3.5,7 66 24 
21.39,63,69 
0,1,3,5,7,9,11, 4 81 

23.31,33,39,45,69,81,93 
1.3,5.7,9,11,13,15,21.23, 

127 10 1,3,5,7,63 65 24 
13.21,39,63,69 
0,1,3,5,7,9,11, 3 108 

31,33.39,45,63,69.81,93 
0.1,3,5.7,9,11,13,15,21,23, 

126 10 0,1,3,5,7,63 64 24 
13,21,39,69,81 
1,3,5,7,9,11.13, 
21,39,63,69,81 

31,33,39.45,63,69,81,93 
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c Improved Lower-Bounds of the 
Minimum Hamming Distance of 
Binary Linear Codes 

The following tables depict the updated lower-bounds of minimum distance of linear codes over 

IF2. These improvements-there are 901 of them in total, are due to the new binary linear codes 

described in Chapter 4. In the following tables, entires marked with C refer to cyclic codes, those 

marked with A', A'A' and Yl refer to codes obtained from Constructions X, XX and Y l respectively. 

Similarly, entries marked with E, P, and 5 denote \n,k,d\ codes otained by extending (aneexing 

parity-check bit) to ( n - 1, codes, puncturing [?H-1, 1] codes and shortening [n-\-\,k-\-l,d\ 
codes, respectively. Unmarked entries are the original Brouwer's (1998) lower-bounds. 

Table C . l : Updated Minimum Distance Lower Bounds of Linear Codes C = [ / i , k] for 153 <n< 17̂ 1 
and 58 < A: < 77 

n\k 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 k f n 
153 32 32 32 32 29'' 28 28 27 26 26 20 26 25 24 24 24 24 24 24 22 153 
154 32 32 32 32 30'^ 28 28 28 27 20 20 26 26 24 24 24 24 24 24 23-̂ ' 154 
155 32 32 32 32 31-^' 28 28 28 28 27 26 26 26 25 24 24 24 24 24 24^ 155 
156 32 32 32 32 32^ 28 28 28 28 28 27 26 26 26 25 24 24 24 24 24^ 156 
157 32 32 32 32 32^' 29 28 28 28 28 28 26 26 26 26 24 24 24 24 24^ 157 
158 32 32 32 32 32^ 30 29 28 28 28 28 26 26 26 26 25 24 24 24 24 158 
159 32 32 32 32 32^ 31-̂ 'A' 30 29 28 28 28 27 26 26 26 26 25 24 24 24 159 
160 32 32 32 32 32^ 32^- 30 30 28 28 28 28 26 26 26 26 26 25 24 24 160 
161 32 32 32 32 32 32^' 30 30 29 28 28 28 27 26 26 26 26 26 25 24 161 
162 33 32 32 32 32 32*̂ ' 31^ 30 30 29 28 28 28 27 26 26 26 26 26 24 162 
163 34 33 32 32 32 32 32^ 31^ 30 30 29 28 28 28 27 26 26 26 26 25 163 
164 34 34 33 32 32 32 32 32^ 31^ 30 30 29 28 28 28 27 26 26 26 26 164 
1G5 34 34 34 33 32 32 32 32 32^ 31^ 30 30 28 28 28 28 27 26 26 26 165 
166 34 34 34 34 32 32 32 32 32^ 32^ 31^ 30 28 28 28 28 28 27 26 26 166 
107 34 34 34 34 32 32 32 32 32^ 32^ 32^ 3 1 ' ' 29 28 28 28 28 28 27 26 167 
168 34 34 34 34 32 32 32 32 32^ 32^ 32^ 32^» 30 295 28 28 28 28 28 26 168 
169 355 34 34 34 32 32 32 32 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 28 28 27 169 
170 36^ 35^ 34 34 33 32 32 32 32 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 28 28 170 
171 36 36^ 35-̂ * 34 34 33 32 32 32 32 32^ 32^' 32^ 32^ 31^ 30^ 29^ 28 28 28 171 
172 36 36 36^ 34 34 34 33 32 32 32 32 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 172 
173 36 36 36 35 34 34 34 33 32 32 32 32 32^ 32^ 32^ 32^31^ 30^ 29^ 28 173 
174 36 36 36 36 34 34 34 34 32 32 32 32 32 32 E 32^ 32^ 32^ 31^ 30^ 29^ 174 
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Appendix C. Improved Lower-Bounds of the Minimum Hamming Distance of Binary Linear Codes 

Table C.2: Updated Minimum Distance Lower Bounds of Linear Codes C 
and 56 < A- < 78 

(n,A:] for 175 < n < 224 

| 56 57 58 59 1 60 61 62 63 64 65 66 67 68 09 70 71 72 73 74 75 76 77 78 k/n 

175 38 36 36 36 36 36 34 34 34 34 33 32 32 32 32 32'=' 32*^ 32^ 32^ 32^ 3}^ 30^ 29^ 175 
176 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 32 32'̂ ' 32* 32* 32* 32* 31* 30* 176 
177 38 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 32 32* 32* 32* 32* 32* 31* 177 
178 38 38 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 32 32* 32* 32* 32* 32* 178 
179 39 38 38 38 37 36 30 36 36 35 34 34 34 34 33 32 32 32 32 32* 32* 32* 32* 179 
ISO 40 38 38 38 38 36 36 36 36 36 34 34 34 34 34 32 32 32 32 32 32^ 32^' 32^ 180 
181 40 39 38 38 38 37 3C 36 36 36 35 34 34 34 34 33 32 32 32 32 32*32* 32* 181 
182 40 40 39 38 38 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 32 32* 32* 182 
183 40 40 40 39 38 38 38 37 30 36 36 36 35 34 34 34 34 33 32 32 32 32 32* 183 
184 41 40 40 40 39 38 38 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 32 184 
185 42 41^ 40 40 40 38 38 38 38 37 36 36 36 36 35 34 34 34 34 33 32 32 32 185 
186 42 42^41^ 40 40 39 38 38 38 38 37 36 36 36 36 34 34 34 34 34 32 32 32 186 
187 42 42 42^41^ 40 40 39 38 38 38 38 37 36 36 36 35 34 34 34 34 33 32 32 187 
188 42 42 42 42^ 41^ 40 40 39 38 38 38 38 37 36 36 36 35 34 34 34 34 33 32 188 
189 43 42 42 42 42^ 41^ 40 40 39 38 38 38 38 37 36 36 36 35 34 34 34 34 33 189 
190 44 42 42 42 42 42^ 41^ 40 40 38 38 38 38 38 37^ 36 36 36 35 34 34 34 34 190 
191 44 43 42 42 42 42 42^ 41^ 40 39 38 38 38 38 38* 37* 3G 36 36 35 34 34 34 191 
192 44 44 43 42 42 42 42 42^ 41^ 40 39'' 38 38 38 38 38* 37* 36 36 36 35* 34 34 192 
193 44 44 44 43 42 42 42 42 42^ 4\S 40'' 39'' 38 38 38 38* 38* 37* 36 36 36*35* 34 193 
194 44 44 44 44 43 42 42 42 42 42^41'' 40'' 38 38 38 38* 38* 37'' 36 36 36*35' ' 194 
195 44 44 44 44 44 43 42 42 42 42 42^41^40^39*^ 38 38 38 38^38*^ 37'=̂  36 36 36^ 195 
196 44 44 44 44 44 44 42 42 42 42 42^ 42^ 40 40^' 38 38 38 38 38^ 38^ 36 36 36 196 
197 45 44 44 44 44 44 42 42 42 42 42^ 42^ 40 40 39 38 38 38 38 38^ 36 36 36 197 
198 46 44 44 44 44 44 42 42 42 42 42^ 42^ 40 40 40 38 38 38 38 38 36 36 36 198 
199 46 45^ 44 44 44 44 43 42 42 42 42^ 42^ 40 40 40 38 38 38 38 38 36 36 36 199 
200 47^ 46^ 45^ 44 44 44 44 42 42 42 42*^ 42'-- 40 40 40 38 38 38 38 38 37 36 36 200 
201 48^ 47^ 46^ 45^ 44 44 44 42 42 42 42 42*̂ ' 40 40 40 38 38 38 38 38 38 37 36 201 
202 48^ 48^ 47^ 46^ 45'' 44 44 43 42 42 42 42'=̂  40 40 40 39 38 38 38 38 38 38 37 202 
203 48^ 48^ 48^ 47^ 46'' 44 44 44 43 42 42 42^ 40 40 40 40 39 38 38 38 38 38 38 203 
204 48^ 48^ 48^ 48^ 47̂ ^ 45'' 44 44 44 43 42 42 41 40 40 40 40 39 38 38 38 38 38 204 
205 48 48^ 48^ 48^ 48^^ 46*^ 45^ 44 44 44 42 42 42 41 40 40 40 40 39 38 38 38 38 205 
206 48 48^ 48^ 48^ 48^ 46^ 46^ 45^ 44 44 43 42 42 42 41 40 40 40 40 39 38 38 38 206 
207 48 48 48^ 48^ 48^ 47'' 46^ 46^ 45^ 44 44 43 42 42 42 41 40 40 40 40 38 38 38 207 
208 48 48 48 48^ 48^ 48'̂ ' 46 46^46^ 45^ 44 44 43 42 42 42 41 40 40 40 39 38 38 208 
209 49 48 48 48 48^ 48^ 46 46 46^ 46^ 45^ 44 44 43 42 42 42 41 40 40 40 39 38 209 
210 50 48 48 48 48 48^ 47^ 46 46 46^ 46^ 45^ 44 44 43 42 42 42 40 40 40 40 39 210 
211 50 49 48 48 48 48^ 48^ 47^ 46 46^ 46^ 46^ 45^ 44 44 43 42 42 41 40 40 40 40 211 
212 50 50 49 48 48 48 48^ 48^ 47^ 46 46^ 46^ 46^ 45* 44 44 43 42 42 41 40 40 40 212 
213 50 50 50 49 48 48 48 48^ 48^ 47^ 46 46^ 46^ 46* 45* 44 44 43 42 42 41 40 40 213 
214 51 50 50 50 49 48 48 48 48^ 48^ 47^ 46 46^ 46* 40* 45'' 44 44 43 42 42 41 40 214 
215 52 50 50 50 50 48 48 48 48 48^ 48^ 47^ 46 46* 46-=̂  46*=̂  44 44 44 43 42 42 40 215 
216 52 51 50 50 50 49 48 48 48 48^ 48^ 48^ 47*' 46* 46'=̂  46'̂ ' 44 44 44 44 43 42 41 216 
217 52 52 51 50 50 50 49 48 48 48 48^ 48^ 48^ 47^ 46''̂  46^ 44 44 44 44 44 43 42 217 
218 52 52 52 51 50 50 50 49 48 48 48 48^ 48^ 48* 47* 46^ 45* 44 44 44 44 44 43 218 
219 53 52 52 52 51 50 50 50 49 48 48 48 48* 48* 48* 47* 46* 45* 44 44 44 44 44 219 
220 54 52 52 52 52 50 50 50 50 48 48 48 48 48^ 48^ 48^ 47^ 46^' 45'^ 44 44 44 44 220 
221 54 53 52 52 52 51 50 50 50 49 48 48 48 48* 48* 48* 48* 47* 46'' 45'' 44 44 44 221 
222 54 54 53 52 52 52 51 50 50 50 49 48 48 48 48* 48* 48* 48* 47'' 46'' 44 44 44 222 
223 54 54 54 53 52 52 52 51 50 50 50 49 48 48 48 48* 48* 48* 48̂ ^ 47^ 44 44 44 223 
224 55 54 54 54 53 52 52 52 51 50 50 50 49 48 48 48 48* 48* 48^ 48^ 45 44 44 224 
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Table C.3: Updated Minimum Distance Lower Bounds of Linear Codes C = [n, k] for 175 < < 224 
and 79 < A: < 100 

n\k 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 k/n 
175 28 28 28 27 20 26 26 26 25 24 24 24 24 23 22 22 22 22 22 22 22 21 175 
176 29^ 28 28 28 27 26 26 26 26 25 24 24 24 24 23 22 22 22 22 22 22 22 176 
177 30^ 29^ 28 28 28 27 26 26 26 26 25 24 24 24 24 23 22 22 22 22 22 22 177 
178 3 l 5 30^ 29^ 28 28 28 27 26 26 26 20 25 24 24 24 24 23 22 22 22 22 22 178 
179 32^ 31^ 30^29^ 28 28 28 27 26 26 26 26 25 24 24 24 24 23 22 22 22 22 179 
180 32^ 32* 31* 30^ 29^ 28 28 28 26 26 26 26 26 24 24 24 24 24 23 22 22 22 ISO 
181 32^ 32^ 32^ 31^ 30^ 29^ 28 28 27 26 26 26 26 25 24 24 24 24 24 23 22 22 181 
182 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 27 26 26 26 26 25 24 24 24 24 24 23 22 182 
183 32^ 32^ 32^ 32^ 32^ 3 l S 30^ 29^ 28 28 27 26 26 26 26 25 24 24 24 24 24 23 183 
18'1 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 27 26 26 26 26 25 24 24 24 24 24 184 
185 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 27 26 26 26 26 25 24 24 24 24 185 
I8G 32 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 28 26 26 26 26 26 24 24 24 24 186 
187 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 27 26 26 26 26 25 24 24 24 187 
188 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 3 l 5 30^ 29^ 28 27 26 26 26 26 25 24 24 188 
189 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 27 26 26 26 26 25 24 189 
190 33 32 32 32 32 32 32^ 32* 32* 32* 32^ 32* 31* 30^ 29^ 28 27 26 26 26 26 25 190 
191 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 27 26 2G 26 26 191 
192 34 34 32 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28 27^ 26 20 26 192 
193 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30^ 29^ 28^ 27^ 2G 26 193 
194 34 34 34 33 32 32 32 32 32 32^32^ 32^ 32^ 32^ 32^ 32^ 3 l 5 30^ 29^ 28^ 27'' 26 194 
195 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 3 l 5 30^ 29^ 28'' 27'' 195 
196 35 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^31^ 30^ 29'' 28'' 196 
197 36 35 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 31^ 30'' 29'' 197 
198 36 36 34 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 31'' 30 198 
199 36 36 34 34 34 34 34 34 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 32'= 31^ 199 
200 36 36 35 34 34 34 34 34 32 32 32 32 32 32^ 32^ 32^ 32^ 32* 32* 32* 32^ 32'=' 200 
201 36 36 36 34 34 34 34 34 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 32'̂ ' 32^ 201 
202 36 36 36 34 34 34 34 34 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 32'̂ ' 32^ 202 
203 37 36 36 35 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^' 32^ 203 
204 38 37 36 36 35 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32^ 32^ 32^ 204 
205 38 38 37 36 3G 35 34 34 34 34 33 32 32 32 32 32 32^ 32^ 32^ 32^ 32 32'̂ ^ 205 
20G 38 38 38 37 3G 3G 35 34 34 34 34 33 32 32 32 32 32 3 2 ^ 3 2 ^ 3 2 ^ 3 2 ^ 32^ 206 
207 38 38 38 '38 37 3G 36 35 34 34 34 34 33 32 32 32 32 32 32« 32^ 32^ 32'^ 207 
208 38 38 38 38 38 37 36 36 34 34 34 34 34 32 32 32 32 32 32^32^ 32^ 32^ 208 
209 38 38 38 38 38 38 37 36 35 34 34 34 34 32 32 32 32 32 32 32^32^ 32'̂ ^ 209 
210 38 38 38 38 38 38 38 37 36 35 34 34 34 32 32 32 32 32 32 32^ 32'=' 32'=' 210 
211 39 38 38 38 38 38 38 38 37 36 35 34 34 33 32 32 32 32 32 32^ 32*̂ ' 32^ 211 
212 40 39 38 38 38 38 38 38 38 37 36 35 34 34 33 32 32 32 32 32^32*^ 32^ 212 
213 40 40 39 38 38 38 38 38 38 38 37 36 35 34 34 33 32 32 32 32 32^ 32'=̂  213 
214 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 34 33 32 32 32 32 32^ 214 
215 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 34 33 32 32 32 32 215 
216 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 34 32 32 32 32 216 
217 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 33 32 32 32 217 
218 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 33 32 32 218 
219 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 33 32 219 
220 44 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 33 220 
221 44 44 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 35 34 221 
222 44 44 44 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 30 35 222 
223 44 44 44 44 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 36 223 
224 44 44 44 44 44 43 42 41 40 40 40 40 40 39 38 38 38 38 38 38 38 37 224 
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Appendix C. Improved Lower-Bounds of the Minimum Hamming Distance of Binary Linear Codes 

Table C.4: Updated Minimum Distance Lower Bounds of Linear Codes C = |n,A:] for 225 < " < 256 
and 48 < A- < 62 

n\k 48 49 50 51 52 53 54 55 50 57 58 59 60 61 62 k/n 

225 60 60^ 60^ 60* 59* 58* 57* 56 56 54 54 54 54 52 52 225 
226 60 60 60^ 60^ 60^ 59^ 58^ 57^ 56 55^ 54 54 54 52 52 226 
227 60 60 60^ 60^ 60^ 60^ 59^ 58^ 57^ 56^ 55^ 54 54 52 52 227 
228 61 60 00^ 60^ 60^ 60^ 60^ 59^ 58^ 5 7 5 56^ 55'' 54 53^ 52 228 
229 62 60 60^ 60^ 60^ 60^ 60^ 60^ 5 9 ^ 58^ 5 7 ^ 50'' 54 53^ 229 
230 62 60 60 60* 60* 60* 60* 60* 60* 59^ 58^ 57*^ 54 5 4 54^ 230 
231 63 61 60 60 60^ 60^ 60^ 60^ 60^ 60^ 59^ 58'' 54 54 54 231 
232 64 62 60 60 60 60^ 60^ 60^ 60^ 60^ 60^ 59'' 5 4 54 5 4 232 
233 64 62 60 60 60 60^ 60^ 60^ 60^ 00^ 00<^ 60^ 5 4 54 54 233 
234 64 62 61 60 60 60 60^ 60^ 60^ 60^ 60^ 60^ 55 54 54 234 
235 64 63 62 61 60 60 60 60^ 60^ 60^ 60^ 60^ 50 55 54 235 
236 65 64 62 62 61 60 60 60 60^ 60^ 60^ 0 0 ' - 56 56 54 236 
237 66 64 63 62 62 61 60 60 60 00^ 60'̂ ' 60^ 50 56 55 237 
238 66 65'' 64 63 62 62 61 60 60 60 60^ 60 -̂ 57 56 56 238 
239 67 66'' 64 64 63 62 62 61 60 60 00 00^ 58 57 56 239 
240 68 67'' 64 64 64 62 62 62 61 60 60 60 58 58 56 240 
241 68 68^ 64 64 64 62 62 62 62 61 60 60 58 58 57 241 
242 68 68^ 65 64 64 63^ 62 62 62 62 61 60 5 9 58 58 242 
243 68 68^ 66 65 64 645 63^ 62 62 62 62 61 60 59 58 243 
244 69 68 66 66 65 64 64^ 63^ 62 62 62 62 61 60 59 244 
245 70 68 67 66 66 65^ 64^ 64^ 63^ 62 62 62 62 61 60 245 
246 70 68 68 67 66 66^ 65^ 64^ 64^ 63'' 62 62 62 62 61 246 
247 71 68 68 68 67 66^ 66^ 65^ 64^ 64>'' 63>'' 62 62 62 62 247 
248 72 69^ 68 68 68 66^ 66^ 66^ 65^ 64^ 64'=̂  62 62 62 62 248 
249 72 70^ 69^ 68 68 66'' 66^ 66^ 66^ 65^ 64'=̂  63^ 62 62 62 249 
250 72 71^ 70* 69^ 68 67^ 66* 66* 66* 66^ 65^ 64^ 63^ 62 62 250 
251 7 3 5 72^ 71̂ ^ 70'' 69^ 68'' 67^ 66'' 66^ 66^ 66^ 65^ 64^ 63^ 62 251 
252 74S 7 3 5 72^ 71'' 70^ 69'' 68^ 67'' 66^ 66^ 66^ 66^ 65^ 64^ 63'' 252 
253 74 7 4 5 73^ 72'' 71^ 70*^ 69^ 68'' 67^ 66'' 66^ 66^ 66^ 65^ 64'' 253 
254 75'' 74'' 7 4 5 73'' 72^ 71'' 70^ 69'' 68^ 67'' 66^ 66^ 66^ 66^ 65 254 
255 76̂ ^ 75*^ 7 4 C 7 4 C 7 2 C 7 2 C 7oC 70^ 68*^ 68*^ 66*^ 66^ 66^ 66^ 66<^ 255 
256 76 76^ 74^ 74^ 72 72 E JQE 70^ 08 68^ 66^ 66^ 66^ 66^ 66^ 256 
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Table C.5: Updated Minimum Distance Lower Bounds of Linear Codes C = [n, h] for 225 < n < 25G 
and G3 < A: < 76 

n\k 03 64 65 66 67 68 69 70 71 72 73 74 75 76 k/n 

225 52 52 50 50 50 50 48 48 48 48 48^' 48'^ 48^ 46 225 
226 52 52 50 50 50 50 48 48 48 48 48^ 48^' 48^ 46 220 
227 52 52 50 50 50 50 48 48 48 48 48^ 48^ 48^ 46 227 
228 52 52 50 50 50 50 48 48 48 48 48 48^ 48^ 47̂ ^ 228 
229 52 52 51 50 50 50 4 9 48 48 48 48 48^ 48^ 48̂ ^ 229 
230 53^' 52 52 51 50 50 50 48 48 48 48 48*^ 48''- 48^' 230 
231 5 4 S 5 3 ^ 52 52 51 50 50 48 48 48 48 48 48^ 48^ 231 
232 54 54^ 5 3 ^ 52 52 51 50 4 9 48 48 48 48 48 48̂ =̂  232 
233 54 54 54 5 5 3 5 52 52 51 50 4 9 48 48 48 48 48 233 
23A 54 54 54 5 4 5 5 3 5 52 52 51 50 49 48 48 48 48 234 
235 54 54 54 54 5 4 5 5 3 5 52 52 51 50 49 48 48 48 235 
23C 54 54 54 54 54 54^ 5 3 5 52 52 51 50 49 48 48 230 
237 5 4 54 54 54 54 54 5 4 5 5 3 5 52 52 51 50 4 9 48 237 
238 55 54 54 54 54 54 54 54 5 53^ 52 52 51 50 4 9 238 
239 56 55 54 54 54 54 54 54 5 4 5 53^ 52 52 51 50 239 
240 56 56 54 54 54 54 54 54 54 54^ 53^ 52 52 51 240 
2<11 5G 56 55 54 54 54 54 54 54 54 5 4 C 52 52 52 241 
242 57 56 56 55 54 54 54 54 54 54 54 53 52 52 242 
243 58 57 56 56 55 54 54 54 54 54 54 54 53 52 243 
244 58 58 56 56 56 55 54 54 54 54 54 54 54 53 244 
245 59 58 57 56 56 56 55 54 54 54 54 54 54 54 245 
246 60 59 58 57 5G 56 56 55 54 54 54 54 54 54 246 
247 61 60 59 58 57 56 56 56 55 54 54 54 54 54 247 
248 62 61 60 59 58 57 56 56 56 55 54 54 54 54 248 
249 62 62 61 60 59 58 57 56 56 56 55 54 54 54 249 
250 02 62 62 61 60 59 58 57 56 56 56 55 54 54 250 
251 62 62 62 62 61 60 59 58 57 56 56 56 55 54 251 
252 62 62 62 62 62 61 60 59 58 56 56 56 56 55 262 
253 6 3 P 62 62 62 62 62 61 60 59 56 56 56 56 56 253 
254 64 63^* 62 62 62 62 62 61 60 57 56 56 56 56 254 
255 65*^ 63<^ 62 62 62 62 62 61 58 57 56 50 50 255 
256 66^ 64^ 64 62 62 62 62 62 62 58 58 56 56 50 256 
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Weight Distributions of Quadratic 
Double-Circulant Codes and their 
Modulo Congruence 

D.l Primes +3 Modulo 8 

D.l.l Prime 11 

We have P = [J I'o] and = [? o ]• ''•'^ ̂  PSL2(11), and the permutations of order 3, 5 and 11 are 

generated by [ to ' ] . [ lo a] - and [ lo o] respectively. In addition, 

| P S L 2 ( l l ) | = 2^-3-5 1 1 = 6 6 0 

and the weight enumerator polynomials of the invariant subcodes are 

= ( l + z^") + 15- (c« + z ' « ) + 3 2 . . > 2 

= ( l + z ^ ' ' ) + 3 ( 2 » + z"')+8-.-'2 

= (1 + e^-) + 14 • 

= ( l + ^ 2 ' ' ) + ' l . ( . j 8 + e ' 6 ) + 6 i ' 2 

= (1 + z^") + 2 • ^ ' ^ 

The weight distributions of Sdw and their modular congruence are shown in Table D . l . 

Table D . l : Modular congruence weight distributions of SSw 

i 
^.(52) 
mod 2̂  

^i(53) 
mod 3 mod 5 mod 11 mod 660 

Ai 

0 1 1 1 1 1 0 1 
8 3 0 A 0 99 1 759 
12 0 2 1 2 596 3 2576 
16 3 0 A 0 99 1 759 
24 1 1 1 1 1 0 1 

GGO 
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Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

D.1.2 Prime 19 

We have P = î s] = [i o®]- -̂'̂ ^ ^ PSLjClO), and the permutations of order 3, 5 and 19 are 
generated by [ i°g 1 ] , [ ^ ] , and [ ] respectively. In addition, 

|PSL2(19)| = 2̂  • 3^ • 5 • 19- = 3420 

and the weight enumerator polynomials of the invariant subcodes are 

= (1 + ^'") + 5 • ( 2 « + + 80 • {z'^ + 2 ^ 8 ) ^ 250 • (2''̂  + ^ 2 4 ) ^ . 2̂0 

^^,0 (^) = (1 + ^'') + 1 • (2' + 2'') + 8 • + 2'') + 14 •'(^" + ^-'') + IG . 

^ ^ ' i ( ^ ) = (1 + ^'°) + 6 • ( 2 « + + 22 . ( ^ ' 2 + ^ 2 8 ) ^ 57 . (̂ 10 ^ ^2.) ^ 84 . 2̂0 

The weight distributions of and their modular congruence are shown in Table D.2. 

Table D.2: Modular congruence weight distributions of 

i 
mod 2̂  mod 3^ 

MS:.) 
mod 5 mod 19 mod 3420 

-4, 

0 1 1 1 1 1 0 1 

8 1 G 0 0 285 0 285 

12 0 4 0 0 760 6 21280 

16 2 3 0 0 570 70 239970 

20 0 3 4 2 2244 153 525504 

24 2 3 0 0 570 70 239970 

28 0 4 0 0 7G0 G 21280 

32 1 G 0 0 285 0 285 

40 1 1 1 1 1 0 1 

3420 

D.1.3 Prime 43 

We have P = [/c J§] and T = P,T e PSL2(43), and the permutations of order 3, 7, 11 and 43 

are generated by [421]^ [42 \]^^^^ [A2 41 ] respectively. In addition, 

|PSL2(43)| = 2̂  • 3 • 7 • 11 - 43- = 39732 
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D.l. Primes +3 Modulo 8 

and the weight enumerator polynomials of the invariant subcodes are 

A^^}^{z) = (1 + ^««) + AA . (z>« - f z " ) + 1232 • (z^" + z^^) + 10241 • {z^' - f z'^') + 

54560 . (s^s 4- zGO) + 198374 • (z^^ ^ ^5C) ^ ^g^ggg . ^^36 ^ ^52^ ^ 

839916 • (z'*^ + z'^^) + 1002432 • z**-* 

(^) = (1 + ^'') + 32 • (z^o + + 77 . (z^' + 2*̂ ") 4- 160 • (z^s + z^O) + 

330 . (Z^2 ^. , 66 ) ^ . ( ,3G ^ , 5 2 ) _̂  . ( ,40 ^ , 48 ) _^ . ,44 

(^) = (1 + ^' ' ) + 7 • (̂ -̂ ' + + 168 • (z20 + ^08) ^ ,,45 . ( ,24 _^ , 0 4 ) ^ 

1960 • (z^s + z ' ° ) + 4704 • (z^^ ^ ^5G) _̂  7324 - (z^'^ + z^^) + 

10843- (2**̂  + z"*^) + 14832 • z'**' 

(^) = (1 + ^' ' ) + 6 • (^'' + 2'') + 16 • {z^' + ^'*') + 6 • ( z 2 « + z « « ) 4-
9 . ( ^ 3 2 _ ^ , 5 0 ) ^ 4 8 . ( , 3 G _ ^ , 5 2 ) _ ^ 8 4 . , 4 4 

1 ( 5 4 3 ) 

?43 

( z ) = ( l + z®^) + 14-2 .44 

The weight distributions of ^ 4 3 and their modular congruence are shown in Table D.3. 

Table D.3: Modular congruence weight distributions of ^ 4 3 

i 
mod 2̂  mod 3 mod 7 mod 11 

Ai(SA:^) 
mod 43 

Ai(n) 
mod 39732 

Ai 

0 1 1 1 1 1 1 0 1 
16 0 1 0 0 0 32164 0 32104 
20 0 0 0 0 0 0 176 6992832 
24 1 1 2 0 0 25069 13483 535731625 
28 0 1 6 0 0 32164 418387 16023384448 
32 2 0 2 0 0 8514 5073683 225426781470 
36 0 0 6 0 0 5676 35376793 1405590745152 
40 0 1 0 0 0 20488 104797219 4163803131796 
44 0 0 0 3 2 28812 150211729 5968212445440 
48 0 1 0 0 0 26488 104797219 4163803131796 
52 0 0 0 0 0 5676 35376793 1405590745152 
56 2 0 2 0 0 8514 5673083 225426781470 
60 0 1 6 0 0 32164 418387 16623384448 
64 1 1 2 0 0 25069 13483 535731025 
68 0 0 0 0 0 0 170 6992832 
72 0 1 6 0 0 32164 0 32164 
88 1 1 1 1 1 1 0 1 

39732 

213 



Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

D.1.4 Prime 59 
We have P = [^^H] and T = [? ̂ t? j p 7̂  g PSL2(59), and the permutations of order 3, 5, 29 and 59 

are generated by [ 5 3 } ] , [ 5 3 2 5 ]» [ 58 3 ] • [ 58 571 respectively In addition, 

|PSL2(59)| = 2=̂  • 3 • 5 • 29 • 59- = 102660 

and the weight enumerator polynomials of the invariant subcodes are 

^^^'^^) (1 + ^"°) + 90 • (^'° + ^*"°) + 2555 • (ê " + ^««) + 

32700 . (^28 + ^92) + 278865 • [z^'' + ^««) + 1721810 • {z^^ + z^') + 

7807800 • (z**̂  + z^^) 4- 263G61G0 • (2'*'* + z"^^) + 67152520 • [z"^^ + z^ )̂ + 

130171860 • (^^2 + ^08) ^ 193193715 • {z^^ + ẑ '*) + 220285672 • 

^ ^ J ( ^ ) = ^''") + ^ • ( ^ ' ° + ^ ' " " ) + 19 • + 2 ^ ^ ) + 132 • + + 

393 . {z'^ + ^««) + 878 • {z'^ + + 1848 • [z'^ + + 3312 • (z"" + + 

5192 • {z"^ + 5 " ) + 7308 • ( 2 ^ ^ + ^os) ^ ggg^ . ( ^ 5 C ^ ^ C 4 ) ^ 9̂ ,96 . ,co 

= (1 + c^20) _̂  285 • (^24 + z'***̂ ) + 21280 • {z^^ + ẑ "*) + 

239970 • [z""^ + + 525504 • z^"^ 

A%f^(z) = (1 + + 12 • (̂ '̂̂  + '̂•̂ '̂ ) + 711 . + + 2648 • 

= (I + ^''°) + • (^'' + ^'') + 6 • z^"" 

The weight distributions of ^ 5 9 and their modular congruence are shown in Table D.4. 
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Table D.4: Modular congruence weight distributions of 

i 
AiiS-i) 
mod 2̂  

AiiSs) 
mod 3 

AiiSs) 
mod 5 

Ai(S2o) 
mod 29 

AiiS^o) 
mod 59 

AiCH) 

mod 102660 
H i t Ai 

0 1 1 1 1 1 1 0 1 
20 2 0 2 0 0 71862 0 71862 
24 3 0 0 0 0 76995 372 38266515 
28 0 0 0 0 0 0 59565 6114942900 
32 1 0 0 4 0 32745 4632400 475562216745 
36 2 1 0 0 0 17110 183370922 18824858869630 
40 0 0 1 0 0 61596 3871511775 39744939S8S3096 
44 0 0 0 0 0 0 45105349212 4630515150103920 
48 0 0 0 0 0 0 297404902554 30531593455793640 
52 0 0 0 0 0 0 1130177151411 U6023986363853260 
50 3 0 0 0 0 76995 2505920073120 257257754700576195 
60 0 0 3 6 2 85788 3265149944551 335200293307691448 
64 3 0 0 0 0 76995 2505920073120 257257754706576195 
68 0 0 0 0 0 0 1130177151411 116023986363853260 
72 0 0 0 0 0 0 297404962554 30531593455793640 
76 0 0 0 0 0 0 45105349212 4630515150103920 
80 0 0 1 0 0 61596 3871511775 397449398883090 
84 2 1 0 0 0 17110 183370922 18824858869630 
88 1 0 0 4 0 32745 4632400 475562216745 
92 0 0 0 0 0 0 59565 6114942900 
96 3 0 0 0 0 76995 372 38266515 
100 2 0 2 0 0 71802 0 71862 
120 1 1 1 1 1 1 0 1 
t .. . ^ 

102G60 

C71 

Co 

I 
c 
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Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

D.1.5 Prime 67 

We have P = [^Q ^g] and T = P/f e PSL2(67), and the permutations of order 3,11,17 and 67 

are generated by [G"G 1 ] , [SG I V ] . [ 0 0 4 ] . and [^Q^r^] respectively In addition, 

|PSL2(67)| = 2̂  . 3 • 11 • 17 • 67- = 150348 

and the weight enumerator polynomials of the invariant subcodes are 

^^ol*(^) = (1 + ^' ' ' ) + 578 • {z^' + + 14688 • (̂ 8̂ + >̂08) + 
173247 • ^ -i04) ^ j^jgoygg . (^3G ^ ^mô  ̂  9551297 • (̂ "̂ + ^^«) + 

46687712 • (2**'* + z^^) + 175068210 • (2''** + z^^) + 509510400 • {i^^ + 2̂ **) + 

1160576876 • {z^^ + 2^*^) 4- 2081112256 • (z^^ + 2^*^) + 2949597087 • (z^'^ + z^^) + 

3312322944 • 2*^^ 

^ S ' A O = (1 + ^' ' ' ) + 18 • (̂ -'' + ^" ' ) + 88 • (z^s + 4- 271 • ( 2 ^ ^ + ^i04) ^ 

816 • (2^*^ + 2 » « ° ) + 2001 • ( 2 " " + + 4344 • (z'' + z'"") + 

8386 • (2'*^ + 2 ^ ^ ) + 14144 • ( 2 ^ ^ ^ ^84j +'21260 • ( 2 ^ ^ + 2**") + 

28336 • ( 2 ^ ^ 4- 2^*^) + 33599 • (2*^** 4- z^^) 4- 35616 • z^^ 

= (1 + ^'' ' ) + 66 • (z^" + 2 » » 2 ) + 682 • (2^8 + e>08) + 3696 • ( 2 ^ ^ + ,io4) ^ 

12390 . ( 2 ^ « 4- 2 ' ™ ) 4- 54747 • (2 '^° 4- 2 ^ « ) + 1G3680 • {z'' + 2 ^ ^ ) + 

318516 • ( 2 ' ' « 4- 2 ^ ^ ) 4- 753522 • ( 2 ^ ^ 4- 2^'*) 4- 1474704 • ( 2 ^ ^ 4- 2**") 4-

1763454 • (2*^" 4- 2 ^ ^ ) 4- 2339502 • (2^*' 4- 2 ^ ^ ) 4- 3007296 • 2̂ *̂* 

/t^>;)(2) = (1 + 2'3G) _ j . 6 . (̂ 24 ^ 1̂12) ^ . (̂ 36 ^ 1̂00) ^ g . (̂ 44 ^ ^02) ^ 

2 

The weight distributions of and their modular congruence are shown in Table D.5. 
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Table D.5: Modular congruence weight distributions of 

i 
Ai(S2) 
mod 2^ 

Ai{S3} 
mod 3 

AiiSn) 
mod 11 

AiiSi-,) 
mod 17 

AiiSoi) 
mod 67 

AiiH) 
mod 150348 

Ai 

0 1 1 1 1 1 1 0 1 
24 2 0 6 0 0 88842 26 3997890 
28 0 1 0 0 0 50116 8173 1228844320 
32 3 0 0 0 0 37587 1217081 182985731775 
36 0 0 5 0 0 136680 95005682 14283914414016 
40 1 0 0 0 0 112761 4076381478 612875802567105 
44 0 0 6 0 0 13668 99752935189 14997654299809440 
48 2 0 9 0 0 20502 1432445445981 215365307912371890 
52 0 0 0 0 0 0 12338369112000 1855049119250976000 
56 0 0 4 0 0 109344 64817708364545 9745212817192721004 
60 0 0 0 0 0 0 210227711554224 31607315976754469952 
64 3 0 0 0 0 37587 424499666112161 63822675800631219615 
68 0 0 7 14 2 138156 536258660830183 80625417139398579840 
72 3 0 0 0 0 37587 424499666112161 63822675800631219615 
76 0 0 0 0 0 0 210227711554224 31007315976754469952 
80 0 0 4 0 0 109344 64817708364545 9745212817192721004 
84 0 0 0 0 0 0 12338369112000 1855049119250976000 
88 2 0 9 0 0 20502 1432445445981 215365307912371890 
92 0 0 6 0 0 13668 99752935189 14997654299809440 
96 1 0 0 0 0 112761 4076381478 612875802567105 
100 0 0 5 0 0 136680 95005682 14283914414016 
104 3 0 0 0 0 37587 1217081 182985731775 
108 0 1 0 0 0 50116 8173 1228844320 
112 2 0 6 0 0 88842 26 3997890 
136 1 1 1 1 1 1 0 1 

150348 

Co 

I 
c 
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Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

D.1.6 Prime 83 
We have P = [}j and T = [? s?]^ p r e PSL2(83), and the permutations of order 3, 7, 41 and 83 

are generated by [g°2 ! ] , [ 8 2 1 0 ] » [3*2 4 I ' ^"tl [ 3 2 si ] respectively. In addition, 

|PSL2(83)| = 2̂  . 3 • 7 . 41 • 83- = 285852 

and the weight enumerator polynomials of the invariant subcodes are 

/ 1 ^ 3 * ( 2 ) = (14- 2 » « « ) 4-196 • (z^' + 2 ' ^ " ) 4- 1050 • {z^' 4- z ' ' ° ) 4-

29232 • ( 2 ^ 2 _̂  ̂ i3G) + 443^56 . (^3G _̂  ̂ i32) ^ 

4866477 - (z**" 4- 2 ' ' « ) + 42512190 • {z''^ + z'""") + 

292033644 • (2'*^ 4- 2 ' ^ ' ' ) 4- 1590338568 • ( 2 ^ ^ 4- 2^**^) 4-

6952198884 • (2^*^ 4- 2 * ' 2 ) + 24612232106 • (z^^ 4- 2 * ° ^ ) 4-

71013075210 • {z^'^ + 2'*''*) 4- 167850453036 • (z^^ 4- z^^^) 4-

32G369180312 • ( 2 ^ ^ + - O G ^ _,. 523672883454 • (2^** + z^^) 4-

694880243820 • ( 2 ^ ° 4- 2̂ )̂ + 763485528432 • 2̂ ^̂  

A^^^^\z) = (1 + z'^') + 4 • {z^' + z''') + 6 - {z^' + 2 ' ^ « ) + 

96 • {2=*2 + »̂3G) ^ 532 . (,3G ^ 1̂32) ^ ,̂,37 . (.40 ^ 1̂28) ^ 

3810 • (z-"* 4- z'""') 4- 10572 • {z"^ 4- z'^O) + 24456 • ( 2 ^ ^ ^ , I I G ) _̂  

50244 • ( 2 ^ ^ 4- 2 ^ + 95030 . (̂ co ^ ^i08) + igggy,,. (^G4 _̂  ̂ i04) + 

241452 • (2«s 4- 2 * ° " ) 4- 337640 • ( 2 ^ ^ + ^ O G J ^ ,,25442 • (2^*^ 4- 2 ^ 2 ) + 

489708 • (2'*'* 4- 2^**) 4- 51569G • 2**" 

A^^ll(z) =(14- 2 " ^ « ) 4- 63 • {z^' 4- 2""*) + 8568 • (2^*^ 4- 2 ' ^ ^ ) ^ Q^Q^^ . (.48 ^ ^i20) _^ 

11720352 • (2*^" + 2 ' ° ^ ) 4- 64866627 • ( 2 ^ ^ 4- 2 ^ ° ) 4- 114010064 • 2̂ *̂ 

759 (2^'^4-2' '2)+2576-2S'* 

4.(^'l'» + ^124)^g.^84 

2 . 2 « ^ 

The weight distributions of ^ 3 3 ai^d their modular congruence are shown in Table D.6. 

= ( 1 + 2 I C S 

= ( 1 + 1̂08 

= ( 1 + 1̂G8 
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Table D.6: Modular congruence weight distributions of 

1 
Ai{S2) AiiS^) Ai(S7) Ai{S4i) AiiSss) AiiH) 

Ai I mod 2̂  mod 3 mod 7 mod 41 mod 83 mod 285852 Ai 

0 1 1 1 1 0 6889 0 1 
24 0 0 0 0 0 0 2 571704 
28 2 0 0 0 . 0 142926 59 17008194 
32 0 0 0 0 0 0 19267 5507510484 
36 0 0 0 0 0 0 4382043 1252615755636 
40 1 0 0 0 0 214389 580925895 166058829151929 
44 2 0 0 4 0 156870 45643181220 13047194638256310 
48 0 0 0 0 0 0 2200608997142 629048483051034984 
52 0 0 0 0 0 0 66772709854878 19087129808556586050 
56 0 0 3 0 0 81672 1301721510043764 372099697089030108600 
60 2 0 0 0 0 142926 16579528883596695 4739291490433882602066 
64 2 0 0 0 0 142926 139840453892634544 39973673426117369814414 
68 0 0 0 0 0 0 789557804450518101 225696677517789500207052 
72 0 0 0 0 0 0 3009393355026378047 860241109321000217491044 
76 2 0 0 0 0 142926 7792111592501736790 2227390682939806465038000 
80 0 0 0 0 0 0 13766213240696824038 3935099587279668544910376 
84 0 2 0 6 0 211484 16637096860279621422 4755747411704650343205104 
88 0 0 0 0 0 0 13766213240696824038 3935099587279668544910376 
92 2 0 0 0 0 142926 7792111592501736790 2227390082939806465038000 
96 0 0 0 0 0 0 3009393355026378047 860241109321000217491044 
100 0 0 0 0 0 0 789557804450518101 225696677517789500207052 
104 2 0 0 0 0 142920 139840453892034544 39973073426117369814414 
108 2 0 0 0 0 142926 16579528883596695 4739291490433882602066 
112 0 0 3 0 0 81672 1301721510043764 372099697089030108000 
116 0 0 0 0 0 0 66772769854878 19087129808556586056 

CO 
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i 
Ai(S2) 

mod 22 

-4.(53) 
mod 3 

Ai(S7) 

mod 7 mod 41 mod 83 mod 285852 

120 0 0 0 0 0 0 2200608997142 629048483051034984 
124 2 0 0 4 0 156870 45643181220 13047194638256310 
128 1 0 0 0 0 214389 580925895 166058829151929 
132 0 0 0 0 0 0 4382043 1252615755636 
136 0 0 0 0 0 0 19267 5507510484 
140 2 0 0 0 0 142926 59 17008194 
144 0 0 0 0 0 0 2 571704 
168 1 1 1 1 0 6889 0 1 

285852 



D.2. Primes -3 Modulo 8 

D.2 Primes - 3 Modulo 8 

D.2.1 Prime 13 

We have P = ['i and T = [? ^^], P , r € PSL2(13), and the permutations of order 3, 7 and 13 are 

generated by [ i°2 } ] . [ 12 3 ] » [ ̂ 2 A ] respectively. In addition, 

|PSL2(13)| = 22 .3-713=1092 

and the weight enumerator polynomials of the invariant subcodes are 

= (1 + z'^) + 2G. {z^ + e^") + 32 - {z'° + ^'«) + 37 • {z'^ + e'O) + c-1 • . 
A%]^{Z) = (1 + ^28) + 10 . (^8 ^ ^20) ^ 8 . (^,0 + ^ , 8 ) + 5 . (^,2 + , . 0 ) + ic . 

^ § , 3 ( ^ ) = (1 + ^'') + G { z ^ + z ^ ° ) + 10. ( z ' o + + 9 . (^'2 + ^ '0 ) + 12 . , 

> l § . 3 ( ^ ) = ( l + ^ = « ) + 2 . . > ' ' 

14 

14 

The weight distributions of and their modular congruence are shown in Table D.7. 

Table D.7: Modular congruence weight distributions of ^ 1 3 

i 
^i(52) 
mod 2̂  

A(53) 
mod 3 mod 7 

^.•(5l3) 
mod 13 

Mn) 
mod 1092 Ai 

0 1 1 1 1 1 0 1 
8 2 0 0 0 546 0 546 
10 0 1 0 0 364 1 1456 
12 1 0 0 0 273 3 3549 
14 0 0 2 2 912 4 5280 
16 1 0 0 0 273 3 3549 
18 0 1 0 0 364 1 1456 
20 2 0 0 0 546 0 546 
28 1 1 1 1 1 0 1 

Ai-Aii-H) 

1002 

D.2.2 Prime 29 

We have P = [^^^^] andT = [^^f], P,T e PSL2(29), and the permutations of order 3, 5, 7 and 29 

are generated by [ĵ s 1 ] . [ 2 8 5 ] . [ 2 ° 3 ] * and [^^ 2 7 ] respectively In addition, 

|PSL2(29)| = 2̂  . 3 • 5 • 7 • 29- = 12180 
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Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

and the weight enumerator polynomials of the invariant subcodes are 

{^) = 

(1 + z"") + 28 • + z'^) + 112 • (z'" + z'") + 394 • + z"") + 

1024 • + z''^) + 1708 • {z'" + z"") + 3136 • (z^^ + z'^) + 5516 • {z^" + z^") + 

7168 • (z'" + z^') + 8737 • (z^* + + 9888 • 

(1 + z"") + 12 • {z'' + 2 ^ 0 ) + 30 . + 2 ^ ^ ) + 32 • {z'" + 2 « ) + 

60 • {z^° + z'°) + 48 • ( 2 " + z'") + 60 • ( 2 " + 2 ™ ) + 96 • ( 2 ^ ° + 2 ^ " ) + 

105 • ( 2 = 8 + 2=*^) + 136 • 2^" 

(1 + 2 ™ ) + 10 • ( 2 ' ^ + z'^) + 70 • ( 2 ' 8 + 2 " = ) + 245 • (2=^" + 2 ^ « ) + 372 • 2^" 

(1 + 2 ™ ) + 15. ( 2 ^ " + 2 " " ) + 3 2 - 2 ^ ° 

(1 + Z^°) + 6 • ( 2 " = + 2 '" ' ) + 2 • ( 2 ' « + 2 - 2 ) + 8 • ( 2 " + 2 ^ 8 ) + 8 • ( 2 2 ' ' + 2=«=) + 

1 ( 
.28 + z 32 ) + 12 .30 

(1+2*^0) + 2 - 2^**. 

The weight distributions of and their modular congruence are shown in Table D.8. 

Table D.8: Modular congruence weight distributions of ^20 

i 
Ai{S2) 

mod 2̂  mod 3 
AiiSr,) 

mod 5 
AiiSy) 

mod 7 
Ai{S2o) 
mod 29 

AiCH) 

mod 12180 
Ai 

0 1 1 1 1 1 1 0 1 
12 0 1 0 0 0 4060 0 4060 
14 0 0 0 0 0 0 2 24360 
16 2 0 0 6 0 2610 24 294930 
18 0 1 0 2 0 11020 141 1728400 
20 0 0 0 0 0 0 637 7758660 
22 0 0 0 1 0 3480 2162 26336640 
24 0 2 0 1 0 11600 5533 G7403540 
26 0 0 0 0 0 0 10668 129936240 
28 1 0 0 1 0 6525 15843 192974265 
30 0 0 2 5 2 8412 18129 220819632 
32 1 0 0 1 0 6525 15843 192974265 
34 0 0 0 0 0 0 10668 129936240 
36 0 2 0 1 0 11600 5533 67403540 
38 0 0 0 1 0 3480 2162 26336640 
40 0 0 0 0 0 0 637 7758660 
42 0 1 0 2 0 11020 141 1728400 
44 2 0 0 6 0 2610 24 294930 
40 0 0 0 0 0 0 2 24360 
48 0 1 0 0 0 4060 0 4060 
60 1 1 1 1 1 1 0 1 

12180 
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D.2. Primes -3 Modulo 8 

D.2.3 Prime 53 

We have P = [i^oo] = [? o ]̂' ^ PSL2(53), and the permutations of order 3, 13 and 53 

are generated by [jPj 1 ]» [52 s ] ' [52 51 ] respectively. In addition, 

|PSL2(53)| = 2̂  • 3^ . 13 . 53- = 74412 

and the weight enumerator polynomials of the invariant subcodes are 

^1^53 (^) = (1 + ^'"') + 234 • (220 + ^88) + 1708 • (2=2 + ^86) + 5655 • (z^" + z^') + 

16328 • (z^G + z82) + 47335 . (^28 ^ ^80) ^ 127896 • (̂ ^̂  + z^^) + 

31G043 • (̂ ^2 + 2̂ *̂ ) + 7058'18 • (ẑ ** + ẑ "*) + 1442883 • (z^^ + z^^) + 

2728336 • (z^® + z^O) + 4786873 • (ẑ *̂* + z^^) + 7768488 • (z'*^ + ^GG^ ^ 

11636144 • (z"'' + z '̂*) + 161758̂ 18 • (z"*̂  + z^^) + 20897565 • (z''^ + z^^) + 

25055576 • (z^^ + z=«) + 27976131 • (z^^ ̂  ^sc^ _j . 29057552 • z^" 

= (1 + + 12 • (Z^O + ^88) + 12 . (^22 _̂  ^8C) ^ 77 . (̂ 24 ^ ,84) _̂  

108 . (z2G + ^82) _̂  243 • (z28 + zS°) + 296 • (z^^ + z^«) + 543 • (2^2 + C^G) 

612 • (z^^ + z'') + 1127 . (ẑ *̂  + z^2) + 1440 • (z^^ + ^70) ^ 2037 • (z"*" + z*̂ )̂ + 

2636 • ( z « + 366) _̂  3180 . (^-H _̂  ^G-I) ^ 3^72 . (^46 _̂  ̂ C2) + 4289 . (̂ ^8 ^ .co^ ^ 

4836 • (z^o + z^8) ^ 4875 . (^52 ^ ^sc) + 554^ . 5̂4 

A^if^iz) = (1 + Z^OS) + 234 • (Z^-I + 284) ^ igg2 . (-30 ̂  ^78) ^ 9572 . (̂ 3G ̂  ^72) ^ 

28728 • (z'*̂  + z*̂ *̂ ) + 55629 • {z'^^ + z^°) + 69692 • ẑ ^ 

^ ^ 5 3 = (1 + -"'°') + 6 • (^'' + ^'") + 2 • (z^o + z^8) + 8 • (z'*̂  + z««) + 
8.(2''2 + ze0) + l . ( ^ S 2 ^ ^ 0 G ) + 12.,54 

< T ( ^ ) = (l + ^^^"')+2.z^ 54 

The weight distributions of ^53 and their modular congruence are shown in Table D.9. 

Table D.9: Modular congruence weight distributions of ^53 

i 
mod 22 mod 3^ 

Ai(Su) 

mod 13 
Ai(S^-s) 

mod 53 

AiCH) 

mod 74412 
Ai 

0 1 1 1 1 1 0 1 

20 2 0 0 0 37206 3 260442 

22 0 0 0 0 0 78 5804136 

24 3 18 0 0 43407 1000 74455407 

26 0 0 0 0 0 10034 746650008 
28 3 0 6 0 64395 91060 6776021115 

30 0 18 2 0 64872 658342 48988609776 
32 3 0 0 0 18603 3981207 296249593887 

34 0 0 0 0 0 20237958 1505946930696 

Continued on next page 
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Appendix D. Weight Distributions of Quadratic Double-Circulant Codes and their Modulo 
Congruence 

i 
-4,(52) 
mod 22 mod 3^ mod 13 mod 53 

AiiH) 

mod 74412 
Ai 

3G 3 6 0 0 26871 86771G73 6456853758147 

38 0 0 0 0 0 315441840 23472658198080 

40 1 0 8 0 G7257 976699540 72678166237737 

42 0 0 8 0 11448 25841G6840 192293022909528 

44 0 0 0 0 0 5859307669 43G002802265628 

4G 0 0 0 0 0 11412955404 849260837522448 

AS 1 9 0 0 31005 19133084721 1423731100290057 

50 0 0 0 0 0 2764508G470 2057126174405640 

52 3 0 1 0 1431 34462554487 25G4427G04488075 

54 0 5 12 2 55652 37087868793 2759782492680368 

5G 3 0 1 0 1431 34462554487 2564427604488075 

58 0 0 0 0 0 27645086470 2057126174405640 

60 1 9 0 0 31005 19133084721 1423731100290057 

62 0 0 0 0 0 11412955404 849260837522448 

04 0 0 0 0 0 5859307669 436002802265628 

C6 0 0 8 0 11448 2584166840 192293022909528 

G8 1 0 8 0 67257 976G99540 726781G6237737 

70 0 0 0 0 0 315441840 23472658198080 
72 3 0 0 0 2G871 86771673 645G853758147 

74 0 0 0 0 0 20237958 150594693069G 

76 3 0 0 0 18603 3981207 296249593887 

78 0 18 2 0 64872 658342 48988609776 

80 3 0 G 0 64395 910G0 6776021115 

82 0 0 0 0 0 10034 746650008 
84 3 18 0 0 43407 1000 74455407 

86 0 0 0 0 0 78 5804136 

88 2 0 0 0 37206 3 260442 

108 1 1 1 1 1 0 1 

74412 

D.2.4 Prime 61 

We have ^ = [ i?) ^E] and T = *j{>], R T e PSL2(61). and the permutations of order 3, 5, 31 and 61 

are generated by [ê o j ] , [^q i V ] . [GO 5 ] . [go M ] respectively. In addition, 

|PSL2(61)| = 2̂  • 3 • 5 • 31 • 61- = 113460 

and the weight enumerator polynomials of the invariant subcodes are 
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D.2. Primes -3 Modulo 8 

^ ^ ^ } ! = (1 + ^' ' ' ) + 208 • (^20 + ^ ' 0 . ) + 400 • (^22 + ^>02) ^ 1̂ 30 . (̂ 2-1 ^ ^loo) ^ 

8180 • (2=*̂  + + 26430 • {z^^ + ẑ *̂ ) + 84936 • (̂ "̂ + ^^-^j + 253572 • (z^^ + ^92) _̂  

. 696468 • (z -̂* + z''^) + 1725330 • (z^^ + + 3972240 • (z'^ + + 

8585008 • (2'*° + 2**"*) + 17159632 • (̂ "2 + z^^) + 31929532 • (2'''* 4- z^^) + 

55569120 . (2"° + + 90336940 • {z^^ + ẑ *̂ ) + 137329552 • {z^^ + z^'') + 

195328240 - (z^^ + 2 " ) + 260435930 • (z^" + 2^°) + 325698420 • (r^^ + + 

381677080 • (2^^ + 2*̂ *̂ ) +419856213 • {z^° + 2^'') + 433610560 • z^^ 

^moi = (1 + ^*'') + 12 • (2^0 + e»0 . ) + 12 - (^22 ^ ^ . 0 2 ) _^ 3^ . (^24 ^ ^100) ^ 

40 • {z^^ + 2^«) + 140 • ( 2 2 « + 2 « « ) + 176 • (2^" + z ' ' ) + 498 • {z'^ + 2'*^2) + 

576 • (23** + 2^«) + 1340 . (2̂ *̂  + 2 « « ) + 1580 • (2^^ + z^^) + 2G60 • (2'*o + z^") + 
3432 • (2^2 + ^82) _̂  4932 , (,14 ^ ,80) _̂  ^3^5 . (^.0 ^ ^78) ^ gg2o . (̂ '̂ 8 ^ ^76) ^ 

10424 . (2^« + 2 '̂*) + 12752 • (2^^ + ^72) ^ ^453(j. (̂ 5.1 _̂  ̂ 70) ^ j^g^Q . ^ ŝc _̂  ^GSJ ^ 

18296 • ( 2 ° » + 2*̂ *̂ ) + 18505 • (2«o + 2*̂ )̂ + 20192 • 2^^ 

A^^^l = (1 + ^*'') + 30 • (2^*^ + Z'^') + 10 • (2^2 + ^ 50 . (^24 ^ ^100) ^ 2OO • (2̂ ^̂  + 2 » « ) + 

620 '• (228 + 2 ^ « ) + 960 • (2^0 + 2''*'*) + 2416 • (2^2 + ^ 9 2 ) ^ 4392 • {z^' + 2̂ *̂) + 

6945 . (2^« + 288) + 15340 • (2^8 + c^^) + 25085 • (z**" + 2 ^ ) + 34920 • {z''' + 2^2) + 

68700 • {z^"^ + 2 « « ) + 87548 • (2"^ + z'^) + 104513 • {z'^ + 2 ^ « ) + 177800 • (2^° + 2^^) + 

201440 • (2^2 ^ ^72j _̂  225290 • {2^'* + z^^) + 322070 • (2^^ + z^^) + 301640 • (2^^ + 2*̂ *̂ ) + 

316706 • (2*̂ " + 2*̂ '*) + 399752 • z^^ 

A^^f^ = (1 + ^»24) + 3 . (^20 ^ ^104) ^ 24 . ( 2 2 « + 2''̂ 8) ^ 48 . ( , 2 8 ̂  ^90) ^ 

6 . (2^0 + 2^^) + 150 • (2^2 + ^02) ^ 8 . (^34 ^ ^90) _̂  jQg . ( , 3 G ^ ^88) + 

96 . + ^80) ^ 75 . (^40 ^ .84) ^ 4(jg . (^ .2 ^ ^82) ^ 3̂2 . (^44 _^ ^80) ^ 

656 • (z"*̂  + 2^«) + 680 • (2"8 + 2 ^ « ) + 300 • (2^" + 2'") + 1386 • (2^2 + ^72) _ j . 

198 • (2^'» + 2 ^ « ) + 1152 • (2̂ *̂  + 2«8) + 1272 • (2^^ + 2 « « ) -i- 301 • (2<̂ o + 2*̂ ") + 2136 • 2*̂ ^ 

^ L t * = ( l + ^^'')+2-z^^ 

/ l ( | « ' > = ( l + j » 2 4 ) _ ^ 2 - 2 ' ' 2 

The weight distributions of ^ c i and their modular congruence are shown in Table D.IO. 
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Table D.IO: Modular congruence weight distributions of ^ G I 

i 
MS2) 
mod 2̂  mod 3 

^.(55) 
mod 5 mod 31 

^ • ( 5 G I ) 

mod 61 
Ai(n) 

mod 113460 

0 1 1 1 1 1 1 0 1 
20 0 0 3 0 0 90768 0 90708 
22 0 1 0 0 0 75640 4 529480 
24 2 2 0 0 0 94550 95 10873250 
26 0 2 4 0 0 83204 1508 171180884 
28 2 2 3 0 0 71858 19029 2159102198 
30 0 0 1 0 0 68076 199795 22668808776 
32 0 1 0 0 0 75640 1759003 199576556020 
34 0 0 3 0 0 90768 13123969 1489045613508 
36 2 0 3 0 0 34038 83433715 9460389337938 
38 0 1 1 0 0 30256 454337550 51549138453256 
40 0 2 0 0 0 37820 2128953815 241551099887720 
42 0 0 3 0 0 90768 8619600220 977979841051968 
44 0 0 2 0 0 22692 30259781792 3433274842143012 
46 0 2 1 0 0 105896 92387524246 10482288501057056 
48 0 2 0 0 0 37820 245957173186 27906300869721380 
50 0 2 0 0 0 37820 572226179533 64924782329852000 
52 0 2 1 0 0 105896 1165598694540 132248827882614296 
54 0 2 3 0 0 15128 2081950370302 236218089014480048 
56 0 2 2 0 0 60512 3264875882211 370432817595720572 
58 0 2 2 0 0 60512 4499326496930 510493584341738312 
60 1 2 1 0 0 20801 5452574159887 618649064180799821 
62 0 2 1 2 2 102116 5813004046431 659543439108163376 
64 1 2 1 0 0 20801 5452574159887 618649064180799821 
66 0 2 2 0 0 60512 4499326496930 510493584341738312 
68 0 2 2 0 0 60512 3264875882211 370432817595720572 
70 0 2 3 0 0 15128 2081950370302 236218089014480048 

Continued on next page 



i 
Ai(S2) 
mod 2̂  

^•(53) 
mod 3 

Ai(Sr,) 
mod 5 

Ai{S3i) 
mod 31 

AiiSex) 

mod 61 
Aiin) 

mod 113460 
nit Ai 

72 0 2 1 0 0 105896 1165598694540 132248827882614296 

74 0 2 0 0 0 37820 572226179533 64924782329852000 

76 0 2 0 0 0 37820 245957173186 27906300869721380 

78 0 2 1 0 0 105896 92387524246 10482288501057056 

80 0 0 2 0 0 22692 30259781792 3433274842143012 

82 0 0 3 0 0 90708 8619600220 977979841051908 

84 0 2 0 0 0 37820 2128953815 241551099887720 

86 0 1 1 0 0 30256 454337550 51549138453256 

88 2 0 3 0 0 34038 83433715 9466389337938 

90 0 0 3 0 0 90768 13123969 1489045613508 

92 0 1 0 0 0 75640 1759003 199576556020 

94 0 0 1 0 0 68076 199795 22668808776 

96 2 2 3 0 0 71858 19029 2159102198 

98 0 2 4 0 0 83204 1508 171180884 

100 2 2 0 0 0 94550 95 10873250 

102 0 1 0 0 0 75640 4 529480 

104 0 0 3 0 0 90768 0 90768 

124 1 1 1 1 1 1 0 1 

1134GQ 
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E Weight Distributions of Quadratic 
Residue Codes of Primes 151 and 
167 

Table E . l : Weight distributions o f Q R a n d extended QR codes of prime 151 

i Ai of [152,76,20] code Ai of [151, 76,19| code 
0 

19 
1 
0 

I 
3775 

20 28690 24915 
23 0 113250 
24 717250 604000 
27 0 30256625 
28 164250250 133993625 
31 0 8292705580 
32 39390351505 31097645925 
35 0 1302257122605 
30 54984189G2110 4196161839505 
39 0 113402818847850 
40 430930711621830 317527892773980 
43 0 570G949034630250 
44 19714914846904500 140079G5812274250 
47 0 171469716029462700 
48 542987434093298550 371517718063835850 
51 0 3155019195317144883 
52 9222363801696269658 C067344006379124775 
55 0 3627432IC08490644595 
56 98458872937331749615 62184551328841105020 
59 0 2647C5917968736096775 
60 670740325520798111830 405974407552062015055 
G3 0 12419G8201959417159800 
C4 2949674479653615754525 1707706277694198594 725 
G7 0 3778485133479463579225 
C8 8446025592483506824150 4667540459004043244925 
71 0 7503425412744902320620 
72 15840564760239238232420 8337139347494335911800 
75 0 9763682329503348632684 

76 19527364659006697265368 9763682329503348632684 
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Appendix E. Weight Distributions of Quadratic Residue Codes of Primes 151 and 167 

Table E .2 : Weight distributions of QR and extended QR codes of prime 167 

i >li of [168,84,24] code / I , of [167,84,23] code 
0 

23 
1 
0 

1 
110888 

24 776216 665328 
27 0 3021698 
28 18130188 I5I08490 
31 0 1057206192 
32 5550332508 4493126316 
35 0 268132007628 
36 1251282702264 983150694636 
39 0 39540857275985 
40 106071600559137 126530743283152 
43 0 3417107288264670 
44 13047136918828740 9630029630564070 
47 0 179728155397349776 
48 629048543890724216 449320388493374440 
51 0 5907921405841809432 
52 19087130095796615088 13179209289954805656 
55 0 124033230083117023704 
56 372099690249351071112 248066460166234047408 
59 0 1692604114105553659010 
60 4739291519495550245228 3046687405389996586218 
63 0 15228066033367763990128 
64 39973673337590380474086 24 74 5607304 222616483958 
67 0 91353417175290660468884 
68 225696677727188690570184 134343260551898030101300 
71 0 368674760966511746549004 
72 860241108921860741947676 491506347955348995398672 
75 0 1007029118755817710057646 
76 2227390683565491780127428 12197615648096740700C9782 
79 0 1873856945935044844028880 
80 3935099586463594172460648 2061242640528549328431708 
83 0 2377873706297857672084688 
84 4755747412595715344169376 2377873706297857672084688 

230 



Part VII 

References 

231 



References 

Ahmed, M., Ambroze, M. and Tomlinson, M. (2007). On computing Shannon's sphere packing 

bound and applications, Proa 9th International Symposium on Communication Theory and 
Applications, Ambleside, Lake District, U K . (Cited on pages 20, 21 and 142.) 

Alltop, W. O. (1984). A Method of Extending Binary Linear Codes, IEEE Transactions on Informa
tion Theory 30(6): 871-872. (Cited on pages 89 and 156.) 

Ambroze, M,, Wade, G. and Tomlinson, M. (2000). Practical Aspects of Iterative Decoding, lEE 
Proceedings Communications 147(2): 69-74. (Cited on page 59.) 

Bahl, L . R., Cocke, J . , Jelinck, F. and Raviv, J . (1974). Optimal decoding of linear codes for minimis

ing symbol error rate, IEEE Transactions on Information Theory IT-20: 284-287. (Cited on 

pages 13, 61 and 133.) 

Beenker, G. (1984). A Note on Extended Quadratic Residue Codes over GF(9) and Their Ternary 

Images, IEEE Transactions on Information Theory 30(2): 403-405. (Cited on page 97.) 

Berlekamp, E . , McEliece, R. and van Tilborg, H. (1978). On the inherent intractability of certain 

coding problems, IEEE Transactions on Information Theory 24: 384-386. (Cited on page 73.) 

Berlekamp, E . R. (1984). Algebraic Coding Theory, Revised Edition edn, Aegean Park Press. I S B N 

0 894 12063 8. (Cited on page 84.) 

Berrou, C , Glavieux, A. and Thitimajshima, P. (1993). Near shannon limit error-correcting cod
ing: Turbo codes, Proc. IEEE International Conference on Communications (ICC), Geneva, 
Switzerland, pp. 1064-1070. (Cited on page 14.) 

Bierbrauer, J . and Edel, Y. (1997). Extending and Lengthening BCH-codes, Finite Fields and Their 
Applications 3: 314-333. (Cited on pages 155 and 156.) 

Bitner, J . R., Ehrlich, G. and Reingold, E . M. (1976). Efficient generation of the binary reflected gray 
code and its applications, Communications of the ACM 19(9): 517-521. (Cited on pages 81 
and 134.) 

Blake, I . F. (1973). Algebraic Coding Theory: History and Development, Dowden, Hutchinson and 
Ross, Inc. (Cited on page 10.) 

Blokh, E . and Zyablov, V. (1974). Coding of generalized concatenated codes. Problems of Information 
Transmission 10: 218-222. (Cited on pages 13 and 181.) 

Bosma, W., Cannon, J . J . and Playoust, C. P. (1997). The Magma algebra system I: The user lan

guage, Journal of Symbolic Computation 24: 235-266. (Cited on page 85.) 

233 



Brouwer, A. E . (1998). Bounds on the size of linear codes, in V. S. Pless and W. C. Huffman (eds), 

Handbook of Coding Theory, Elsevier, North Holland, pp. 295-461. (Cited on pages 16, 22, 

24, 85, 86, 90, 94, 95,193 and 205.) 

Brouwer, A. and VerhoefT, T. (1993). An updated table of minimum-distance bounds for binary hnear 

codes, IEEE Transactions on Information Theory 39(2): 662-677. (Cited on page 16.) 

Burnside, W. (1965). Theory of Group of Finite Order, 2""*, 1911 edn, Reprinted by Dover, New York. 

(Cited on page 116.) 

Butman, S. and McEliece, R. J . (1974). The ultimate limits of binary coding for a wideband gaussian 

channel, JPL Deep Space Network Progress Report 42-22: 78-80. (Cited on pages 21 and 142.) 

Calabi, L , and Myrvaagnes, E . (1964). On the minimal weight of binary group codes, IEEE Trans
actions on Information Theory 10(4): 385-387. (Cited on page 16.) 

Campello, J . and Modha, D. S. (2001). Extended bit-filling and Idpc code design, Proc. IEEE Global 

Communications Conference (GLOBECOM), San Antonio, T X , USA, pp. 985-989. (Cited on 

page 33.) 

Campello, J . , Modha, D. S. and Rajagopalan, S. (2001). Designing Idpc codes using bit-filling, 

Proc. IEEE International Conference on Communications (ICC), Helsinki, Finland, pp. 55-59. 

(Cited on page 33.) 

Chase, D. (1972). A class of algorithms for decoding block codes with channel measurement in

formation, IEEE Transactions on Information Theory IT-18: 170-182. (Cited on pages 17 

and 134.) 

Chen, C. L . (1969). Some Results on Algebraically Structured Error-Correcting Codes, Ph.D disser

tation, University of Hawaii, USA. (Cited on pages 80, 81, 84, 87, 93 and 178.) 

Chen, C. L . (1970). Computer results on the minimum distance of some binary cyclic codes, IEEE 
Transactions on Information Theory 16(3): 359-360. (Cited on pages 24, 84 and 94.) 

Chung, S. Y., Forney, J r , G. D., Richardson, T. J . and Urbanke, R. L . (2001). On the design of 

low-density parity check codes within 0.0045 db of the shannon limit, IEEE Communications 

Utters 3(2): 58-60. (Cited on pages 15, 29 and 33.) 

Chung, S. Y , Richardson, T. J . and Urbanke, R. L . (2001). Analysis of sum-product decoding of 

low-density parity-check codes using a gaussian approximation, IEEE Transactions on Infor
mation Theory 47(2): 657-670. (Cited on page 33.) 

Costello, J r , D. and Forney, J n , G. (2007). Channel coding: The road to channel capacity. Proceed

ings of the IEEE 95(6): 1150-1177. (Cited on pages 7,16 and 34.) 

Costello, Jr. , D. J . , Hagenauer, J . , Imai, H. and Wicker, S. B. (1998). Applications of error-control 

coding, IEEE Transactions on Information Theory 44(6): 2531-2560. (Cited on pages 13 

and 14.) 

234 



Cover, T. M. and Thomas, J . A. (1991). Elements of Information Theory, John Wiley & Sons, Inc. 

I S B N 0 471 06259 6. (Cited on pages 17,18 and 19.) 

Cygan, D. and Offer, E , (1991). Short linear incremental redundancy codes having optimal weight 

structure profile, IEEE Transactions on Information Theory 37(1): 192-195. (Cited on 

page 154.) 

Davey, M. C. and MacKay, D. J . C. (1998). Low-Density Parity-Check Codes over GF(q), IEEE 

Communications Letters 2: 165-167. (Cited on page 35.) 

Davida, G. and Reddy, S. (1972). Forward-error correction with decision feedback, Information and 

Control 21: 117-133. (Cited on pages 153 and 154.) 

Divsalar, D., J in , H . and McEliece, R. (1998). Coding theorem for 'turbo-like' codes, Proa 36th 

Annual Allerton Conference on Communication, Control, and Computing, Allerton, I L , USA, 

pp. 201-210. (Cited on page 16.) 

Dolinar, S., Divsalar, D. and PoUara, F. (1998). Code Performance as a Function of Block Size, TMO 

Progress Report pp. 42-133. Available: h t t p : / / t m o . j p l . n a s a . g o v / t m o / p r o g r e s s _ 

r e p o r t / . (Cited on page 20.) 

Dorsch, B. G. (1974), A decoding algorithm for binary block codes and J-ary output channels, IEEE 

Transactions on Information Theory 20: 391-394. (Cited on pages 17, 22, 25, 134, 135, 136, 

150, 167 and 179.) 

Etzion, T., Trachtenberg, A. and Vardy, A. (1999). Which codes have cycle-free tanner graphs?, IEEE 
Transactions on Information Theory 45(6): 2173-2181. (Cited on pages 35 and 56.) 

Forney, Jr. , G. (1973). The Viterbi Algorithm, Proceedings of the IEEE 61(3): 268-278. (Cited on 

page 13.) 

Forney, Jr. , G. D. (1966). Concatenated Codes, M I T Press. (Cited on pages 13 and 14.) 

Fossorier, M. (2001). Iterative reliability-based decoding of low-density parity check codes, IEEE 

Journal on Selected Areas in Communications J S A C - 1 9 : 908-917. (Cited on page 148.) 

Fossorier, M. (2002). Reliability-based soft-decision decoding with iterative information set reduc

tion, IEEE Transactions on Information Theory IT-48: 3101-3106. (Cited on page 134.) 

Fossorier, M. (2004). Reliability-based soft-decision decoding algorithms for linear block codes, in 

S. L in and D. J . Costello, Jr. (eds). Error Control Coding: Fundamentals and Applications, 

2"̂ * edn, Pearson Education, Inc, chapter 10. (Cited on page 133.) 

Fossorier, M. and Lin , S. (1995). Soft-decision decoding of linear block codes based on ordered 

statistics, IEEE Transactions on Information Theory 41(5): 1379-1396. (Cited on pages 17 

and 134.) 

Fossorier, M. and L i n , S. (1996). Computationally eflicient soft-decision decoding of linear block 

codes based upon ordered statistics, IEEE Transactions on Information Theory 42: 738-750. 

(Cited on page 134.) 

235 



Fossorier, M. and Lin , S. (1999). Reliability-based information set decoding of binary linear codes, 

lEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci

ences E82-A: 2034-2042. (Cited on page 134.) 

Gaborit, P. (2002). Quadratic Double Circulant Codes over Fields, Journal of Combinatorial Theory, 

Series A97: 85-107. (Cited on pages 97 and 111.) 

Gaborit, P., Nedeloaia, C.-S. and Wassermann, A. (2005). On the weight enumerators of duadic and 

quadratic residue codes, IEEE Transactions on Information Theory 51(1): 402-407. (Cited on 

pages 24, 98,125,126,127 and 179.) 

Gaborit, P. and Otmani, A. (2007). Tables of self-dual codes, h t t p : / / w w w . u n i l i m . f r / p a g e s _ 

p e r s o / p h i l i p p e . g a b o r i t / S D / i n d e x . html. (Cited on page 98.) 

Gallager, R. (1962). Low-density parity-check codes, IRE Transactions on Information Theory IT-

8: 21-28. (Cited on pages 15 and 32.) 

Gallager, R. (1963). Low-Density Parity-Check Codes, Cambridge, MA: M I T Press. (Cited on 

pages 15, 29 and 63.) 

Gazelle, D. and Snyders, J . (1997). Reliability-based code-search algorithm for maximum likelihood 

decision decoding of block codes, IEEE Transactions on Information Theory IT-43: 239-249. 

(Cited on page 17.) 

Golay, M. J . E . (1949). Notes on Digital Coding, Proceedings of the IEEE 37: 657. (Cited on page 11.) 

Grass], M. (2000). On the minimum distance of some quadratic residue codes, Proc. IEEE Interna

tional Symposium on Information Theory (ISIT), Sorento, Italy, p. 253. (Cited on pages 87 

and 128.) 

GrassI, M. (2001). New binary codes from a chain of cyclic codes, IEEE Transactions on Information 

Theory 47(3): 1178-1181. (Cited on pages 91 and 156.) 

GrassI, M. (2006). Searching for linear codes with large minimum distance, in W. Bosma and J . Can

non (eds), Discovering Mathematics with MAGMA - Reducing the Abstract to the Concrete, 

Heidelberg: Springer, pp. 287-313. (Cited on pages 75, 77 and 89.) 

GrassI, M. (2007). Code Tables: Bounds on the parameters of various types of codes, h t t p : //www. 
c o d e t a b l e s . d e . (Cited on pages 17, 22, 85, 86,142 and 157.) 

Gulliver, T. A. and Senkevitch, N. (1999). On a class of self-dual codes derived from quadratic 

residue, IEEE Transactions on Information Theory 45(2): 701-702. (Cited on pages 97 

and 122.) 

Guruswarai, V. (2001). List Decoding of Error-Correcting Codes, Ph.D disertation. Department of 

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, United 

States. (Cited on page 150.) 

236 



Guruswami, V. and Sudan, M. (1999). Improved decoding of Reed-Solomon and algebraic-geometry 
codes, IEEE Transactions on Information Theory 45(6): 1757-1767. (Cited on pages 17 
and 150.) 

Hagenauer, J . and Hoeher, P. (1989). A viterbi algorithm with soft-decision outputs and its ap

plications, Proc IEEE Global Communications Conference (GLOBECOM), Dallas, T X , USA, 

pp. 1680-1686. (Cited on page 15.) 

Hamming, R. W. (1950). Error Detecting and Error Correcting Codes, Bell System Thchnical Journal 
29:147-160. (Cited on pages 10 and 11.) 

Han, Y. S., Hartmann, C. R. P. and Chen, C. C. (1993). Efficient priority-first search maximum-

likelihood soft-decision decoding of linear block codes, IEEE Transactions on Information 
Theory IT-39:1514-1523. (Cited on page 17.) 

Hartley, R. (1928). Transmission of information, Bell System Technical Journal 7(3): 535-563. 

(Cited on pages 3 and 4.) 

Hartmann, C. R. P. and Rudolph, L . D. (1976). An optimum symbol-by-symbol decoding rule for lin

ear codes, IEEE Transactions on Information Theory IT-22(5): 514-517. (Cited on pages 13, 

22, 23, 61. 62,133 and 179.) 

Helgert, H. and Stinaff, R. (1973). Minimum-distance bounds of binary linear codes, IEEE Trans
actions on Information Theory 19(3): 344-356. (Cited on page 16.) 

Houghten, S., L a m , C , Thiel, L . and Parker, J . (2003). The extended quadratic residue code is 
the only (48,24,12) self-dual doubly-even code, IEEE Transactions on Information Theory 
49(1): 53-59. (Cited on page 143.) 

Hu, X. Y , Eleftheriou, E . and Arnold, D. M. (2002). Irregular Progressive Edge-Growth Tan

ner Graphs, Proc. IEEE International Symposium on Information Theory (ISIT), Lausanne, 

Switzerland. (Cited on pages 33 and 45.) 

Hu, X. Y , Eleftheriou, E . and Arnold, D. M. (2005). Regular and Irregular Progressive Edge-

Growth Tanner Graphs, IEEE Transactions on Information Theory 51(1): 386-398. (Cited 

on pages 23, 35 and 50.) 

Huffman, W. C. and Pless, V. S. (2003). Fundamentals of Error-Correcting Codes, Cambridge Uni

versity Press. I S B N 0 521 78280 5. (Cited on page 98.) 

Isaka, M., Fossorier, M. and Imai, H. (2004). On the suboptimality of iterative decoding for turbo-

like and Idpc codes with cycles in their tanner graph representation, IEEE Transactions on 
Communications 52(5): 845-854. (Cited on page 134.) 

Jenson, R. (1980). A Double Circulant Presentation for Quadratic Residue Codes, IEEE Transac
tions on Information Theory 26(2): 223-227. (Cited on pages 104 and 105.) 

J in , H . , Khandekar, A. and McEliece, R. (2000). Irregular repeat-accumulate codes, Proci 2nd Inter
national Symposium on Turbo Codes and Related Topics, Brest, France, pp. 1-8. (Cited on 

pages 16 and 189.) 

237 



Johnson, S. (2004). Low-Density Parity-Check Codes from Combinatorial Designs, Ph.D disser

tation. School of Electrical Engineering and Computer Science, University of Newcastle, 

Callaghan, NSW 2308, Australia. (Cited on page 34.) 

Johnson, S. J . and Weller, S. R. (2001). Construction of low-density parity-check codes from kirkman 

triple systems, Proc. IEEE Information Theory Workshop, Cairns, Australia, pp. 90-92. (Cited 

on page 34.) 

Johnson, S. J . and Weller, S. R. (2002). Codes for iterative decoding from partial geometries, 

Proc. IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland, 

p. 310. (Cited on page 34.) 

Kaneko, T , Nishijima, T., Inazumi, H. and Hirasawa, S. (1994). An efficient maximum likelihood 

decoding of linear block codes with algebraic decoder, IEEE Transactions on Information 

Theory IT.40: 320-327. (Cited on page 134.) 

Karlin, M. (1969). New binary coding results by circulants, IEEE Transactions on Information 

Theory 15(1): 81-92. (Cited on pages 97, 104, 105 and 107.) 

Karlin, M., Bhargava, V. K. and Tavares, S. E . (1978). A note on the extended quadratic residue 

codes and their binary images, Information and Control 38: 148-153. (Cited on page 108.) 

Knuth, D. E . (2005). The Art of Computer Programming, Vol. 4: Fascicle 3: Generating All Combi

nations and Partitions, S'^ edn, Addison-Wesley I S B N 0 201 85394 9. (Cited on pages 81, 82 

and 135.) 

Koetter, R. and Vardy, A. (2003). Algebraic soft-decision decoding of Reed-Solomon codes, IEEE 

Transactions on Information Theory 49(11): 2809-2825. (Cited on pages 17 and 150.) 

Kou, Y., L in , S. and Fossorier, M. (2001). Low density parity check codes based on finite geometries: 

A rediscovery and new results, IEEE Transactions on Information Theory 47: 2711-2736. 

(Cited on pages 34, 41 and 146.) 

Krishna, H . and Morgera, S. (1987). A new error control scheme for hybrid ARQ systems, IEEE 

Transactions on Communications 35(10): 981-990. (Cited on page 154.) 

Lenth, R. (1989). Cummulative distribution function of non-central t distribution. Journal of Ap

plied Statistics 38(1): 185-189. (Cited on page 20.) 

Leon, J . S. (1988). A probabilistic algorithm for computing minimum weights of large error-

correcting codes, IEEE Transactions on Information Theory 34(5): 1354-. (Cited on page 129.) 

Leon, J . S., Masley, J , M. and Pless, V. (1984). Duadic codes, IEEE Transactions on Information 

Theory 30(5): 709-713. (Cited on pages 91,129 and 130.) 

L in , S. and Costello, Jr. , D. J . (2004). Error Control Coding: Fundamentals and Applications, 2"** 

edn, Pearson Education, Inc. (Cited on pages 34, 146 and 153.) 

L iu , R., Spasojevid, P. and Soljanin, E . (2003). Punctured turbo code ensembles, Proc. IEEE Infor
mation Theory Workshop, Paris, France, pp. 249-252. (Cited on pages 153 and 154.) 

238 



Lodge, J . , Hoeher, P. and Hagenauer, J . (1992). The decoding of multidimensional codes using sep

arable map 'filters*, Proc 16th Biennial Symposium on Communications, Kingston, Ontario, 

Canada, pp. 343-346. (Cited on page 15.) 

Lodge, J . , Young, R., Hoeher, P. and Hagenauer, J . (1993). Separable map 'filters* for the decoding 

of product and concatenated codes, Proc. IEEE International Conference on Communications 

(ICC), Geneva, Switzeriand, pp. 1740-1745. (Cited on page 15.) 

Loeloeian, M. and Conan, J . (1984). A [55, IG, 19] binary Goppa code, IEEE Transactions on Infor

mation Theory 30: 773. (Cited on page 75.) 

Lous, N. J . C , Bours, P. A. H. and van Tilborg, H. C. A. (1993). On maximum likelihood soft-

decision decoding of binary linear codes, IEEE Transactions on Information Theory 39: 197-

203. (Cited on page 134.) 

Luby, M. G., Shokrolloahi, M. A., Mizenmacher, M. and Spielman, D. A. (2001). Improved Low-

Density Parity-Check Codes Using Irregular Graphs, IEEE Transactions on Information 

Theory 47(2): 585-598. (Cited on pages 15, 32 and 185.) 

Lucas, R., Fossorier, M. P. C , Kou, Y. and L i n , S. (2000). Iterative decoding of one-step majority 

logic decodable codes based on belief propagation, IEEE Transactions on Communications 

46(6): 931-937. (Cited on page 34.) 

Luke, H . D. (1999). The origins of the sampling theorem, IEEE Communications Magazine 

37(4): 106-108. (Cited on page 3.) 

MacKay, D. J . C. and Neal, R. M. (1996). Near Shannon limit performance of low-density parity-

check codes, Electronics Letters 32(18): 1645-1646. (Cited on page 15.) 

MacWilliams, F. J . and Sloane, N. J . A. (1977). The Theory of Error-Correcting Codes, North-Holland. 

(Cited on pages 35, 36, 42, 84, 86, 87, 97, 99,100,104,105,107,109,110, 111, 132 and 136.) 

Mandelbaum, D. (1974). An adaptive-feedback coding scheme using incremental redundancy, IEEE 
Transactions on Information Theory IT-20(3): 388-389. (Cited on pages 153 and 154.) 

Margulis, G. A. (1982). Explicit Constructions of Graphs without Short Cycles and Low Density 

Codes, Combinatorica 2(1): 71-78. (Cited on page 34.) 

McEliece, R. J . , MacKay, D. J . C. and Cheng, J . -F . (1998). Turbo decoding as an instance of pearl's 

"belief propagation" algorithm, IEEE Journal on Selected Areas in Communications 16:140-

152. (Cited on pages 35 and 56.) 

Moon, T. K . (2005). Error Correction Coding: Mathematical Methods and Algorithms, Wiley-

Interscience. (Cited on page 20.) 

Moore, E . H . (1976). Double Circulant Codes and Related Algebraic Structures, Ph.D dissertation, 

Dartmouth College, USA. (Cited on page 97.) 

239 



Mykkeltveit, J . , L a m , C. and McEliece, R. J . (1972). On the weight enumerators of quadratic 

residue codes, JPL Technical Report 32-1526 X D : 161-166. (Cited on pages 116, 117, 124, 

131 and 179.) 

Narayanan, K. and Stuber, G. (1997). A novel ARQ technique using the turbo coding principle, 

IEEE Communications Letters 1: 49-51. (Cited on pages 153 and 154.) 

Nijenhuis, A. and Wilf, H. S. (1978). Combinatorial Algorithms for Computers and Calculators, 2"^ 

edn. Academic Press, London. (Cited on pages 81,134 and 150.) 

Nyquist, H . (1924). Certain factors affecting telegraph speed. Bell System Technical Journal 

3(2): 324-346. (Cited on page 3.) 

Papagiannis, E . , Ambroze, M. A. and Tomlinson, M. (2003a). Analysis of non convergence blocks at 

low and moderate S N R in S C C turbo schemes, Proc. S"* International Worksop on Signal Pro

cessing for Space Communications (SPSC), Catania, Italy, pp. 121-128. (Cited on pages 45 

and 70.) 

Papagiannis, E . , Ambroze, M, A. and Tomlinson, M. (2004). Approaching the M L performance with 

iterative decoding, Proc. International Zurich Seminar on Communications, Zurich, Switzer

land, pp. 220-223. (Cited on page 70.) 

Papagiannis, E . , Ambroze, M., Tomlinson, M. and Ahmed, M, (2005). Improved decoding of low-

density parity-check codes by reduction of pseudocodewords, in C. E . Palau Salvador (ed.). 

Proa 4'^ lASTED International Conference Communication Systems and Networks, A C T A 

Press, pp. 152-157. (Cited on page 70.) 

Payne, W. H. and Ives, F. M. (1979). Combination generators, A C M Transactions on Mathematical 

Software 5(2): 163-172. (Cited on page 81.) 

Pearl, J . (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 

Morgan Kauiinann, San Mateo, CA. (Cited on pages 15, 29 and 63.) 

Peterson, W. and Weldon, Jr. , E . J . (1972). Error-Correcting Codes, M I T Press. (Cited on pages 11 

and 38.) 

Ping, L . , Leung, W. K and Phamdo, N. (1999). Low Density Parity Check Codes with Semi-Random 

Parity Check Matrix, Electronics Letters 35(1): 38-39. (Cited on pages 34, 54 and 185.) 

Pishro-Nik, H . and Fekri, F. (2003). Improved decoding algorithms for low-density parity-check 

codes, Proc. 5 '̂' International Symposium on Turbo Codes, Brest, France, pp. 117-120. (Cited 

on page 70.) 

Pless, V. (1972). Symmetry Codes over GF(3) and New Five Designs, Journal of Combinatorial 
Theory, Series A 12: 119-142. (Cited on page 97.) 

Posten, H. (1994). A new algorithm for the non central t distribution function, Journal of Statistical 

Computation and Simulation 51: 79-87. (Cited on page 20.) 

240 



Prange, E . (1957). Cyclic error-correcting codes in two symbols, Technical Report TN'58-103, Air 
Force Cambridge Research Labs, Bedford, Massachusetts, USA. (Cited on page 78.) 

Proakis. J. G. (2001). Digital Communications, 4^^ edn, McGraw-Hill, New York. (Cited on pages 4, 
5, 6, 19, 20, 31 and 136.) 

Promhouse, G. and Tavares, S. E . (1978). The Minimum Distance of All Binary Cyclic Codes of Odd 
Lengths from 69 to 99, IEEE Transactions on Information Theory 24(4): 438-442. (Cited on 
pages 24, 84, 94 and 178.) 

Rains, E . M. and Sloane, N. J . A. (1998). Self-Dual Codes, in V. S. Pless and W. C. Huffman (eds), 
Handbook of Coding Theory, Elsevier, North Holland. (Cited on pages 97, 98,118 and 122.) 

Richardson, T. J . , Shokrollahi, M. A. and Urbanke, R. L. (2001). Design of capacity-approaching ir
regular low-density parity-check codes, IEEE Transactions on Information Theory 47(2): 619-
637. (Cited on pages 15 and 33.) 

Richardson, T. J . and Urbanke, R. L. (2001). The capacity of low-density parity-check codes under 
message-passing decoding, IEEE Transactions on Information Theory 47(2): 599-618. (Cited 
on page 33.) 

Richter, G. and Hof, A. (2006). On a construction method of irregular LDPC codes without small 
stopping sets, Proa IEEE International Conference on Communications (ICC), Istanbul, 
Turkey, pp. 1119-1124. (Cited on page 33.) 

Schomaker, D. and Wirtz, M. (1992). On Binary Cyclic Codes of Odd Lengths from 101 to 127, IEEE 
Transactions on Information Theory 38(2): 516-518. (Cited on pages 24, 84, 94 and 178.) 

Sesia, S., Cairo, G. and Vivier, G. (2004). Incremental redundancy hybrid ARQ schemes based on 
low-density parity-check codes, IEEE Transactions on Communications 52(8): 1311-1321, 
(Cited on page 153.) 

Shannon, C. E . (1948). A mathematical theory of communication, Bell System Technical Journal 
27(3): 379-423. (Cited on pages 4, 5, 8,10,11,17,18 and 33.) 

Shannon, C. E . (1949). Communication in the presence of noise. Proceedings of the IRE 37(1): 10-21. 
(Cited on page 3,) 

Shannon, C. E . (1959). Probability of error for optimal codes in a gaussian channel. Bell System 
Technical Journal 38(3): 611-656. (Cited on pages 20, 21 and 142.) 

Silverman, R. and Balser, M. (1954). Coding for constant-data-rate systems, IRE Transactions on 
Information Theory 4(4): 50-63. (Cited on pages 17 and 61.) 

Sklar, B. (2001). Digital Communications: Fundamentals and Applications, 2"^ edn, Prentice Hall, 
Upper Saddle River, New Jersey. (Cited on pages 4 and 5.) 

Sloane, N. (1972). A survey of constructive coding theory, and a table of binary codes of highest 
known rate, Discrete Mathematics 3: 265-294. (Cited on page 16.) 

241 



Sloane, N. J . , Reddy, S. M. and Chen, C. L. (1972). New binary codes, IEEE Transactions on Infor
mation Theory IT-18: 503-510. (Cited on pages 88, 90 and 155.) 

Snyders, J . (1991). Reduced lists of error patterns for maximum likelihood soft decision decoding, 
IEEE Transactions on Information Theory 37: 1194-1200. (Cited on page 134.) 

Soljanin, E . , Varnica, N. and Whiting, R (2006). Punctured vs rateless codes for hybrid ARQ, Proc. 
IEEE Information Theory Workshop^ Punta del Este, Uruguay. (Cited on pages 153 and 154.) 

Sudan, M. (1997). Decoding of Reed-Solomon codes beyond the error-correction bound, Journal of 
Complexity 13: 180-193. (Cited on page 17.) 

Sweeney, P. and Wesemeyer, S. (2000). Iterative soft-decision decoding of linear block codes, lEE 
Proceedings Communications 147(3): 133-136. (Cited on page 134.) 

Tang, H., Xu, J . , Lin, S. and Abdel-Ghaffar, K. A. S. (2005). Codes on Finite Geometries, IEEE 
Transactions on Information Theory 51(2): 572-596. (Cited on page 41.) 

Tanner, R. M. (1981). A Recursive Approach to Low-Complexity Codes, IEEE Transactions on 
Information Theory IT-27: 533-547. (Cited on page 15.) 

Thorpe, J . (2003). Low-density parity-check (LDPC) codes constructed from protographs, JPL 
IPNProgress Report 42-154. Available: h t t p : //tmo. j p l . nasa.gov/progress_report/ 
42-154/154C.pdf. (Cited on page 187.) 

Tian, T , Jones, C , Villasenor, J . and Wesel, R. (2004). Selective Avoidance of Cycles in Irregular 
LDPC Code Construction, IEEE Transactions on Communications 52: 1242-1247. (Cited on 
page 33.) 

Tjhai, C. and Tomlinson, M. (2007). Results on binary cyclic codes, Electronics Letters 43(4): 234-
235. (Cited on page 156.) 

Tjhai, C , Tomlinson, M., Grassl, M., Horan, R., Ahmed; M. and Ambroze, M. (2006). New linear 
codes derived from cyclic codes of length 151, lEE Proceedings Communications 153(5): 581-
585. (Cited on page 156.) 

Tomlinson, M., Tjhai, C , Cai, J . and Ambroze, M. (2007). Analysis of the distribution of the number 
of erasures correctable by a binary linear code and the link to low weight codewords, lET 
Proceedings Communications 1(3): 539-548. (Cited on page 134.) 

Tomlinson, M., Wade, G., Van Eetvelt, P. and Ambroze. M. (2002). Bounds for finite block-length 
codes, lEE Proceedings Communications 149(2): 65-69. (Cited on page 20.) 

Ungerboeck, G. (1982). Channel Coding with Multilevel/Phase Signals, IEEE Transactions on In
formation Theory IT-28(1). (Cited on pages 7 and 14.) 

Urbankc, R. (2001). LdpcOpt a fast and accurate degree distribution optimizer for LDPC code 
ensembles. Available at http : / / l t h c w w w.epfl.ch / r e s e a r c h / l d p c o p t / . (Cited on 
page 189.) 

242 



Valembois, A. and Fossorier, M. (2004). Box and match techniques applied to soft-decision decoding, 
IEEE Transactions on Information Theory 50(5): 796-810. (Cited on page 17;) 

van Dijk, M., Egner, S., Greferath. M. and Wassermann, A. (2005). On Two Doubly Even Self-Dual 
Binary Codes of Length 160 and Minimum Weight 24, IEEE Transactions on Information 
Theory 51(1): 408-411. (Cited on pages 97, 98 and 115.) 

van Lint, J . H. (1970). Coding Theory, Lecture Notes in Mathematics No. 201, Springer, Berlin. 
(Cited on page 132.) 

Vardy, A. (1997). The intractability of computing the minimum distance of a code, IEEE Transac
tions on Information Theory 43: 1759-1766. (Cited on page 73.) 

Vamica, N. and Fossorier, M. (2004). Belief propagation with information correction : Imporved near 
maximum-likelihood decoding of low-density parity-check codes, Proc. IEEE International 
Symposium on Information Theory (ISIT), Chichago, Illinois, USA, p. 343. (Cited on page 70.) 

Vasic, B. and Milenkovic, M. (2004). Combinatorial Constructions of Low-Density Parity-Check 
Codes for Iterative Decoding, IEEE Transactions on Information Theory 50(6): 1156-1176. 
(Cited on page 34.) 

VerhoefT, T (1987). An updated table of minimum-distance bounds for binary linear codes, IEEE 
Transactions on Information Theory 33(5): 665-680. (Cited on page 16.) 

Viterbi, A. J. (1967). Error Bounds for Convolutional Codes and an Asymptotically Optimum Decod
ing Algorithm, IEEE Transactions on Information Theory IT-IS: 260-269. (Cited on pages 13, 
14, 61 and 133.) 

Weldon, Jr., E . J . (1966). Difference-set cyclic codes. Bell System Technical Journal 45: 1045-1055. 
(Cited on pages 11 and 34.) 

Wicker, S. and Bartz, M. (1994a). The design and implementation of Type-I and Type-II hybrid-ARQ 
protocols based on first-order Reed-MuUer codes, IEEE Transactions on Communications 
42(2/3/4): 979-987. (Cited on page 154.) 

Wozencraft, J. and Jacobs, I. (1965). Principles of Communication Engineering, John Wiley & Sons, 
Inc. (Cited on page 33.) 

Zimmermann, K.-H. (1996). Integral hecke modules, integral generalized reed-muller codes, and 
linear codes, Technical Report 3-96, Technische Universitat Hamburg-Harburg, Hamburg, 
Germany (Cited on pages ix, 75, 76, 77, 78, 80, 93 and 112.) 

Zinov'ev, V. (1976). Generalized concatenated codes. Problems of Information Transmission 
12(3): 5-15. (Cited on pages 13 and 181.) 



P a r t V I I I 

Publications 

245 



J o u r n a l s 

Horan, R., Tjhai, C , Tomlinson, M., Ambroze, M. and Ahmed, M. (2006). Idcmpotents, 
Mattson-Solomon Polynomials and Binary LDPC Codes> lEE Proceedings Communications 
153(2): 256-262. 

Tjhai, C. and Tomlinson, M. (2007). Results on binary cyclic codes, Electronics Letters 43(4): 234-
235. 

Tjhai, C , Tomlinson, M., Ambroze, M. and Ahmed, M. (2005). Cyclotomic idcmpotent-based binary 
cyclic codes, Electronics Letters 41(6): 341-343. 

Tjhai, C , Tomlinson, M., Grass!, M., Horan, R., Ahmed, M. and Ambroze, M. (2006). New linear 
codes derived from cyclic codes of length 151, lEE Proceedings Communications 153(5): 581-
585. 

Tomlinson, M,, Tjhai, C. and Ambroze, M. (2007), Extending the dorsch decoder towards achieving 
maximum likelihood decoding for linear codes, lET Proceedings Communications 1(3): 479-
488. 



Extending the Dorsch decoder towards achieving 
maximum-likelihood decoding for linear codes 

M . T o m l i n s o n , C. T jha i and M . Ambroze 

Abstract: It is shown that the relatively unknown Dorsch decoder may be extended to produce a 
decoder that is capable of maximum-likelihood decoding. The extension involves a technique for 
any linear (n, k) code that ensures that n — k less rcHablc, soft decisions of each received vector 
may be treated as erasures in determining candidate codewords. These codewords are derived 
from low infomiation weight codewords and it is shown that an upper bound o f this infomiation 
weight may be calculated from each received vector in order to guarantee that the decoder wi l l 
achieve maximum-likelihood decoding. Using the cross-correlation function, it is shown that the 
most likely codeword may be derived from a partial correlation function o f these low infonnation 
weight codewords, which leads to an efficient fast decoder. For a practical implementation, this 
decoder may be further simplified into a concatenation o f a hard-decision decoder and a partial cor
relation decoder with insignificant performance degradation. Results arc presented for some power
ful , known codes, including a CiF(4) non-binary BCH code. It is shown that maximum-likelihood 
decoding is realised for a high percentage o f decoded codewords and that performance close to the 
sphere packing bound is attainable for codeword lengths up to 1000 bits. 

1 Introduction 

In a relatively unknown paper published in 1974, Dorsch 
described a decoder for linear binary block («, k) codes 
using soft decisions quantised to J levels 11 ]. The decoder 
is applicable to any linear block code and does not rely 
upon any particular feamres o f the code, such as being a 
concatenated code or having a sparse parity check matrix. 
In the Dorsch decoder, hard decisions are derived from 
the soft decisions using standard bit-by-bit detection, choos
ing the binary state closest to the received coordinate. The 
hard decisions are then ranked in terms o f their likelihoods 
and candidate codewords are derived from a set o f it, inde
pendent, most likely bits. This is done by producing a new 
parity check matrix / / / obtained by reordering the columns 
of the original / / matrix according to the likelihood of each 
coordinate and reducing the resulting matrix to echelon 
canonical fonn by elementary row operations. After evalu
ation o f several candidate codewords, the codeword with 
the minimum soft decision metric is the output from the 
decoder. With the introduction o f turbo principles in [2], 
it was shown in [3] that the Dorsch decoder can be modified 
to produce soft decision outputs and thus can be arranged in 
an iterative scheme to decode product codes. It was also 
shown in 13] that the Dorsch decoder can easily be 
adapted to decode non-binary linear codes. 

In general, soft-decision decoding algorithms, which 
involve reordering the coordinates o f the received vector 
(in the literature, these kinds o f decoding algorithms are 
commonly referred to as reliability-based decoding), can 
be classified into two categories: most-reliable-positions 
reprocessing algorithms and least-reliable-positions 
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reprocessing algorithms [4, Chapter 10]. In the former 
case, the most reliable k information set is determined and 
some o f these k coordinates are then modified. For each 
modification, a codeword is derived and at the end o f soft, 
or hard, decision decoding, the most likely codeword is 
chosen. In the latter case, the decoding algorithms use 
quite diftercnt strategies in reprocessing the coordinates 
and tend (o be limited to hard decision decoding only. 
On the basis o f the fact that errors arc more likely to 
occur in the Icast-reliable-posilions, the typical 
leasl-reliable-reprocessing algorithm derives some error pat
terns in the least-reliable-positions and subtracts these error 
patterns from the hard decision vector initially derived from 
the received vector. The resultant codewords are then 
decoded using an algebraic hard-decision decoder. The 
most likely codeword is chosen at the end o f the procedure. 
It is worth mentioning that the least-reliable-positions repro
cessing algorithms generally require that many more code
words be reprocessed than the most-rcliable-positions 
reprocessing algorithms in order to find the correct codeword 
for each received vector. 

The Dorsch decoding algorithm can be considered as the 
precursor of the most-reliable-positions reprocessing algor
ithms. A decoder using a similar principle, but without soft-
decision quantisation, has been described by Fossorier and 
Lin [5] and is tenmed the ordered statistic decoder (OSD). 
An order-/ OSD algorithm systematically reprocesses 

X]!/=o 0) ^^'^^ patterns in the A-most reliable positions o f 
the information set. The complexity of the OSD algorithm 
depends on the size of the list containing the error 
patterns and various approaches have been devised to 
reduce the size o f this list [6-9J. Another variant o f the 
most-reliable-posiiions reprocessing algorithm was intro
duced by de Darros et al. [10] and de Barros and Dorsch 
[11]. This algorithm, however, employs a stopping rule, 
which results in suboptimum performance. 

Various least-reliable-positions reprocessing algorithms 
have also been devised. One o f them is the well-known 
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Chase algorithrn-which.utilises an algebraic hard-decision 
decoder in conjunction with a search for errors in the least 
likely positions [12]. The list size o f the Chase algorithm 
is constant and an extension to this algorithm, which 
generates a dynamic list and which can achieve maximum-
likelihood decoding i f all codewords arc processed, 
has been proposed by Kaneko et id. [ 13J. Other Icast-
reliablc-positions reprocessing approaches include the 
syndrome-based list decoding algorithms, which are more 
suitable for high-rate codes, proposed by Snydcrs | i 4 | and 
Lous ct al. [I5J. 

The powerof the Dorsch decoder arises from the relatively 
unknown property that most codes, on average, can correct 
almost n — k erasures [161, which is considerably more 
than the guaranteed number o f correctible erasures o f 
flmtn - I , or the guaranteed number o f correctible hard 
decision errors o f (rf^in ~ l ) / 2 , where rfmin 'S the minimum 
Hamming distance o f the code. In its operation, the Dorsch 
decoder needs to correct any combination o(n ~ k erasures, 
which is impossible unless the code is a maximum distance 
separable (MDS) code [17]. Dorsch did not discuss this 
problem, or potential solutions, in his original paper, 
although at least one solution is implied by the results pre
sented in the paper [1] . In (his paper, one solution is 
described and it is also shown that it is not necessary to 
keep recalculating each candidate codeword and its associ
ated soft-decision metric in order to find the most likely 
codeword. Instead, an incremental correlation approach is 
adopted, which features low information weight codewords 
and a correlation function involving only a small number 
of coordinates o f the received vector [ I 6 | . This approach is 
very efficient and enables many more codewords to be repro
cessed than the original Dorsch decoder and the other pub
lished most-reliable-positions reprocessing algorithms. It is 
shown that maximum-likelihood decoding is realised, pro
vided all codewords arc evaluated up to a bounded infor
mation weight, which may be calculated for each received 
vector. It is also shown that maximum-likelihood decoding 
may be achieved for a predetermined, high percentage o f 
received vectors and is a function o f the number of code
words processed for each received vector. The decoder 
lends itself to a low complexity, parallel implementation 
involving a concatenation o f hard and soft-decision decod
ing. It produces near maximum-likelihood decoding for 
codes as long as 1000 bits, depending on code rate. 
Furthermore, it is shown that complexity may be a traded-off 
against perfomiance in a flexible manner for implementation 
of the decoder. Decoding results ore presented for some o f 
the most powerful binary codes known and compared to 
Shannon's sphere packing bound [ 18]. The extension to non-
binary code's is straightforward and this is described in 
Section 5. 

2 Incremental correlation Dorsch decoder 

Codewords with binary coordinates having state 0 or I are 
denoted a's 

X = iXo,Xi,X2 x„^i) 

For transmission, bipolar transmission is used with coordi
nates having binary state 0 mapped to -l-I and having state 
I mapped to - I . Transmitted codewords are denoted as 

C = (Co.C,.C2 

The received vector r . consists o f n coordinates 
(rQ,r^,r2 r „_ j ) equal to the transmitted codeword 
plus additive white gaussian noise (AWON) with variance 

<r^ The. received vector processed by the decoder is 
assumed to have been matched filtered and free from distor
tion so that ]/(r^ = 2£"b/Ao, where f b is the energy per 
infomiation bit and A'o is the single sided noise power spec
tral density. Accordingly, <r^ = NJIE^. 

The basic principle that is used is that the k most reliable 
bits o f the received vector arc initially taken as correct and 
the i\ — k lea.";! reliable bits are treated as erasures. The 
parity check equations of the code, as represented by / / , 
arc used to solve for these erased bits and a codeword .v is 
obtained. This codeword is cither equal to the transmitted 
codeword or needs only small changes to produce a code
word equal to the transmitted codeword. 

One difliculiy is that, depending on the code, the n — A; 
least reliable bits usually cannot all be solved as erasures. 
This depends on the positions o f the erased coordinates 
and the power o f the code. Only MDS codes are capable 
o f solving II - k erasures regardless of the positions o f the 
erasures in the received codeword |17|. Unfortunately, 
there are no binary MDS codes apart from trivial examples. 
However, a set o f / j - A erasures can always be solved from 
n~ k + s least reliable bit positions and. depending on the 
code, s is usually a small integer. In order to obtain best 
performance, it is important that the very least reliable bit 
positions are solved first, since the corollary that the n ~ k 
least reliable bits usually cannot all be solved as erasures 
is that the k most reliable bits, used to derive codeword Jr, 
must include a small number o f least reliable bits. 
However, for most received vectors, the difTerencc in 
reliability between ranked bit k and ranked bit ^ + 5- is 
usually small. 

For any received coordinate, the a priori log-likelihood 
ratio o f the bit being correct is proportional to |/-,|. The 
received vector r with coordinates ranked in order o f most 
likely to be correct is defined as (/*^. r ^ i , . • • • , ' •^ , ) , 
where \r^\ > | > k ^ J > - • • > |r^_, |. 

The decoder is most straightforward for a binary MDS 
code. The codeword coordinates {x^,Xfi^.x^j " ^ H I - I ) 

arc formed directly from the received vector r using the 
bitwise decision rule .v^, = I i f r ^ , < 0 else .v^ = 0. 

The n-k coordinates (>^,i,.-t,i,.,.->^*i,,j -V,_,) are 
considered to be erased and derived from the k most reliable 
codeword coordinates ( j^^.Jfp , .^ ; i j ^i^t-,) "sing the 
parity check equations. 

For a non-MDS code, the n-k coordinates cannot 
always be solved from the parity cheek equations because 
the parity check matrix is not a Cauchy or Vandermondc 
matrix [17]. To obviate this problem, a slightly different 
order is defined {Xjj^,x^^,Xjj,^ jr,,,_,). 

The label o f the last coordinate 7j„_, is set equal to / i„_i 
and Xrj^^^ solved first by ftagging the fu-si parity check 
equation that contains and then subtracting this • 
equation from all other parity check equations containing 
^T,._,- Consequently, jr^ _̂  is now only contained in one 
equation, the first flagged equation. 

The label o f the next coordinate T}„-2 <S set equal to ti„-2 
and an attempt is made to solve by finding an 
unflaggcd parity cheek equation containmg Xrj^_^. In the 
event that there is not an unflagged equation containing 

^1-2 equal to *hc label o f the next most 
reliable bit, jif^__, and the procedure repeated until an 
unftagged equation contains x,,,,,. As before this equation 
is flagged that it wi l l be used lo solve forx^^_^ and is sub
tracted from all other unflagged equations containing 
jc^ The procedure continues until all o f the n - k code
word coordinates J:T).-.--*^T..i'-^n.-i'•••'•'^^» ^^^^ 
solved and a l l - / i e q u a t i o n s have been flagged. In 
effect, the least reliable coordinates are skipped i f they 
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cannot be solved. The remaining k ranked received coordi
nates arc scl equal to ('"rj,-''rji • ' ' i j i ^^^^ 
reliable order where K l > > | r „ J > • • • > |r^^_J 
and (.^ife.tt,,.-*^!,, •v^^_,) determined using the bit 
decision rule j : , , = l i f < 0 else x^j = 0. The flagged 
parity check equations are in upper triangular form and 
have to be solved in reverse order starting with the last 
flagged equation. This equation gives the solution to x^^, 
which is back substituted into the other equations and 
Xjj^^^ is solved next, back substituted and so on, with coordi
nate solved last. 

This codeword is denoted as x and the mapped version o f 
the codeword is denoted as c. As is well known in [ 19], the 
codeword most likely to be transmitted is the one denoted as 
Jc, which has the smallest squared.Euclidean distance, 0{x), 
between the mapped codeword, c, and the received vector 

n-l 

o ( i ) = x : ( o - ^ > ) ^ ( I ) 

D{x) < D{x) for all other codewords x. 
Equivalently, x is the codeword, afier mapping, which 

has the highest cross-correlation 

>'(i) = ^ r ^ . x c , (2) 

It is useful to define a binary vector z as 

i = A e . v (8) 

The maximum attainable correlation Kn^x is given by 

1=0 
(9) 

This correlation value occurs when there are no bit errors in 
transmission and provides an upper bound to the maximum 
achievable correlation for x. The correlation Y(x) may be 
expressed in terms o f Y^^x and ^ for 

equivalcntly 

> ' ( ^ ) = > ' n u x - 2 X ; - % x | -

>'(-^)=>'m.x- W 

(10) 

(11) 

where Ysix) is the shortfall from the maximum achievable 
correlation for the codeword x and is evidently 

(12) 

y{x) > Y{x) for all other codewords x. 
The decoder may be simplified i f the cross-correlation 

function is used to compare candidate codewords. The 
cross-correlation is first determined for the codeword x 

n-\ 

m - ) = X^O-xc, 
/•=(| 

(3) 

it is interesting to make some observations about Y{x). Since 
the summation can be carried out in any order 

n-l 
(4) 

and 

Jt-i 

K ( X ) = X : S X S + E S X S (5) 
j=0 i=k 

Considering the first term 

(6) 

This is because the sign o f ĉ ^ equals the sign o f 
r̂ ^ for j < k. Thus, this term is in'dependem of the code 
and (5) becomes 

7=0 j=* 
(7) 

Almost all o f the k largest received coordinates (all o f the k 
largest terms for an MDS code) are contained in the first 
term of (7) and this ensures that the codeword Jc, aflcr 
mapping, has a high correlation with r. 

A binary, (hard decision), received vector b may be 
derived from the received vector r using the bitwise 
decision rule hj= I i f ry < 0 else Ay = 0 for j= 0 to 
n - 1. It should be noted that in general, the binary vector 
b is not a codeword. 

Some observations may be made about the binary vector z. 
The coordinates ẑ ^ f o r J = 0 to (/r - I ) are always equal to 
zero. The maximum possible weight o f £ is thus n — k and 
the average weight is (/i - k)/2 at low E^^/N,, values. At 
high fb/A'o values the average weight o f z is imal l 
because there is a high chance that x is equal to the trans
mitted codeword. It may be seen from (12) that, in 
general, the lower the weight of z the smaller wi l l be 
Ys(x) and the larger wi l l be the correlation value Y(x). 

Since there is no guarantee that the codeword x is the 
transmined codeword, the decoder has to evaluate 
additional codewords since one or more o f these may 
produce a correlation higher than Jc. There are 2*— I other 
codewords, which may be derived by considering all other 
2*— I sign combinations o f fory = 0 lo k — \. For any 
of these codewords denoted as C/, the first icmi o f the cor
relation given in (7) is bound to be smaller since 

E 
7=0 

(13) 

This is because there has to be, by definition, at least one 
sign change o f c, ,,̂  compared to ĉ ^ f o r y = 0 to A - 1. 
In order for Y{Xi)' to be larger than Y{x), the second 
term o f the correlation Yl'!=k % ^ ^'i.nr ^^^^ 
bits from the solved parity check equations, must be 
larger than r^^ x plus the negative contribution 
from the first term. 

However, the first term has higher received magnitudes 
than the second temi because the received coordinates are 
ordered. It follows that codewords likely to have a higher 
correlation than x w i l l have small number o f differences 
in the coordinates x^,^ fo ry = 0 to Jt - I . As the code is 
linear, these differences wi l l correspond to a codeword 
and codewords may be generated that have low weight in 
coordinates^:^ fory = O t o * - I . These codewords arc rep
resented as X, and referred to as low information weight 
codewords since coordinates x,,^ for J= 0 to A - I form an 
information set. Thus, codewords Xj are given by 

x,=x (14) 
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and Xi arc codcword.vcho.ncn to have increasing weight in 
coordinates Xjj^ for j =0 to ^ - I as i is incremented. 
This means that for increasing / it wi l l become less likely 
that a codeword wi l l be found thai has higher correlation 
than the correlation o f a codcvvord already found. 

The difference in the correlation value /^ ( j f , ) as a func
tion o f Xi may be derived. First, the binary vector s, is 
given by 

Zi = bmx®Xi 

which may be simplified to 

Zi = z® XI 

The cross-correlation Y{Xi) is given by 

y=o 

equivalently 

(15) 

(16) 

(17) 

(18) 

The shortfall from maximum correlation, ^^( j f , ) , is evi
dently 

= 2 £ r , , ^ x | r , J (19) 

Substituting for zi gives >A(X,) as a function o f X j . 

> ' ^ W = 2 £ ( z , e i , , ; x | r ^ | (20) 
/=o * 

It is apparent that instead o f the decoder determining 
Y(Xi) for each codeword, A: , , it is sufficient for the decoder 
to determine Y^{xj) for each codeword Xi and compare the 
value with the smallest value obtained so far, denoted as 
>'^(jrmin), starting with Y^{x) 

>'ACv„,i„) = m i n { r ^ ( x ) | (21) 

Thus, it is more efficient for the decoder to compute the 
correlation (partial sum) o f the X / instead of deriving 
(x ® Xi) by solving / / / and computing the squared 
Euclidean distance. Since codewords Jf/ produce low weight 
in Zi, the number o f non-zero tcnns that need to be evaluated 
in (19) is typically (n - k)/2 rather than the n/2 terms o f 
(2), which makes for an efficient, fast decoder. Before (20) 
is evaluated, the Hamming weight o f Zi may be compared 
to a threshold, iv,h, and the correlation stage bypassed i f 
the Hamming weight o f Zi is high. There is an associated 
performance loss and results arc presented in Section 4. 

The maximum information weight M'info max necessary to 
achieve maximum-likelihood decoding may be upper 
bounded from Y^ix) and initially, updated by 
J'̂ iCĴ min) as decoding progresses, since 

y^i^i) 
m=0 

(22) 

The codewords .vr may be most efficiently derived from the 
G matrix corresponding to the solved / / matrix because the 
maximum information weight given by (23) is small. Each 
row, /. o f the solved G matrix is derived by setting Xjj for 

J=0 to A - 1, y # I and using the solved parity check 
equations to detcnnine Xj, for J = k to The 
maximum number of rows o^"the G matrix that need to be 
combined to produce x,- is Winh max-

In tcniis o f implementation, the incremental correlation 
Dorsch decoder can be realised in an efficient decoder struc
ture and this is depicted in Fig. 1. The low weight infor
mation vectors are generated by the revolving-door 
algorithm, which has the property that between two succes
sive combinations, there is only one element that is 
changed; one leaves and the other one enters the combi
nation [20. 21 ] . Therefore given a new codeword, the con-c-
lation value for the information portion can be easily 
computed by subtracting |ro„;| and adding where out 
is the coordinate that leaves and in is the coordinate that 
enters the combination. The correlation o f the parity 
check term can be easily computed by knowing the 
support o f (zjBxi^^j) for J = k \o n - I . This incremental 
correlation version o f the Dorsch decoder gives two levels 
o f perfonnance improvements and complexity trade-ofis. 
Firstly, it is obvious that the number o f processed low 
weight information vectors is directly proportional to the 
decodcr^s complexity, and also the higher the number o f 
processed low weight information vectors the more prob
able that the decoder wi l l fmd the maximum-likelihood 
codeword. An example o f this feature wi l l be discussed in 
Section 4. The second level o f performance trade-ofl" is 
given by H',h, the threshold for the weight o f z,-. The 
higher the weight of Z/, the less probable that this codeword 
is the maximum-likelihood codeword. One can select a 
value for »\|, and vectors z, that have weights higher than 
u'th w i l l be ignored and only sets o f low-weight information 
vectors w i l l be considered. From simulations, it is observed 
that the loss associated with this trade-off is insignificant, 
and the perfonnance gain can be large for a fixed number 
o f evaluated codewords. 

3 Number of codewords that need to be 
evaluated to achieve maximum l̂ikelihood 
decoding 

For each received' vector, the decoder needs to evaluate 
the correlation shortfall for the codewords Jf/ for information 
weights up to the maximum infomiation weight o f w'info max 
in order to achieve maximum-likelihood decoding. Tlie 
number o f codewords that need to be evaluated is a function 
o f the received vector. Not all o f the codewords having 
information weight less than or equal to max need be 
evaluated because a lower bound may be derived for 
Y^(Xi) in terms o f the coordinates o f the information bits, 
their total weight and the magnitudes o f selected coordi
nates o f the received vector. For an information weight o f 
**'info. y d x i ) is lower bounded by 

This is reasonably tight since there is a possibility o f at least ^ ' * T , ^ + ^ i * ^ < ^ (24) 
one codeword with infonnation weight Wi^fa max. for which 
all o f the coordinates o f the binary vector z, corresponding 
to the parity bits o f Jt/ are zero. Correspondingly Wi^fo mnx 
is the smallest integer such that 

and 

m=0 
> > ' A ( ^ ) (23) m=0 

482 

(25) 

lETCommun.. Vol. I. No. S. June 2007 



Received vccior. r 

i 

Revolving door combination generator. 
Produces low infomuiion weight vector. 

Bct*ecBC*h tomtmawwi. Ihcic i i only one <leiaeni 

wtwTUi in i% i fm *hkti fns*^ in lo the ( o m b i t u i B i n . 

Generate hard decision vector, b 
Reorder r und b 

Solve H matrix using the k most 
reliable information symbols. 
This produces x and z = b I X 

Bxit if 
\vt('/:) = 0 

infnrmviOB 

Generator matriji 
Produces X; 

ci>ik»u] ;.vcs 

Ifnumtxr of 
correlalions 
exceed the 
pre-specified 
number 

I Wt{z®Xi) I 

KASTCORREI-ATOR 

Y, = Y, t- {|r„,| - |i 

Y, 

Y^M 

FAST CORREUVTOR 
" - ' / . 

Nvit IFLJ only ttie tap\ 

{•• "?'••,) '* 

Ratik 
codewords/ 
correlations 

^ I ' ' . « - . . . - . I > ^ ' a ( x } 

Most likely 
codeword 

Rg. 1 Structure of the efficient Dorsch decoder 

whereymin(»'info) is defined as the lower limit for j to satisfy 
(25). The minimum number of codewords that need to be 
evaluated as a function o f the received vector A^(r) is 
given by the total number o f combinations 

m=0 ^ 

* - y m i n ( " 0 - I 'mm' 
m 

(26) 

For many short codes the minimum number of codewords 
that need to be evaluated is surprisingly small in comparison 
to the total number o f codewords. 

4 Results for some powerful binary codes 

The decoder can be used with any linear code and best 
results are obtained for codes, which have the highest 
known for a given code-length n and number of infor
mation symbols k. The best binary codes are tabulated up to 
length 256 in Brouwer's database [22] (the updated version 
of the database is available online at http:/Avww.win.tue.nl/ 
"•aeb/voorlincod.html). Non-binary codes, for example, 
ternary codes o f length up to 243 symbols and GF(4) 
codes o f length up lo 256 symbols arc also tabulated. 

A particularly good class o f codes are the binary self-
dual, double circulant codes first highlighted in a classic 
paper by Kariin [23]. For example, the (24, 12. 8) extended 
Golay code is included since it may be put in double circu
lant form. There is also the (48, 24, 12) bordered double cir
culant code, based on quadratic residues of the prime 47 and 
the (136, 68, 24) bordered double circulant code based on 
quadratic residues o f the prime 67. These codes are extre
mal and are doubly even, only having codeword weights 
that are a multiple o f 4, and in these cases it is necessary 
that the code-lengths are a multiple o f 8 [24]. For higher 
code rates o f length greater than 256 the best codes are tabu
lated in [17], and some o f these include cyclic codes and 
Goppa codes. 

4.7 (136, 68, 24) Double circulant code 
t 

This code is a bordered double circulanl code based on the 
identity matrix and a matrix whose rows consist o f all cyclic 
combinations, modulo 1 o f the polynomial b{x) 
defined by 

/,(.,) = , + ^ + / + x' + .r'" + .t'^ + x'* + .r'" 

H_.v" + . v " +x'' -h .r" +x''+x''+x'' 

+ +;,*^ +^56 +^5P + ,60 + ^62+^M ^.^65 

(27) 

The frame error rate (FER) o f this code using the extended 
Dorsch decoder with a maximum number of codewords 
limited to 1 x 10^ is shown in Fig. 2. Also shown in 
Fig. 2 is Shannon's sphere packing bound [ IS] offset by 
the loss for binary transmission [25], which is 0.19 dB for 
a code rate o f 1/2. 

It may be seen from Fig. 2 that the performance o f the 
decoder in conjunction with the double circulant code is 
within 0.2 dB o f the best achievable performance for any 
(136, 68) code at 10"^ FER. Interestingly, there is a signifi
cant number o f maximum-likelihood codeword errors, 
which have a Hamming distance o f 36 or 40 from the trans
mitted codeword. This indicates that a bounded distance 
decoder would not perform very well for this code. At the 
operating points of Eb/^o equal to 1.5 and 3.5 dB, the 
probability o f the decoder processing each received vector 
as a maximum-likelihood decoder is shown plotted in 
Fig. 3 as a fijnction o f the number o f codewords evaluated. 
A typical, worst case, practical operating point for this 
code is Eb/^o equal to 3.5 dB. It is evident thai the higher 
the Eb/No value, the less wi l l be the number o f codewords 
required by the decoder to evaluate. Another illustration o f 
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this point is given in Fig. 4, which shows for each received 
vector, the average number o f codewords processed by the 
decoder before the maximum-likelihood codeword is found 
as a function o f £b/A^o- For example, at E^/N^ value o f 
2.5 dB. on average, approximately 250 codewords are pro
cessed per received vector to find the maximum-likelihood 
codeword. 

O f course to guarantee maximum-likelihood decoding, 
all 2*̂ " = 2.95 X 10^" codewords need to be evaluated by 
the decoder. Equation (22) has been evaluated for the 
double circulant (136,68.24) code in computer simulations, 
at an EjNo o f 3.5 dB, for each received vector and the 
cumulative distribution derived. Fig. 3 shows that by evalu
ating lO ' codewords per received vector, 65% of received 
vectors are guaranteed to be maximum-likelihood, 
decoded. For the remaining 35% o f received vectors, 
although maximum-likelihood decoding is not guaranteed, 
the probability is very small that the codeword with the 
highest correlation is not the transmitted codeword or a 
codeword closer to the received vector than the transmitted 
codeword. This last point is illustrated by Fig. 5, which 
shows the FER performance o f the decoder as a function 
o f the maximum number of evaluated codewords. 

The detailed operation o f (he decoder may be seen by 
considering an example o f a received vector at E^/No o f 
2.5 dB. The magnitudes o f the received coordinates, 
ordered in their solved order, is shown in Fig. 6. In this par
ticular example, it is not possible to solve for ordered 

coordinates 67 and 68 (in their order prior to solving o f 
the parity check matrix) and so these coordinates arc 
skipped and become coordinates 68 and 69, respectively, 
in the solved order. The transmitted bits are normalised 
with magnitudes I and the a o f the noise is : ir l .07. The 
shift in position o f coordinate 69 (in original position) to 
67 (in solved order) is evident in Fig. 6. The positions o f 
the bits received in error in (he same solved order is 
shown in Fig. 7. It may be noted that the received bit 
errors arc concentrated in the least reliable bit positions. 
There are a total o f 16 received bit errors and only 2 o f 
these errors correspond to the (data) bit coordinates 11 
and 34 o f the solved G matrix. Evaluation of I c o d e w o r d s 
indicates that the minimum value o f ^^(jfmin) is — 13.8 and 
this occurs for the 640th codeword producing a maximum 
correlation o f ~ I26 .2 with Kmax =^ 140. The weight o f 
Zm\n is 16 corresponding to the 16 received bit errors. 

In practice it is not necessary for YiJiXi) given by the 
partial sum. that is, (19), to be evaluated for each codeword. 
In most cases, the weight o f the binary vector Zi is suffi
ciently high to indicate that this codeword is not the most 
likely codeword. Shown in Fig. 6 are the cumulative prob
ability distributions for the weight o f s, for the case where j : , 
is equal to the transmitted codeword and the case where it is 
not equal to the transmitted codeword. Two operating 
values for EjNo are shown: 3.5 and 4 dB. Considering 
the decoding rule that a weight 29 or more for Zi is unlikely 
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Rg. 3 Probability of a received vector being maximum likeli
hood decoded as a function of number of evaluated codewords 

for the (J36, 68. 24) code 

Fig. 5 Average number of codewords evaluated in order for a 
received vector to be maximum likelihood decoded as a function 
ofEJN^for (136. 68. 24) code 
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to be produced by the transmitted codeword means that 
95.4% of candidate codewords may be rejected at this 
point and that the partial sum (19) need only be evaluated 
for 4.6% of the candidate codewords. In reducing the 
decoder complexity in this way, the degradation to the 
FER performance as a result o f rejection of a transmitted 
codeword corresponds to ~ 3 % increase in the FER and is 
not significant. 

4.2 (255, 175, 17) Euclidean geometry code 

This code is an Euclidean geometry (EG) code originally 
used in hard decision, one step majority logic decoding 
[4J. In [26J, it is shown that finite geometry codes can 
also be applied as low-density parity check (LDPC) codes 
using belief propagation, iterative decoding (27, 28], The 
(255, 175, 17) code is a cyclic code and its parity check 
polynomial p(x) may conveniently be generated from the 
cyclotomic idempotcnts [29] and is given by 

p[x)=l+x+x'+x-'+x"+ +x"+x"+ x" 

+ + . t ' " + + x'™ (28) 

In cases where the parity check matrix o f the code is 
sparse, the performance o f the incremental correlation 
Dorsch decoder can be improved by utilising the extrinsic 
information obtained from each parity check equation cor
responding to each row o f the parity check matrix of the 

code. For each received vector, the belief propagation 
algorithm with a single iteration is executed and the a pos
teriori probabilities at the output of the belief propagation 
decoder arc taken as the input to the incremental correlation 
Dorsch decoder. The (255,175, 17) EG code has a relatively 
sparse parity check matrix, and by taking into account the 
extrinsic information obtained in this way, an improvement 
in FER as much as 50%, at EJN^ = 3.5 dB, has been 
observed. Fie. 9 shows the FER performance o f this EG 
code obtained using this combined technique in which the 
maximum number o f correlations was set to 5.5 x I 0 ^ 
Also shown in Fig 9 is the FER performance obtained 
using the belief propagation decoder on its own with 100 
iterations, and the sphere packing bound offset by the 
binary transmission loss. 

The benefits o f extrinsic information were first proposed 
by Fossorier in [30J for decoding LDPC codes, in a more 
complicated arrangement in which the order-1 or order-2 
OSD algorithm is executed after every iteration o f the 
belief propagation decoder. 

As a general point, it should be noted that the effect o f 
utilising extrinsic information in the Dorsch decoder is to 
reduce, on average, the number of codewords that need to 
be processed in order to find the maximum-likelihood code
word. However, for the occasional received vector, utilising 
the extrinsic information introduces more errors in the 
k most likely bits than not utilising the extrinsic infor
mation. Accordingly, the advantages o f utilising extrinsic 

•0 H 

Fig. 7 Bit error positions for the same received vector and same 
order as that .shown in l-ig 0 

10* 
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Fig. 9 FER of the (255. 175. 17) EG code 
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infonnation depends upon the.particular code being used 
and the maximum number o f codewords processed per 
received vector. Extrinsic information should not be utilised 
i f the the maximum number o f codewords is such that near 
maximum-likelihood performance is already achieved by 
the decoder. In this case, i f extrinsic infonnation is utilised 
the performance o f the decoder wi l l be degraded. 

4.3 (513, 467, 12} Extended binary Goppa code 

Goppa codes are frequently better than the corresponding 
BCH codes because there is an additional information bit 
and the Goppa code is-only one bit longer than the BCH 
code. For example the (512, 467, 11) binary Goppa code 
has one more information bit than the (511, 466, 11) BCH 
code and is generated by the irreducible polynomial 
1 + x ^ - f whose roots have order 31, which is relatively 
prime to 511. The c/^in of the binary Goppa code is equal 
to twice the degree o f the irreducible polynomial plus I 
(17], and is the same as the (511, 466. I I ) BCH code. 
The Goppa code may be extended by adding an overall 
parity check, increasing the rfmin »o 12. 

The FER perfonnancc of the extended code is shown in 
Fig. 10 and was obtained using the incremental correlation 
decoder. Also shown in Fig. 10 is the sphere packing bound 
offset by the binary transmission loss. It can be seen that 
the realised performance o f the decoder is within 0.3 dB 
at 10"" FER. 

4.4 (1023, 983, 9) BCH code 

This code is a standard BCH code that may be found in 
reference text book tables such as [4], This example is con
sidered here in order to show thai the decoder can produce 
near maximum-likelihood performance for relatively long 
codes. The performance obtained is shown in Fig. 11 with 
evaluation o f candidate codewords limited to lO'̂  code
words. At 10"^ FER, the degradation from the sphere 
packing bound, oflset for binary transmission, is 1,8 dB. 
Although this may seem excessive, the degradation o f 
hard decision decoding is 3.6 dB as may also be seen 
from Fig. 11. 

5 Extension to non-binary codes 

The extension o f the decoder to non-binary codes is rela
tively straightforward and for simplicity binary trans
mission o f the components o f each non-binary symbol is 
assumed. Codewords are denoted as before by Xj but 

Solim* f «fcing Bound (D»i«f¥t 
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E ^ d B 

Fig. 10 FER of the (511 467. 12) binary Goppa code 

486 

SnhMpokingOounajDmuy) —j: 
tntrtminul coirataucn OoiKti dseodn' a 

Fig. 11 FER of the (1023. 983. 9) binary BCH code 

redefined with cocflicienis, y .̂, G GF(2"') 

= (yoLz-^^o- y\.iX\^yi:r^i y.-u-^n-x) (29) 

Tlie received vector r with coordinates ranked in order o f 
those most likely to be correct is redefined as 

(30) 
/=o 

so that the received vector consists o f n symbols, each with 
m values. The maximum attainable correlation Kmax is 
straightforward and is given by 

n-\ m-l 

j=0 1=0 

The hard decided received vector r. is redefined as 

H-l 

7=0 

(31) 

(32) 

where Oj is the GF(2'") symbol corresponding to sign(r/j) for 
/ = 0 to m - I . 

Decoding follows in a similar manner to the binary 
case. The received symbols are ordered in terms o f their 
symbol magnitudes k^y 'L where each symbol magnitude 
is defined as 

'i. 5= Z! '•/•I, (33) 

The codeword x is derived from the k coordinates x^j whose 
coefficients v^^ are the GF(2'") symbols corresponding to 
sign(o.n,) for / = 0 to m - I ; fory = 0 to A - I and then 
using the solved parity check equations for the remaining 
n ~ k coordinates. 

The vector z, is given by 

Zi = b ®xmxf mod GF(2'") (34) 

which may be simplified as before to 

Zi = z® xi mod GF(2'") . (35) 

Denoting the n binary vectors pijj corresponding to the n 
GF(2'") coefficients o f z, 

nx,)=Y^,-Y^{x^) (36) 
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Rg. 12 FER ufthe,(63. 36, U) GF(4) BCH code 

where Y^{Xi), the shortfall from maximum correlation is 
given by 

In the implementation o f the decoder, as in the binary case, 
the Hamming weight o f the vector z, may be used to decide 
whether it is necessary to evaluate the soft-decision metric 
given by (37) for each candidate codeword. 

5 . 7 Results for the (63, 36, 13) GF(4} BCH Code 

This is a non-binary BCH code with the generator poly
nomial g{x) defined by roots 

combination of hard decision threshold decoding followed 
by partial sum correlation was also described, which 
enables practical decoders to trade-off performance 
against complexity. 

The decoder for non-binary codes was shown to be 
straightforward for the binary transmission channel and an 
example given for a GF(4) BCH code. It is readily possible 
to extend the decoder to non-binary modulation by exten
sions to the incremental correlation o f (37) although this 
inevitably involves an increase in complexity. Future 
work wi l l address this area. 

Another interesting conclusion is just how well some 
codes in Brouwer's table perform with maximum-
likelihood decoding. In particular, the (136, 68, 24) 
double circulant, extremal, self-dual code is shown to be 
an outstanding code. 

In the opinion o f the authors, the implementation o f this 
type o f decoder coupled with the availability o f powerful 
processors wil l eventually herald a new era in the appli
cation of error control coding with the re-establishment o f 
the importance o f the optimality o f codes rather than the 
ease of decoding. Certainly this type o f decoder is more 
complex than an iterative decoder, but the demonstrable 
performance, that is achievable for short codes, is virtually 
the same as the sphere packing bound. 
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Results on binary cyclic codes 

C. Tjhai and M. Tomlinson 

Thirty-se\cn binary cyclic codes with minimum distance higher than 
those of ihc best linear codes given in Drouwcr's lable are presented. 
Among these neu- cyclic codes is the quadratic residue code of length 
199, for which is provided an answer to Ihc long-open question 
regarding its minimum distance. Four new binary linear codes are 
also obtained by applying Construction X and Construction Y l to 
those new cyclic codes. Overall, after taking into account the 
extended, punctured and shortened codes, there arc 869 binary 
linear code*: which are improvcmenL; to Orou\^cr*s lower-bound. 

Inimduction: Let C be a binary linear code with parameters | / i . A", d], 
where n, k and d represent the length, dimension and minimum 
Hamming distance of the code, respeciivcly. The minimum distance 
of a code is an important parameter since it determines the error-
correcting abilities of the code. Brouwcr has constructed a database 
containing the lower-bounds and upper-bounds of minimum distance 
of linear codes over finite-fields (updated version available at 
http://www.win.tue.nl/-aeb/voorlincod.htmI, accessed 20 December 
2006) {I J. The lower-bound corresponds to the largest minimum 
distance for a given n and k that has been found and verified to 
date. Consiruciing codes which are improvements over those in 
Brouwer's database is an ongoing research activity in coding theory. 
Recently, tables of lower- and upper-bounds of not only codes 
over finite-fields, but also quantum crror-correciing codes, have 
been published |2f. These bounds for codes over finite-fields, which 
are derived from MAGMA [^J, appear to be more up-to-date than 
those of Brouwcr. 

This Letter presents some results on binary cyclic codes 
(195 < n < 255) which have higher minimum distance than Brouwer s 
lower-bounds, denoted by dsnuMer, and also in many cases the lô ver-

• bounds in \2\, for the same n and k. In addition to the new codes, this 
Letter also answers a long-standing open question regarding the 
minimum distance of quadratic residue (QR) codes of length 199. 

Idempotents and cyclic codes: A polynomial 0{x) G ̂ zli^^ - I) is 
called an idempotent if it satisfies the properly tf(jf)'= 0(jf). The use 
of idempotents in the study of cyclic codes is well-established see e.g. 
fJ. .^j. The basis of this theory is the primitive idempotents. Any 
cyclic code may be described by a unique idempotent, which is a sum 
of primitive idempotents. 

A cyclic code C of odd length n has generator and pariiy<heck-
polynomials, denoted by g{x) and /i(jr), respectively, where g{x)h{x) = 
0 (mod y — I). Let fi be a primitive nth root of unity and let A be a set 
containing all distinct (excluding conjugates) exponents of (i. The 
polynomial jr" — 1 can be factorised into irreducible polynomials ,/i(jr) 
over GF(2), y - I = fl/cA./i(-f)- For notational purpose, we denote the 
irreducible polynomial yK.r) as the minimal polynomial of f f . For each 
f,(x), there exists a corresponding primitive idempoteni ^X^). which can 
be obtained as follows 

where 6 = dcg{f^x)) (mod 2) and the derivative is taken over GF(2). The 
notation deg(a(x)) denotes the degree of a{x). Given a scl T C A and 
an idempoient 0{x) = S ^ f 0,(xl a cyclic code C defined by 0(x) has P„ 
for (f r . as roots of its h{x) and it follows that A(:r) = gcd(0(jr), / * - ! ) , 

Let r C A \ {0}, (r(j:) = c TO^x) and 0{x) = Oo(x) + 0'(x). Given 
C with idempotent 0{x), there exists an[n,k-\,(f] expurgated cyclic 
code, C . which is dcfmed by idempoteni (/(x) and wt(c) a 0 (mod 2) 
for all c C C, where wi(j:) denotes the weight of vector x. For 
convenience, we call C the augmented code of CT. 

Evaluation procedures: Consider an [n, k- I. d"] expurgated cyclic 
code C , let the set r = { f , . F ; F J where, for 1 <J < r, C 
A\^0} and Ei,rydcg(/"KJ)) = * - 1 . For each fy e P, we compute OV) 
and construct C. Let C be a generator matrix of the augmented code. 
C, and without loss of generality, it can be written as 

where C is a generator matrix of C and the vector v is a coset of in C. 
Using the arrangement in (2), we evaluate d' by enumerating codewords 
c C C from C . The minimum distance of C, d, is simply min,.{J, 
\M(c+v)} for all codewords c enumerated. We follow the codeword 
enumeration algorithm of Chen [f>. to evaluate d. Let rfg,„„,.Tr and 
'/fl.w/i.c. denote the lower-bounds of Brouwer for linear codes of the 
same length and dimension as those of C and C , respectively. During the 
enumerations, as soon 2S d < domu^rr aid ^ < fluntu'rrr> 

the e%'aluation is 
terminated and Ihe next Vj in P is then processed. However, if 
d<di,,„ui^„ and d'>d'g„,„^^^ only the evaluation for C is discarded, 
These procedures continue until improvement is obtained; or the set in 
I' has been exhausted, which means that there does not exist In. k-\] 
and In, k] cyclic codes which are improvements to Brouwer's lower-
bounds. In cases where it is not feasible lo determine the minimum 
distance of C using a single computer, we switch to a parallel version 
using grid computers. 
Table I : New binary cyclic codes 

n k d r. 0(0 

*66/67 42/41 40/40 
|«ol + Oj + 0, + 0 , + 

*6R/69 40/39 39/38 
|f . ,I + W,+» j + 0 „ + 

17277 195 •73 3R 37 
Oa + 0%+0-, + Oi^ + 

Onl Oii+0,-, 

*74/75 38/37 36/36 

78 36 35 
f , + H, + », + fl„ + 

13237042705-
30OS72JI362-
535070452551 

199 99/100 32/31 2K/2K Iflol + Oi 

6727273 205 
'60 48 46 «, »• * OM 

6727273 205 *6I 46 44 no + Oj+On + On 
3346667657 2IS •70/71 46/46 44/44 |0ol + f t + 0 | . + 0 i j 

3705317547055 223 74/75 48/47 46/45 (Ool + 0* + fl<. 
3460425444467-
7544446504147 229 76 48 46 f . 

67(M4 36621 233 •5K/59 60/60 56/56 [Oa\ + 0, + 0,^ 

150153013 
241 

'49 68 65 Oo + Ot + Oj, 
241 

73 54 53 + + f l , + 0:j 

48/49 76/75 75/72 
[Ool 0*3 *• + 

• * - « « S + f l | l 1 + 0|J7 

50/51 74/74 72/72 
[0o\ + 0^ + 0t, + 0n + 
O^j + Oit+Vsi+Ouj 

52/53 72/72 71/68 
[Of,] + 0, + n^ + On + 

54/55 70/70 6S/68 

435 255 56/57 6H/68 67/65 
I0OI + 0T + 0J7 + 0 „ + 
0,t^^•0„ + 0„ + 0^2^ 

58 66 64 
0j + 0i, + 0»i + 04t + 
0*T + 0„+O,i+0,„ 

60 66 64 
f . J + 047 + « 3 1 + 0 . .7 

62/63 66/65 64/63 
[Ool+ 0 , 1 + 0 : , + 0 * 7 

+ 0i, + 0„,+Oti+0ti 
+ 0ii9 + 0i:7 

64/65 1 64/63 62/62 
|0o) + 0|, + 0<i 

+ 0tl7 

(2) 

f/ew binary codes: Tabic 1 presents the results of the search on new 
binary cyclic codes for 195 </i < 255 described eariier. Note that the 
polynomial ni(jf). which is given in octal with the most significant bit 
on the leO, is the minimal polynomial of fi. In many cases, the entries 
for C and C are combined in a single row and this is indicated by 
where the parameters a and b arc for C and C, respectively. 
The notation '[Oa]' indicates that the primitive idempotent Ooix) is 
to be excluded from the defining idempotent of C . In this Letter, some 
of the improvements coincide with the lower-bounds in f2|. For 
completeness, they arc included in this Letter and arc marked by *t'. 

In the late 1970s. computing Ihe minimum distance of extended QR 
codes was posed as a research problem [4 ) . Since then. Utc minimum 
distance of the extended QR code for prime 199 has been an open 
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. question. For Ihis code, the bounds of ihe minimum disuincc was 
16 -32 (41 and the tower-bound was improved (o 24 («|. Since 199 s 
— I (mod 8), [he extended code is doubly-cven self-dual and its 
automorphism group contains a projective special linear group, which 
is doubly-transitive. As a result, the minimum distance of the (199, 100] 
QR code is odd, i.e. b 3 (mod 4). and hence J = 23, 27 or 31. Owing 
to (he cyclic property and the rate of this QR code ((<(. we can assume 
that 0 codeword of weight dhas maximum informalion weight of [^/2]. 
If a weight d codeword docs not satisfy this properly, there must exist 
one of its cyclic shifts that docs. After enumerating all codewords up to 
(and including) infotmation weight l3ofthe[I99, 100) cyclic QR code 
using arid computers, no codeword of weight less than 3i was found, 
implying that d is indeed 31. Without exploiting tlie propeny that J s 
3 (mod 4), additional^ ) + ( 15 )codcwords would need to be 
enumerated to establish the same result. Accordingly, we know that 
thcit: exist (199. 99. 32) QR and (200. 100.32} extended QR codes. By 
applying Construction Y l (9) 10 the minimum weight codeword of the 
dual of the [200. 100. 32] extended QR code, a (168. 69. 32] new 
binary linear code is obtained. 

In the case of /i =205. in addition to a (205. 61, 46]^ cyclic code, 
there also exists a [205, 61.45] cyclic code which contains a [20S. 60. 
48]* cyclic code as its cvcn-weighl subcode. Applying Construction X 
['>] to this pair of nested cyclic codes usinga[?. I . a u x i l i a r y code, a 
[208. 61, 48]* code, which is an improvement to Brouwcr*s lower-
bound, is obtained. 

It is interesting that many of the improvements in this Letter arc 
contributed by low-rate cyclic codes of length 255 and there arc 16 
cases of this. Funhermore, it was found that the dual codes of the (255, 
65. 63] cyclic code and that of its (255, 64. 64] even weight subcode 
both have minimum di.<;iance of 8. Applying Construction Y l to the 
minimum weight code%h'ord of the dual, we obtain (247, 58, 63] and 
(247. 5 7 . 64] new binary linear codes. It is also interesting to see the 
existence of (255, 5 5 , 70] and [255, 63, 65] cyclic codes, which are 
superior to the BCH codes of the some length and dimension. Both of 
these BCH codes have minimum distance 63 only. 

To summarise, the four binary codes derived from cyclic codes in 
Table I, which are improvements to Brouwrr's lower-bound, arc (168. 
69, 32], (208, 61, 48]*. (247, 57, 64] and [247, 58. 63]. Given an [n, k, 
d] code, where d>dB„,u^..r. it is possible to obtain more improvements 
by recursively extending (annexing parity-check), puncturing and/or 
shortening the original code. For example, consider the (168. 69. 32] 
Construction Y l code above: by annexing parity-check bit (168 +1, 69, 

32). for 1 < i < 3 , new codes are obtained; by puncturing a [ 167,69.31 ] 
new code is obtained; by shortening [168-1. 6 9 - / . 32], for I < /<5 , 
new codes are oblamed. More Improvements arc also obtained by 
shortening the extended and punctured codes. Overall, there are 869 
and 621 binary linear codes obtained which arc improvements to the 
lower-bounds of Brouwer and those in respectively. 

Acknowledgments: This work is partly funded by an Overseas 
Research Students Award Scheme. The high throughput computing 
resources provided by the PlymCRlD team of the University of 
Plymouth are gratefully acknowledged. 

^ The Institution of Engineering and Technology 2007 
20 December 2006 
Electronics Letters online no: 20073898 
doi: I0.r049/el:20073898 

C . Tjhai and M. Tomlinson {Fixed and Mobile Communicotioixs 
Research. University of PWrnoutb. Plymouth. PL4 HAA, United Kingdom) 

B-mail: ctjhai@plymouth.ac.uk 

References 

1 Brouwer. A.E.: 'Bounds on the size of linear codes' in PIcss VS.. and 
HulTman W.C. (cds): 'Handbook of Coding Theory' (Ulscvicr. North 
Holland. 1998). pp. 295-461 

2 CiBSsl. M.; 'Code tables: bounds on the parameters of \-arious typct of 
codes'. hltp://www.codctablcs.de. accessed 20 December 2006 

3 Bosma, W.. Cannon. J.J.. and Playousi, CP.: 'The Magma algebra system 
1: the user language'. J. Symb. Comptii.. 1997. 24. pp. 235-266 

4 MacWilllams, F.J.. and Sloanc. N.J.A.: 'The theory of error-correcting 
codes' (Nonh-lloUand. 1977) 

5 Van Lint. JJI.: 'Introduction 10 coding theory' (Springer-Verlag. 1999. 
3rd cdn.) 

6 Chen. C.L.: 'Some results on algebraically structured error-correciing 
codes'. PhD dissertation. University of Hawaii. USA. 1969 

7 Chen. C.L.: 'Computer results on the minimum distance of some binary 
c>clic codes', IEEE Trvns. Inf. Theor\x 1970. 16. (3). pp. 359-360 

8 Grassl. M.: 'On (he minimum distance of some quadratic residue codes'. 
Proc. IEEE Int. Synip. Infonnation Theory. Sorenio. Italy. June 2000. 
p. 253 

9 Sloane, N.J.. Reddy. S.M., and Chen. C.L.: *Ncu- binary codes*. IEEE 
Tmns. Inf Theory^ 1972. IT-IS. pp. 503-510 

ELECTRONICS LETTERS 15th February 2007 Voi 43 No. 4 



New linear codes derived from binary cyclic codes of 
length 151 

C. Tjhai , M . Tomlinson, M . Grassl. R. Horan, M . A h m e d and M . Ambroze 

Abstract: The minimum distance of all binary cyclic codes of length 151 is deiemiincd. Almost all 
o f these cyclic codes have the same parameters as the best linear codes given in Brouwcfs database. 
A nested chain o f linear codes is derived from these cyclic codes and some new binary codes are 
obtained by applying Constructions X and X X to pairs of codes in this chain. Good candidates for 
nested codes can also be obtained by enlarging the cyclic codes of high minimum distance. In total, 
there are 39 new binary linear codes that have a minimum distance higher than codes previously 
considered to be the best line:ir codes. 

1 Introduction 

Let C be a binary linear code with parameters [n, k, (/\ where 
n, k and d represent the length, dimension and minimum 
distance {d„^) of the code, respectively. The minimum 
distance o f a code is an important parameter as it 
determines the error-correcting abilities o f the code. 
Brouwcr [IJ has constructed a database containing the 
lower-bounds and upper-bounds o f minimum distances for 
linear codes [Note 1]. The lower-bound corresponds to the 
largest minimum distance for a given n and k thai has been 
found and verified to date. While there are codes in 
Brouwer's database whose minimum distance is equal to the 
upper-bound, particularly those codes with very low and 
very high code rates, many of them have a minimum 
distance thai is considerably less than, the upper-bound. 
Constructing error-correcting codes which are improve
ments over those in Brouwer's database is an on-going 
research activity in coding theory. 

A pair o f cyclic codes is nested i f all roots of one code arc 
contained in the other one. Here the roots arc those of the 
generator polynomial. By appropriate arrangement of their 
roots, it is possible to build a chain of nested cyclic codes o f 
the same length [21. In the other words, cyclic codes may be 
partitioned into a sequence of cyclic subcodes C| D C2 D 
C} ... C,y such thai a cyclic code C, contains C,+i and, in 
general, Cj_i has a higher minimum distance than d . A 
good example o f a chain of c>'clic codes is the primitive 
BCH codes, provided that the roots of the BCH codes, arc 
chosen such that they start f rom a fixed position, i.e. a [31, 
26, 3] BCH code conuiins a [31, 21, 5] BCH code, which 
then contains a [31. 16, 7] BCH code and so on. 

It has been shown that the application of Construction X 
[3. 4] can produce many good linear codes, see [2. 5 . 6). In 
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fact, many of the best known line;»r codes are obtained by 
applying Construction X [ I ] . This construction, which 
requires a pair o f nested codes and an auxiliary code, pads a 
non-zero codeword of an auxiliary code to each codeword 
o f the sub-code and a zero codeword to e;ich codeword not 
in the sub-code. Another variation o f this construction is 
known as Construction X X [?|, which requires two pairs o f 
nested codes and two auxiliary codes, and makes use o f 
Construction X twice. In order to produce good new codes 
using these consiructions, component codes which a m be 
arranged into a nested form and have a high minimum 
dislancc are required. The cyclic codes o f length 151 
are special as all o f the irreducible factors of .v'^' - 1, apart 
from 1 + .V, have a fixed weight equal to 15. Having a fixed 
weight implies that quadratic-residue and duadic codes can 
be constnictetl at length 151, and these families of codes are 
well known to contain powerful half-rate error-correciing 
codes. In terms of computing the minimum distance of 
cyclic codes, the length 151 is just within the curreiit 
computational reach, and we find that many cyclic codes of 
length 151 have an exceptionally high minimum distance. 
Since cyclic codes can be easily arranged inio a nested form, 
the cyclic codes of length 151 are clearly suitable candidates 
for component codes. In this paper, we present 39 new' 
binary linear codes with minimum distances higher than the 
previous best codes contained in Brouwer s database. Iliesc 
new codes are constructed by applying Constructions X and 
X X to nested codes derived from cyclic codes o f length 151. 
The results have been verified independently using the well 
known computer algebra package, M A G M A [S]. 

2 Cyclic codes of length 151 

The techniques o f polynomial factorisation over a finite 
field are well established. A cyclic code o f length n is dcfmcd 
by its generator polynomial, denoted as g{x), which can be 
obtained by taking the product o f the irreducible poly
nomials that are factors of . v ^ - 1. For binary codes o f 
length / ! = 151, we shall choose as our primitive 151st root, 

where /? = £ r " is a root of the polynomial nix) = 1 + 

Note I: An updated version is available online at hilp;//w\w.win.lue.niraeb/ 
voorlincod.html 
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• Lei a polynomial c{x) = J ^ - " J codeword o f a 
cyclic code o f length n. I i is well understood thai the 
pcrmuiation a : i '-^ fti, where fi is an integer prime to H, 
produces an equivalent c>'clic code 14). With respect to 
the pcmiuuition <T, it was found that there are 214 
inequivalent cyclic codes o f length 151. 

There exist a number o f eHTicient algorithms to evaluate 
the d,„i„ o f a cyclic code without having to determine the 
weight of e:ich codeword. The first elTicient method is 
due to Chen (9], which is also described in [10] and [ft]. Tlie 
algoritlini is as follows. Let C be (he systematic generator 
matrix o f a cyclic code, H be a vector o f length k over G F (2) 
and wl (u) be the weight, of vector it. Since (7 is systematic, a 
codeword c can be written in the form o f f = {u\p), where p 
is the parity vector o f length n-k. for i v = 1,2 k, 
enumerate all codewords that satisfy wi(ii) = w by taking all 
possible sums o f u- rows in C. A t each stage, the minimum 
weight o f all codewords c enumerated so far yields an 
upper-bound on <i,^„, denoted as d^f,- The lower-bound, da, 
is equal lo \{\v+ 1 ) " / ^ ] , where \o] is the smallest integer 
greater tiian or equal to a. The algorithm terminates when 
dib > '46, and then dub is the true minimum distance of the 
cyclic code. 

In [11], Coppersmith and Seroussi presented a variation 
o f the above method, in which the enumeration o f 
codewords is done between some minimum distance 
estimates di and dz- In this case, they have lo enumerate 
the codewords whose wt(H) is in the range o f [d\k/n\ and 
[ ^ 2 * / " ] . where [a\ is the greatest integer less than or equal 
to a. The wciglit d\ can be easily obtained (for example 
from the BCH-bound for cyclic codes or the square-root 
bound for duadic/quadraiic-residue codes) and rfj has to be 
chosen such that d\ < d„i„ < di. 

We implement an algorithm which uses the best features 
o f the aforementioned methods and we use the revohing-
door algorithm | I 2 . I3 | in enumerating combinations. The 
d„,i„ o f all cyclic codes o f length 151 is then evaluated, and 
Table I tabulates the optimum ones. Here, the term 

•Table 1: Optimum [151, k, d] cyclic codes 

k d dacH dBrouMct 

150 2 2 2 
136 5 3 5 

135 6 4 6 

121 8 4 8 
120 8 4 9 

106 13 7 13 
105 14 8 14 

91 17 8 17 

90 18 8 18 

76 23 9 23 

75 24 9 24 

61 31 10 31 

60 32 10 32 
46 31 17 34 

45 36 18 36 
31 47 19 47 

30 48 20 48 

16 60 . 37 62 

15 60 46 64 
1 151 151 151 

optimum cyclic code refers io a cyclic code with the largest 
f/„,u, for a given length and rate. In cases where there is more 
than one optimum code, only one is chosen. Table 1 shows 
that the lower-bound of given by the BCH-bound 
(thcul is very poor and the true of almost all o f these 
cyclic codes is as large as that of the best known linear codes 
given in Brouwcr's database (^/ftr^j^irr)-

3 The new binary codes 

Let Ci =(// , ku di] and C2 =:[H,^2.^/21 be a pair o f nested 
codes, where C 1 C C 2 . Given an auxiliary code, C3 = [«3, 
k},^^], where ki=k2-k\. Construction X produces 

C = (« + / i j i k2, min(rf|, dz + dj)]. The codeword o f the 
resulting code can be partitioned in the form o f j o k j l , 
where c; is a codeword o f C,. Since Ci C C2, w-e can partition 
C2 into cosets o f C|, i.e. C2 = (Ao+Ci )U(6 |+ .C i )U . . . U 
(A j+C | ) , where j = 2*̂  - I and A/ is a vector o f length n. 
Given C2, cy is a zero codeword of C3 i f wt{A,)=:0 or a non
zero codeword o f C3 otherwise. 

Construction X X , on the other hand, requires two sub
codes and two auxiliary codes. Let C| = [H, k\, d\l C2 = 
[/I. A:2, d2] and C3 = [n. A j , rfj] such that C C | and 
C 3 C C 1 . Let C2nC3 be denoted by C4 and let the two 
auxiliary codes be C5 = [«', ki - ki, ds\ and = 
k\ - ky, d(\. Construction X X produces C = (n-f n'+n", k\, 
min(rf4, d2 + f/e, 3̂ + ^5. rf| + f/s + '^6)1- The resulting 
codeword can be partitioned into the fonn o f 
\cMy\. The vector \x\y\ is icjIO] i f c, € C2\c4, |0|c6| i f 
ci € Ci\Ca, or |0]0] othcrvvise, where c, denotes a non-zero 
codeword o f C; and the notation c e C,\Cy means that 
C; C Ci and c is a codeword of C/, but not o f Cy. 

The techniques used to obtain the candidate codes for 
Constructions X and X X are presented in the following 
Sections. 

5.7 Using a chain of nested codes 
It is possible to build a chain of cyclic codes such that alt 
roots o f the higher-rate codes arc contained in the lower-
rate codes [2]. It is necessary to order the roots 
appropriately such that all cyclic codes in the chain have 
optimum dn{„. For all cyclic codes in Table I , whose 
generator, (/(A), is divisible by I +x, an ordering o f roots, 
excluding the conjugate roots, shown in Table 2, results in 
an optimum chain arrangement. Given C,- C C/_| 
2 < / < 10, we can take the non-c>'clic subcodes, such that 

Table 2: Order of fi in an optimum chain of [151, llf/, d j cyclic 
codes 

ki di Roots of grUt, excluding conjugate roots 

1 150 2 

2 135 6 

3 120 8 

4 105 14 f p' 
5 90 18 / ) " 

6 75 24 If p' p" p" p'' 
7 60 32 p' p" p' p'' 
8 45 36 f p' f p'' p" 
9 30 48 If p' p" "̂ p'' p° 

10 15 60 p' p' p' /?« 
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Table 3: New binary codes frorn construction X; Ci and C2 
are from the chain of nested codes 

c, C3 C 

(151, 60, 32) 1151, 72, 241 123, 12. 7) 1174, 72, 31) 

1151, 45, 361 1151, 60,32) 120, 15, 3) 1171, 60, 35) 

Ihcrc cxisls [\5\,k,d\, linear codes for Ar, + ) < k < ki-\ -
) with, > (/,_|. We ihcn have a chain of nested |)51,/r, rf] 
linear codes for 1 < A < 15). 

Each combination of pairs of codes in the (15), k, d] 
chain is a nested pair. In order to obtain a new code, each 
pair, C\ and C2, is combined using Construction X with an 
auxiliary code C3 obtained from Brouwer's database, which 
is a code of icngth /13 and dimension ky with the highest d„an 
currently known. The resuiting code and the best code 
currcniiy loiown. for the same code length and dimension 
arc compared to sec i f a larger ^/„t^ code has been obtained. 
Some of the new codes obtained, which are improvements 
on the best codes currently known, as reported in Brouwer's 
database, are tabulated in Table 3. 

3.2 Improved subcodes 
In the case when the difTerence A-3 of the dimensions of the 
codes C2 and C| is small, ^2- minimum distance of 
C2 obtained f rom a chain o f nested codes, can be 
unsatisfactory. We can improve ^2 by augmenting C\ with 
a vector v o f length n. In finding a v ihai can maximise the 
(Imin the enlarged code, we have adopted, the following 
procedure. 

Choose a code C\ = (//, rfi] that has a sufTicicntly high 
minimum distance. Let G denote its generator matrix in 
systematic form. We generate a vector v which satisfies the 
following conditions: t>, = 0 for 0 < / < A - 1, where d, is 
the /th element o f r; wi(u) > f / i and wi ( i ' 0 Gr)>di for all 
r € {0, 1 , . . . , ^ - I } , where Cr is the rth row vector of G 
and © denotes the st:mdard binary vector addition. The 
vector u is then appended to G as an additional row. 
Although the base code is cyclic, the enlarged code is not, so 
the evaluation method for cyclic codes can no longer be 
used. We therefore include the improved Zimmermann 
algorithm [6], which is described below, into our procedure 
in order to evaluate the d„^ of the enlarged axle. This 
algorithm requires a set o f reduced-echelon generator 
matrices. Assuming that there are m of these matrices 
G\ .... G"\ they may be produced as follows. 

Table 4: New binary codes from construction X; C2 is an 
augmented code of C\, a cyclic code 

Starting with C*. we perform the Gauss-Jordan elimina
tion so that (j=\ly\A\\. It is worth mentioning that, during 
the Gauss-Jordan elimination process, column permutation 
is allowed. CIe;irly, the matrix / j , has rank r, = k. Next, the 
sub matrix A\ is transformed into the reduced echelon form 

Table 6: New binary codes 

Cy C3 C 

(151, 76, 23) [151, 77, 201 (3, 1. 31 1154, 77, 231 

(151, 61,31) 1151, 62, 27] 14, 1. 4] 1155, 62, 31] 

n k d Construction 

169 58 35 34 shortening (171, 60, 35) 

170 58 36 35 extending [169, 58, 35] 

170 59 35 34 shortening 1171, 60, 35] 

171 59 36 35 extending |170, 59, 35) 

171 60 35 34 construction X (Table 3) 

172 60 36 35 extending [171, 60, 35] 

153 62 29 28 puncturing (155, 62, 31) 

154 62 30 28 Puncturing (155, 62, 311 

155 62 31 28 construction X (Table 4) 

156 62 32 29 extending (155, 62, 31] 

157 62 32 30 extending [155, 62, 31] 

158 62 32 30 extending (155, 62. 31) 

159 62 32 30 extending (155, 62, 31) 

160 62 32 30 extending (155, 62, 31) 

161 62 32 31 extending (155, 62,31) 

159 63 31 30 construction XX (Table 5) 

160 63 32 30 extending [159, 63, 31) 

161 . 63 32 30 extending [159, 63, 31) 

162 63 32 31 extending (159, 63, 31] 

168 66 31 30 shortening [174, 72, 31) 

169 66 32 31 extending (168, 66, 31] 

169 67 31 30 shortening [174, 72, 31) 

170 67 32 31 extending (169, 67, 31] 

170 68 31 30 shortening (174, 72, 31] 

171 68 32 31 extending (170, 68, 31] 

171 69 31 30 shortening (174, 72, 31) 

172 69 32 31 extending (171, 69, 31) 

172 70 31 30 shortening (174, 72, 31) 

173 70 32 31 extending (172, 70, 31) 

173 71 31 30 shortening (174, 72, 31) 

174 71 32 30 extending (173, 71, 31] 

175 71 32 31 extending (173, 71, 31] 

174 72 31 30 construction X (Table 3) 

175 72 32 30 extending [174, 72, 31) 

176 72 32 31 extending [174, 72, 31) 

154 77 23 22 construction X (Table 4) 

155 77 24 22 extending (154, 77, 23] 

156 77 24 22 extending (154. 77, 23] 

157 77 24 23 extending (154, 77, 23]' 

'This code also be obtained by shortening the (160, 80, 24] code 
constructed in (14) 

Table 5: New binary codes from construction X X starting from the cyclic code C2 O C j 

Cy C2 C3 C5 C 

1151, 63, 23) [151, 62, 27) (151, 62. 271 (151, 61, 31) 14, 1, 4] (4. 1, 4) [159, 63. 31) 
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A\ ~ Ihl^iY where A lias rank ri < r | . and we now have 

0 h Aj 
B 

0 0 

where /', is a / r - r , dimensional identity matrix. The 
process tlicn continues by transforming Ai into a reduced 
echelon form ^ 2 ~ [ '3M3)> which has rank r j < and so 
on until all o f the n coordinates have been exhausted. A i the 
end o f this process, we have a set o f matrices G\ .... G'" 
with ihc corresponding ranks r | , . . . . r^, where r, +1 < r, for 
I ^ / < m. 

Let w be a vector of length k. Starting from u':=: 1, 
enumerate all codewords with wi(w) = w by taking the sum 
of all possible u- rows of G* for 1 < / < m. For each C . we 
have an improvement o f max(0, (tv - i - l ) - { k - /-,)) to ihc 
lower-bound of rfm^, denoted by (iu,. In addition to 
we also compute the upper-bound, rf^, which is the 
minimum-weiglil codeword currently available. As in the 
case of cyclic codes, ihc revolving-door algorithm is used to 
enumerate all possible w rows o f the generator matrices. 
This evaluation continues with = w -H I and terminates 
whenever < di, in which case we choose a dilTerent u 
and restart the evaluation from iv - I , or d^^ > di and 
d^ii < di,, which means that we have an improvement of the 
minimum distance o f C2, Note ihat it may be possible to 
augment this code further while maintaining a minimum 
distance that is greater than di. 

Note that all matrices G\ for I < /" < m, that do not 
contribute lo throughout the enumerations can be 
omitted for computational efficiency. 

Using the above-mentioned approach, we found linear 
codes [151, 77. 20| and | I 5 I , 62, 27] which have higher 
minimum distances than the corresponding codes obtained 
from a chain of nested cyclic codes. Tlicse two codes are 
obtained starting from the cyclic codes [ I S l , 76, 23] and 
[151,61,31], i^pectively. Thcrx;fore, [ 151, 76, 23] C [ 151. 77. 
20] and [151. 61, 3 l ] c i l 5 l , 62. 27]. Table4 shows the 
parameters o f the new codes derived from applying 
Construction X. 

When searching for the code [151, 62, 27], we exploit the 
fact that the code [152, 61, 32], obtained by extending 
the cyclic code [151, 61, 31], is doubly even. We chose the 

additional vector t . such that extending the enlarged code 
[151, 62, f / J yields again a doubly-even code. This implies 
the congruence di = 0, 3 mod 4 for the minimum distance o f 
the enlarged code. Hence it is sunicicni to establish a lower-
bound dify — 2S, using the algorithm described above, to 
show that di ̂  27. We also found two different codes 
C 2 - I I 5 I , 62, 271 and C3=-(I51, 62, 27], such that C, -
C 2 + C 3 ^ [ 1 5 l . 63, 23] and C2nC3=[15 l , 61, 31). Using 
Construction X X , we gel a code [159, 63, 31], see Table 5. 

Table 6 lists all 39 new codes that are improvements on 
the codes given in Brouwer's database. Some o f these codes 
are obtained by adding additional redundancies, shortening 
and puncturing the new codes given in Tables 3, 4 and 5. 
Tlie current lower-bound of Brouwer is also included for 
comparison. The generator matrices o f all new codes in 
Tabic 6 arc available online at htlp:,7www.tech.plyni.ac.uk; 
sec/rescarch/satcen/codes/. 'lite minimum distances o f C2, in 
Table 4, C|, Ci and C3, in Tabic 5, have been verified 
indep)endently using M A G M A . 

4 Performance evaluation 

The maximum-likelihood ( M L ) performance o f a given 
linear code depends on its spectral properties and minimum 
distance. While many iteratively dccodable codes, such as 
turbo-codes and low-density parity-check (LDPC) codes, 
have good error performances, their minimum distance is 
poor and, as such, an early error floor is often observed in 
the perfomiancc o f these codes. In this Section, we evaluate 
the soft-decision decoding performance o f one o f the many 
new codes. Although only one code is simulated, the error 
performance of all of the new codes should be closer to the 
optimal than that o f the previous codes due to the improved 
minimum distance. 

Figure 1 shows the frame error rate (FER) obtained from 
simulating the new rate 1/2 code of length 154. In the 
simulation, binary phase-shift key (BPSK) signalling is 
employed and a reliability-based sofl-decision decoder j l51 
is used. The FER, perfomiance is compared against the 
spherc-packing-bound (SPB) [16. 17] o f the same code rate 
and block length. The classical Shannon limit, which is 
defined on the bit error rate (BER), is not used, because it is 
not an accurate meiisurc due to the assumptions o f error-
free transmission and unconstrained block length. As 
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depicted in Kig. 1, the new [154, 77. 23J code has 
outstanding performance. Compared to the SPB, the 
performance ai 10"' ' FI:R is approximately 0.4dB out 
and within 0.2dB i f loss due to BPSK transmission is taken 
into account. It is worth mentioning that almost all 
decoding errors observed during the simulation were due 
to more likely codewords. By definition, a more likely 
codeword is the codeword output by the decoder which has 
a closer Euclidean distance to the given received vector than 
the transmitted codeword and, as such, an M L decoder 
(if one exists) will also output the same codeword. This 
implies that the simulated FER performance of the 
(154, 77,231 code is empirically close to the M L perfonnance. 
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Idempotents, Mattson-Solomon polynomials and 
binary LDPC codes 

R. Horan, C. Tjhai, M . Toml inson , M . Ambroze and M , A h m e d 

Abstract: It is shown how to construct an algorithm to search for binary idempotcnts that may be 
used to construct binary LDPC codes. The algorithm, which allows control of the key properties of 
sparseness, code rate and minimum distance, is constructed in the Mattson-Solomon domain. 
lExamples arc given o f the codes constructed that include equivalent codes to the Euclidean and 
Projective Geometry codes in addition to some new codes. Codes having cycles o f length 4 can also 
be constructed and are demonstrated to have good performance under iterative decoding. 

1 Introduction and background 

The use of idempotcnts in the construction o f cyclic error 
correcting codes is well established and the resulting 
literature is extensive ( f o r example, sec [1 , 2 or 3]). 
The basic building blocks for this theory are the primitive 
idempotenis. Any cyclic code may be described by a 
unique idcmpotent and this idcmpotent is a sum of 
primitive idempotenis. For binary c>'clic codes, efficient 
algorithms exist for the calculation of these primitive 
idempotcnts. 

Another way o f constructing idempotents in the binary 
case is by using cyclotomic cosets and this property was 
exploited, in a iieoent article [4), by four o f the current 
authors. This was also the approach adopted by Shibuya 
and Sakaniwa in [5], but their aim was to use idempotenis 
to construct parity check matrices for LDPC codes that 
have no cycles o f length 4 in their factor graphs. A t the 
heart o f their technique is a lemma that is a variation of a 
result used by Weldon [6], for the construction o f difference 
set cyclic codes. Using this lemma and a subsequent 
theorem, they were able to simplify the problem of 
determining which idcmpotent that is constructed, using a 
single c>'cIotomic coset, does not have c>'cles of length 4. 
'Picy then extended ihis theory to more than one cycloiomic 
cosei. 

This approach to the construction o f LDPC codes 
has the great advantage o f simplicity, the parity 
check matrices depend only upon the correct choice o f 
cyclotomic cosets and these are very easily calculated, 
liowcvcr, the minimum distance and the code rale were 
not controlled in this construction method. Also, whilst 
the absence o f four cycles is a desirable objective in the 
construction o f LDPC codes it is not mandatory, since there 
are some good codes that do not have this properly, e.g. see 
[7J and [Sj. A n example o f such a code is included in this 
paper. The code rate is an important property of codes but, 
as Sliibuya and Sakaniwa admit in their conclusion, the 
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codes thai ihcy construct arc 'expected to have a large 
minimum distance at the expense o f rate'. Tlic minimum 
distance o f a code is a crucial property but there is no 
indication in [5| o f how cither a single cycloiomic coset, or 
combinations o f more than one cyclotomic coset, should be 
chosen to guarantee that the code constructed has a large 
minimum distance. 

In order to address the question of how to choose 
idempotents thai will produce good LDPC codes we 
propose an entirely dirTereni route to thai of [4] or [51. As 
in those articles, wc shall deal exclusively wiih binary cyclic 
codes. Making efTcciive use o f the Matison-Solomon 
polynomial, we produce an algorithm that not only allows 
us to choose, in a systematic way, idempotents with low 
weight, and therefore a correspondingly sparse pariiy check 
matrix, but also with the desirable features that the 
corresponding codes have a high code rate and a large 
minimum distance. 

2 Binary idempotents 

Let F= Gh\l), It be an odd positive integer and >" be the 
splitting field for.v^ - I over F. Let a G ^ b e a primitive/Mh 
root o f unity and let TT^A) be the polynomials in :F\x\ o f 
degree < « - I . I f a{x) G Tlx) then ihc map <5>: T— T is 
defined by 

(a>(fl))(z) = ( I ) 

and <D(/3) is ihe Malison-Solomon polynomial of A (see (1|). 
We use X and r for the polynomial variables to distinguish 
between the polynomials in the domain and codomain o f 
<I>. I f o is multiplication of polynomials mod (.v" - 1) and 
• is defined on T^r) by the rule (E*^/^) • ( E ^ ^ ^ ) = 
(Y^Qibif) then it is well known [1,3], that 

0 : ( 7 - , + . o ) - . ( r , + . * ) 

is an isomorphism of rings, in particular it is an 
isomorphism o f the additive groups. 

By the term idempoteni, we shall mean a polynomial 
e(x) € ( r + . 0 ) such that e(x) o e{x) ^ tixf = e{x). \( S{x) 
is the subset o f T\x) consisting o f polynomials with 
coerTicicnts in GF{1) (binary polynomials) and E(x) is the 
subset o f T(x) consisting o f idempotents, both of these 
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subseLs are adclilive subgroups o f Tt.v). ii^is easy lo show 
(see 111) thai 

0 :(E(x),+)-{${:),+) 

(2) 

(3) 

are both isomorphisms and from this it is obvious that 

<1>: {Six) n E(x), +) - (£-(2) n S(z). +) (4) 

is also an isomorphism. 
Suppose that ii{x) is a binary idempoient used to 

construct a parity check matrix for a cyclic code. The 
parity check matrix is constructed from the /J-cyclic shifts of 
n{x} [9], and so for the resulting code to be a LDPC code, 
ii(x) must have low weight. 

I f h{x) = gcd(y - l , u W ) and g{x) = {.x" - \)/l,{x), 
then g{x) is the generator o f the cyclic code. I f the generator, 
(j{x), has degree « - k, the dimension of the code is k and 
the larger the value of / : , the better the code rate. Since g{x) 
is a divisor of .r" - I , all of the zeros of ^(.Y) arc /ith roots 
o f unity, and there are n - k of these. Furthermore, 
gcd((7(.v),/((.v))= I and .t" - I = h{x)g{x), so that the 
number of distinct /ith roots o f unity, which are also roots 
of i{(x), is k. The dimension o f the code is therefore the 
number of /ith roots of unity, which are also roots of ii{x). 

The BCH bound o f the code is determined by the 
number of consecutive powers o f a, taken cyclically (mod/i), 
which are roots of (j(x). For the reasons outlined in the 
previous paragraph, this is precisely the same as the number 
of consecutive powers o f a, taken c>'clically (mod/i), which 
are not roots of u(.v). 

The important features o f the code are therefore 
determined by: 

(a) the weight of the idempotent n{x), 

(b) the number of «th roots o f unity that are roots of i/(.r), 

(c) the number of consecutive powers of a which are not 
roots of u{x). 

Take u{x)eS{x)nE{x) and let 0{u)=:O be its MS 
polynomial. The inverse mapping 

<!>-' : ( 5 ( z ) n £ ( z ) , + ) - {E{z)nS{x).+) (5) 

is defined as follows: I f A{z)~[<i>{a)]{z) is the MatLson-
Solomon polynomial of the polynomial a{x) = 00 + oix + 
• • + then, for I = 0 , . . . , n - 1, 

fl, = i/l(a') 
n 

(6) 

(see [1]). Let h{z) = gc6{0{z),f - I ) and let 
/ ( z ) = (z" - l ) / / i (2) . The three key properties relating 
to the idempotent i^x), listed above, are easily gleaned from 
its Mattson-Solomon polynomial 0{z), and / (z ) , as follows. 

2.1 The weight of u(x) 
The weight of i^.v), denoted as wt(u(A)), is the number o f 
nth roots of unity that are zeros o f / ( z ) . To sec this note 
that /(aO = 0 i f and only i f 0{o^)= I , since idempotents 
take only the values 0 and I in ^ . Now u = a>"'0 and 
the coefiicients of u{x) = r / Q - f U | j r H are 
given by 

H, = % ' ) m o d 2 for / = 0 , . . . , n - 1 (7) 

2.2 The zeros of u(x)-
From the definition of the MS polynomial, ( I ) . 

(8) 

and the number of zeros of I/(A), which are roots o f unity, 
is clciirly /; - w\{0{z)). 

2,3 The BCH bound of the code 
The BCH bound of the code is the largest number o f 
consecutive powers of a which are not roots of u(x), i.e. the 
number o f consecutive 1, taken cyclically (mod/i), such that 
//(ot')= I . From (8), this is the largest number of consecutive 
non-zero coefficients in 0, taken cyclically (mod/i). 

Using this information, a systematic search for idem-
poients can now be made in increasing order o f weight 
(sparscness). with accompanying knowledge of the number 
of roots that are //th roots o f unity and the corresponding 
BCH bound. This algoritlim is constructed in the Matison-
Solomon domain. 

Let the decomposition of z" - I into irreducible (over 
F=Gf{2)) polynomials be z " - l = / , ( r ) / 2 ( . - ) . . . / X r ) . For 
/ = I / . l e t Jt,-(z) = (z" - \ ) / f i { z ) and let 0,{z) be the 
associated primitive idempoteni (see [ I ] or [3]). These are 
displayed below in an array, together with other idem
potents 

1/2 ( -V) 02{2) h(z) 

u,{x) 0,(z) f . { z ) \ 

(9) 

(cf. (6)). Thus Ui= I precisely when f{<x^ = 0, giving wt(//(.v)) 
as the degree of the polynomial f{z). 

Here ui(.v).W2(.v) uX-v) are the idempotenLs whose 
Mattson-Solomon polynomials arc 0i{z),02{z), ...,0,(z), 
respectively. Let / C { 1 , 2 , . . . , r} and let u, 0 and / 
be defined as 1/ = J Z / g / " " ^ = Z!,€/'^' ""'^ / ( ^ ) = 
n , e / / ( r ) . From the properties o f primitive idempotents, 
i f h{z) = gcd(0(z) .z"- I ) then it follows that 
gcd(/(z),/i(z))= 1 and - I = f{z)h{z). The idempotent 
ti will now have the following properties 

wt{,/) = ^ d c g ( y ; ) (10) 

number o f zeros o f u = n - wl{0) ( I I ) 

The BCH bound is determined from 0(z) as explained in 
Section 2.3. 

Since methods for finding the 0,- and fi arc well 
documented (see e.g. [10]) a search algorithm can be built 
around this obser\'ation to find a suitable weight idempo
tent with a known number o f zeros and a known BCH 
bound. The rows o f the array (9), are ordered by the degree 
of the polynomials, i.e. d e g ( / ) < deg(y;+i) for all /. and a 
search a in be made in increasing order of weight. When a 
successful outcome has been obtained, only at this stage is it 
necessary to evaluate the inverse Fourier transform to find 
the corresponding idempotcnt. A l l of the information 
required will already be known. 

3 Design and implementation 

I f / denotes the number of binary irreducible polynomials o f 
z" - I , the complexity o f an exhaustive search algorithm is 
0{2'). We reduce this search complexity by targeting the 
search on the three key parameters: I) sparscness o f the 
parity-check matrix, 2) code rate and 3) minimum distance. 
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3.1. Sparseness of the parity-check matrix 
OifTerencc-set cyclic codes were introduced by VVeldon [6]. 
These codes have the desirable property that the parity 
check equations are orthogonal on all b iu and have no 
cycles o f length 4 in their factor graphs. A necessary but not 
sufTicieni condition for this is that i f v{x) is the polynomial 
that generates the parity check matrix then WI(L"( .V) ) must 
satisfy the inequality 

wt ( i ; ( .v ) ) (wt ( t ;W)- I ) < / T (12) 

where n is the code length. Since the weights o f the 
idempotents ii{x) are related to the degrees o f they; by (10), 
the inequality of (12) becomes 

V / 6 / 
(13) 

Wc defme the parameter 6 that is used either to restrict 
codes to be orthogonal on all bits (<5 = 0) or to introduce 

cycles o f length 4 in their factor graph (<5>0). In this case 

^ d e g ( . / ; ) < ^,.+ 6 (14) 

Via 

While all codes that have no cycles o f length 4 satisfy 
condition (12), there arc some codes that satisfy this but do 
have cycles of length 4. These latter codes can be excluded 
by evaluating the difTercnce enumerator polynomial given 
by |4, 6) 

V{u{x)) = u(xHx-') 

Note that Vinix)) is evaluated with real cocfPtcients. 

(15) 

3.2 Code rate 
Tlic code rate is directly proportional to the number o f 
roots of U(A"). I f we let R,^ represent a minimum desired 
code rate then, following ( I I ) , we can refine the search 

Table 1: Examples of the constructed codes having no cycles of length 4 

[n,k\ 

121,111' 

163,371' 

173.45]* 

193,471 

1105,531 

1217,109) 

1255.1751' 

1273,191]* 

(341,2051 

[465,233] 

(511,1991 

1511.259] 

1819,4351 

1819.4471 

11023.7811' 

11057.8131' 

11387.7831 

(1533,8231 

(1971.11051 

(2047.1167] 

(2255,11911 

(2325,1373] 

(3741,22291 

(4095,33671' 

(4161,34311' 

(5461,37811 

UxV+J(^*x'^x3Vx«'+x»+x"^x^"-^x'»+x'»Vx'^+x«^*x™*x««+x«^ 

Ux=+V"*xS^x^*x"VV"+x^"+x"%x«°*x^'^x'"*x^+x^**^" 

Ux'Vx'^x*s*x^'-.x"»+x'"-.x«^x^ 

U x + A x ' * x ' S x 3 V * ^ + * « 2 + x ™ * x ' " + x ' " + x ^ % x » ' + x » « + ^ + x * * + x » V x ^ ' ° 

l + x ^ V x « * V " * x " W + x ^ " + x 2 « V x » ° + x ' » + x * " + x * » 
Ux^-V+*^+x'^x3V*«^-x"^*204^^^^^^n 

Ux+x3+x'*x'Vx3Vx°+x"'+x»*+x2«'+x^+x«»+;t5"+x^+x''" 

0,1,3.7.15,31,52,63.105,122,127,211,245,255,268,322,340.398,423,491,511.537.572.645,672,681,710, 
797.847,866,944.983 

0,1.3,7,15,31,54.63.109.127,138,219,255.277,298.338.348,439,452,511,528,555,597.677,697,702,754, 
792.879,905,924.990.1023 

0.1.3,7,15,31,63.127.246,255,346,493.511.550,588,660,693,816.866,968,987,1023,1101,1126,1177. 
1256.1321 

0.3,9,21,45.93,189,246,300.381.456,495,508.603.765.888,915.993,1019,1209 

0.1,3.7.15,31,63.76,127.153,255.307,492,511,615,656,985,1023,1231.1313 

0.1,3,7.15.26.31.53,63.107,127,215.255,431.511.770,863.1023.1036.1408.1541,1727 

0.1.3,7,15.31,63,127,140.255.281.511.563,598,1023.1127.1197,1426,1840,2047 

0.1.3,7.15.31,63,108,127.217.255.435,511,524.871.1023.1049,1084.1162.1216,1424,1704.1743,1770, 
1874,2014,2047.2099.2169 

0.1.3,7,15.31.63,127.136,255.273.354,511.547,642,709,1023.1095,1285.1402.1419,1870,1938,2047, 
2191,2571,2805.2839 

0.1,3.7.15.31.40,63.81,127.163,234.255,272,327,410,469,511.516.545.655,732.821.866,939,1023,1033, 
1091.1152,1206.1311,1414,1465,1564,1586,1643.1733,1768.1866,1879,2047,2067,2164,2183.225^ 2305. 
2413,2480.2623,2650.2754,2829,2840.2931.2980,3129.3173.3287.3372,3424,3467,3537,3733,3759 
0,1,3.7,15,31.63,127.255,284.306.356.398,424,511,569,613,713,750,797.849,1023.1116,1139,1227, 
1386.1427,1501,1550,1595,1604,1699,1760,1846,2042,2047.2080,2222,2233,2258,2279,2292,2455,2638, 
2773,2855,2882.2960.3003.3101,3120,3191,3209.3226,3399.3521,3560.3640,3693.3860,3900.4010.4030, 
4085,4095 

0,1.3,7.15,31.63.76.127.153.255,307,511.578,615,754,776,1023.1157,1196.1231,1509,1553,2047,2144. 
2315.2393.2463,2730,2768,3019,3107.3118,3328,3802,4095,4114.4289.4394,4631,4787,4927 

6 

9 

10 

8 

8 

9 

17 

18 

16 

10 

19 

13 

13 

16 

33 

34 

28 

21 

21 

23 

21 

30 

29 

65 

66 

43 

^Equivalent to 
'Equivalent to 

the Type-l 2-D projective geometry code (121 
the Typo-I 2-D Euclidean geometry code (121 
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bound to 

w t ( 0 ) < ( i (16) 
cohsirucidd codo a 

sphcro-packing-bound -t BPSK » 

3.3 Minimum distance 
Let d be the lowest desired minimum distance and let n, be 
the largest number of consecutive non-zero coerficicnLs, 
taken cyclically (mod /i) . of 0. Then, following the discussion 
in Section 2.3, we restrict the search algorithm to those 0 for 
which the BCH bound applies 

r o > d - \ (17) 

When a cyclic code has no cycles o f length 4, i.e. M( .V) is 
orthogonal on each symbol position o f the codeword, 
then the minimum distance is simply 1 + w t ( i / ( A ' ) ) [ I I . 
Theorem 10.1]. 

We develop an elTicient, but exhaustive, recursive tree 
seiirch based on the above bounds. The flowchart of this 
search algorithm is shown in Fig. 5 in Appendix 8.1. 

4 Code example and performance 

Since the algorithm is an exhaustive search, the code 
construction method presented in this paper is able 
to produce, in addition lo new codes, equivalent codes to 
the Euclidean and projective geometry LDPC codes [12]. 
Some of ihe codes found using this technique, which have 
no cycles o f length 4 in their factor graph {S = 0), arc 
presented in Table I . The girlh o f these cyclic codes is 
at least 6. Owing to space limitation, for codes with n larger 
than 1000, only the exponents of the idempotent ii{x) 
arc given. In addition, some good performance cyclic codes 
that do have cycles of length 4 (5>0) are listed in Table 2. 
Here, the column A ,̂. represents ihc number of cycles of 
length 4 per variable node in their factor graph. As the 
codes are cyclic. Â ^ is the same for each variable node. Note 
that d„u„ in these tables refers to the minimum distance of 
the code. 

Table 2: Examples of good performance cyclic codes that 
have cycles of length 4 

151,26] Ux3+/+x"+x"+j<^VA"+x=*+x"+y^x« 10 150 

163.441 U A V V X ' ^ X 2 V A ^ ' + X « + X ' V > » 4 > ' ^ 8 294 

1117,721 Ux+x^+y+x»+VVx"+x^+x^+y"+;<^+ 12 72 

1127.841 1+x+x^+x^+Ax"+x32+x^+x^+;(«+ 10 126 
^Vx^+x'^+x^'o+V'^ 

l l i roughout the paper, it is assumed that the codewords 
are transmitted across a noisy communication channel with 
binary phase-shifl keying (BPSK) modulation and the 
receiver uses a modified belief propagation decoder that 
approximates the maximum-likelihood decoder [13). The 
algorithm o f this decoder is outlined in Appendix 8.2. In 
using the modified belief propagation decoder, the following 
assumptions are used: maximum number o f iterations is 
100, w is set to H and n reorders the coordinates of each 
received vector in an increasing order o f reliability (sec 
Appendix 8.2). 

Figure I shows the frame-crror-rate (PER) performance 
realised for the [127,84.10] cyclic code that has cycles of 
length 4. Despite having cycles o f length 4, the performance 
of this code is outstanding and, at 10~^ FER, it is within 
0.2 dB o f the sphere-packing-bound constrained for binary 
transmission. 

Rg. 1 Freune error perfornuince of ihe (127,84.10} cyclic code 

Figure 2 shows the performance o f two [255.175] codes, 
one consirucied using our method (equivalent to the 
Euclidean geometry code) and the oiher one is an irregular 
LDPC code constructed using ihe progrcssive-edge-growih 
(PEG) algorithm [14]. We can sec that the cyclic code, 
which achieves a coding gain of around 0.4 dB compared 
lo the equivaknt irregular code, performs approximately 
within O.ISdB of the spherc-packing-bound constrained for 
binary transmission at 10"^ FER. 

irregular code * 
consiAictod codo • 

ro-packmg-bound + BPSK • 

o 10-2 

EJN., dB 

Fig. 2 Franw error perfornumce of the (255. 1751 cwles 

The construction method described in this paper can 
produce LDPC codes with high minimum distance and 
therefore they do not suffer f rom an error-floor. Figure 3 
demonstrates the performance of the [341,205,16] cyclic 
code, which is inferior to the equivalent irregular PEG code 
in the low signal-to-noise ratio (SNR) re^on, but the 
irregular code exhibits an early error floor owing to its low 
minimum disUince, which is 6. 

Some of the codes listed in Table I have smaller 
minimum distances than the other codes having ihe same 
code length n. Under iterative decoding, the codes with 
lower minimum distance can exhibit belter performance 
owing to improved convergence. As an example, consider 
the [819,435,13] and [819,447,16] cyclic codes whose 
performances are depicted in Fig. 4. Although their code 
rates are comparable, there is a significant difference in their 
iterative decoding performance where the lower minimum 
distance code has an advantage at low EbjNo values. It has 
been observed that the error-floor exhibited by the 
[819.435,13] cyclic code is attributable lo minimum distance 
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irregular codo.* 
consiructcd codd • 

sphcro-packing-bound • BPSK » 

EJN.. dB 

Rg. 3 Frame error performance of the [341,205/ codes 

10" 

10"' 

10-2 

10-5 h-

10" 

[819.435.13] * 
[819.447.161 o 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rg. 4 Frwtie error perfornumce of the [819.435.131 wid 
(819.447.161 cyclic codes 

error events, which implies that a maximum-likelihood 
decoder will also suffer from the same error floor. 

5 Conclusions 

A method o f constructing binary cyclic codes from the 
finite-field transform (Mattson-Solomon) domain is able to 
produce a large number o f codes that have high minimum 
distance and code rate. Codes equivalent to all o f the 
Euclidean and projective geometry LDPC codes 112) can 
also be generated using this method. The constructed codes 
have sparse parity check matrices and thus are applicable as 
LDPC codes. Owing to their cyclic property, these LDPC 
codes have ii parity check equations instead o f n - k 
equations as in the case of random LDPC codes. With these 
extra parity check equations to iterate wit l i , the perfor
mance o f the iterative decoder is improved. 

In designing cyclic LDPC codes o f length the described 
method allows one to increase the minimum distance o f the 
code by combining additional irreducible factors o f z" - I 
which, in turn, reduces the sparseness o f the parity check 
matrix. The ability to control the sparsencss o f the parity 
check matrix is a trade-off against the minimum distance o f 
the code. In some cases, the constructed codes exhibit cycles 
o f length 4 and still have good performance using iterative 
decoding. 

Simulation results have shown that the relatively short 
cyclic codes have outstanding performance and are superior 
to the equivalent irregular LDPC codes constructed using 
the PEG algorithm. The high minimum distance o f these 

cyclic codes ensures the absence o f an early error floor in 
their perfomiance. We have also shown that there arc 
exceptions to the myth that all codes that have cycles of 
length 4 in their factor graph are bad under iterative 
decoding. 

To realise the best pcrfonnancc o f all o f these cyclic 
codes, a modified belief propagation decoder has been used 
(see Appendix 8.2). This was used for all o f the cydic codes 
constructed including those codes having no c>'cles of length 4. 
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8 Appendix 

8.1 Code search algorithm 
Figure 5 illustrates the flowchart of the efficient, but 
exhaustive, recursive code search algorithm developed. The 
inputs to the algorithm are: i) R^j^ minimum code rate o f 
interest, ii) d lowest expected minimum distance, iii) 6 a non-
negative integer and iv) F ( z ) = { / ( r ) } V / e / sorted in 
ascending order o f the degree and the corresponding set of 
primitive idcmpotenl, Q(z)={0,{z)) V/G /. As in Section 2, 

2 , . . . , / } . This algorithm outputs two lists o f cyclic 
LDPC codes which correspond to the input parameters, 
CodcIJsi4 and CodeUstNo4. Codes that have cycles o f 
length 4 are in the former, otherwise are in the latter. Prior 
to execution o f this algorithm, V and index are initialised to 
0 and - 1 respectively. The notation used in the flowchart is 
identical to that used eariier. 
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CodcSoarchiV. indox) 

I o index«- 1 

Add/to T 

DISTINCT 

u{x)^MS-'iO{2)) 

on-dogencralo 

C cydic codo 
dolinod by u(x) 

ovaiuato 
Diu{x)) 

NOT DISTINCT 

,add Clo CodcUst4 
if not Qlfcady conslructod 

add C to CodcLlstNo4 
if not already constructed 

Fig. 5 Flowchari of the recursive code search algoritlun 

The recursive code search algorithm exits in one branch, 
that is when the counter /, which is initialised to ujdex+ I . 
reiiches the number of elements in / . ] / ] . Given 5, the 
algorithm takes combinations o f the binar>' irreducible 
polynomials of z" - I for which the summation of their 
degrees does not exceed y/n + S. Suppose that f { z ) is the 
product o f the combinations of irreducible polynomials, 
we compute the corresponding primitive idempotent, 0{z). 
The idempotent 0{z) contributes information o f the code 
rate (its weight) and the minimum distance lower bound (its 
run o f consecutive non-zero coefficients) o f the resulting 
cyclic code. The algorithm continues provided that both 
wt(0(z)) < (1 - / ? m i n ) n and ro>d~\ inequalities are 
satisfied. The inverse Matison-Solomon polynomial of 
0(z) gives an idempotent u(.v), which is the parity check 
polynomial o f the resulting code. Only non-degenerate 
cyclic codes are of interest in this case. The dilTerencc 
enumerator polynomial Z>(u(j:)) = d(^ + d\x^ + • • • + 
rfrt_|jt"~' is evaluated. I f the coefficients are distinct (except 

CodoScarch(T.() T c T 

that o f .V**), i.e. {0,1} V/€ { 1.2 / / - 1 } , then the c>'clic 
code is added to CodeUstNo4. Otherwise, it is added to 
CodcIJst4. We assume that both lists contain codes that 
have not been constructed earlier from different combina
tions of the irreducible polynomials. The algorithm 
continues recursively to consider the possibility of adding 
further weight to the idempotcnt u{x). 

8.2 Received-vector-coordinate-modification 
decoder 
A non-convergent block output from an iterative decoder 
can be made to converge lo a correct solution by restarting 
the iterative decoder after altering the channel probability of 
one o f the symbols in such a way that the residual error of 
that specific component becomes zero. Based on this 
obsen'ation, we can build an improved belief propagation 
iterative decoder. This modified iterative decoder, known as 
the received-vecior-coordinate-modification ( R V C M ) deco
der, was first proposed by Papagiannis ct al. [15] "to improve 
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the convergence of the binary serially-concatenated turbo 
codes. This algorithm can be generalised to any iteratively-
dccodablc linear codes over Gf{q), as outlined below. 

Algorithm 1 RVCM Algorithm for (n, k\ Linear Codes over GF(q) 

Input: 

Received vector r = (ro,fi . . . ,r„. , l , where r.eR 

W - where 0 £ im^^n-^ and Z = (0.1 inw-D 
nc=somo permutation of i^tu symbols, i.e. n(I) = 
(n(0),n(l|.....nt»;™«-l)l 

Output: 

z = a codeword whoso euclidean distance to r is minimum. 

1: 2 = 0 

2: forO ^ / £ i\rw-'i. do 

3: r' = r. 

4: f o r O ^ s i q-1, do 

5: f = $. 

6: z' the iterative decoder output (or the received vector of r*, 

7: if z'eCthon 2 = Z U 2 ' . 

8: end for 

9: end for 

10: Output z where deir. <I>(z)) = miny^ ^ ^ g l r , <t>(z')). 

. Here 0 is the function that maps a binary vector to. its 
corresponding BPSK vector and dr^x.y) 'S the liuclidean 
distance between the vectors x and y. Tor the received 
vector r, let its corresponding reliability vector be 
L = ( i o , / - i , . . . ,Z . , - , . . . , i , „_ i ) , so that Li = max%op(r, |^) 
where p{ri\s) is Ihe probability density function of the 
channel output r,- conditioned on the transmitted symbol s. 
There.is a pennulation r on the set { 0 . 1 , . . . , / i - 1 } such that 
^Ji(OJ < ^ n ( l ) < • • • </-/[(<) < • • • < ^ n { n - 1 ) -

The complexity o f the R V C M algorithm depends on 
W - One ot the major obstacles concerning this algorithm 
is the difficulty in finding symbol(s), which i f modified, 
will cause the iterative decoder to converge to the M L 
solution. These symbols are referred as the critical sym
bols and their distribution is uniform with no sign o f 
vulnerable or favourite symbol positions. Owing to 
their uniform distribution, however, it is possible that 
one o f the critical symbols could be found i f the seareh 
is confined to a small set. i.e. keeping the value o f w 
low. 
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Cyclotomic idempotent-based binary 
cyclic codes 

C. Tjhai, M . Tomlinson, M . Ambroze and M. Ahmed 

It is shown that idempotcnis based on cyclotomic cosets nuy be used 
lo conMruct <;ome new one-i;tep nujoril>'-Iogic codes. Ihe consimc-
lion method produces Ihc dual code idcmpotcm which can be used 
(o directly define the parily<heck matrix of the cyclic code. A 
feature of the cyclotomic idempoient codes is the incremental 
approach lo the sparscness of the parity-check matrix and the 
property of parity-check bit onhogonaliiy which is known to be 
useful in belief-propagation decoding. These codes huvc high mini
mum distance and a performance 0.4 dR away from the theoretical 
limit is demonsirated. 

Inirotluclion: It is well known that an ( i i , k, t) binary cyclic code C 
may l>e generated by its idcmpoient E^ix) as an aliemative (o the 
generator polynomial g{x) [1-jJ. Any idempoteni E(x) has the key 
property thai E(x)^ = E{x) with the consequence that the coefficieni 
of the Malison-Solomon polynomial only take values from GF(2). 
C may contain several idempotenis but only one idempoient 
t\{.K) that will generate the code and GCD(£,(x); \+x") is g(jr) 
where C C D denolcs the greatest-common-divisor. In this Letter C"*". 
the dual .code of C, is first derived from its idempoieni because the 
minimum weight codeword of is used to define a sparse parity-
check of C. 

Dificrcncc-sei cyclic (DSC) and one-siep majority-logic (OSMLj 
codes have been given renewed attention l-ij owing to ihcir good 
performance as low-density parity-check (LDPC) codes. The parity-
check equations of the codes arc orthogonal on each bit position of the 
codeword which implies the absence of cycles of length 4. The 
minimum distance ((/„,«) can be directly determined from the weight 
of the lowest weight codeword of C'''. Moreover as the code is cyclic, 
there arc n low weight parity-check equations lo use in the iteraiive 
decoder instead of n —ft low weight parity-check equations as in the 
case of a random LDPC code. This leads to improved performance. 

Code construction: The cyclotomic cosel of C is defined as follows: 

Ci = (/. 2i, 2'i\ mod « (.V : 1 < » < /"} (I ) 

where r is the smallest integer so that 2'* i = i mod n and m is the 
smallest integer so that U V , C A ' 0 = I ' * 2 n - I } . The cyclotomic 
idempoieni. i.e. tdempotcnl given by the cyclotomic cosel. is defined as 
£.(-^) = E v , 6 C , ^ . 

In Ihis constiuciion, the parity-check matrix of C is defined by 
an idempoieni Ej(x) = ni{x) /i(jf) where h(x) g{x)= I +x" and m (x) 
consists eiihcr of repealed factors of A (x) or non-factors of I +x^. 
The idempoteni £ , (.r) consists of at least one cyclolomic idempoteni; 

(2) 

For a code to be an OSML code all of the cyclic differences between 
the exponents of E^x) must be dislinci and, additionally, to be a DSC 
code all of the cyclic differences must be present. The cyclic differences 
are given by the difference enumerator polynomial excluding the x" 
component: 

ViE,{x))^E,{x)E,{x-') (3) 

Note that V (£", (x)) is evaluated with real coefficients and E, (.v"') is 
the code idempoient of C ^ . 

Based on the fact thai all idempoienis consist of the sum of a number 
of cyclolomic idempoienis and the piwiuct of two cyclotomic idem
potcnis is equal to a sum of cyclotomic idcmpolenls. V {E, (jr)) of 
OSML codes mu.st be equal to the sum of distinct cyclolomic idem
potents and V (£j (jr)) of DSC codes musl be equal to the sum of all 
cyclolomic idempotenis. The conditions on V (£", (.r)) are determined 
by conditions on E, {x), which are: 

* 
Condition I: The idempoteni £ , (x) must be chosen such that wt ( £ , (jr)) 
(wi (£ , (X)) - 1 ) < /I - I where wi (/(jr)) is the weight o f / { x ) . 

Proof: ELiich of the differences musl be distinct and nonzero. The number 
of disiinci nonzero differences is wi (£". {x)) (wl (£ , (.t))- 1) and ihis 
must be less ihan or equal to the lotal number of distinct iniegers belu,-ecn 
1 and n - 1. 

Condition 2: Following (2) unless the wi {E, (x)) = 2. E, (x) must not be 
self-reciprocal, i.e. Ei {.x):^Ei U"'). V/G A^. 

Prvqf: The sum of nonzero coefficients of V (f, (x)) is equal to wt 
(E. (j)Kvvl(f,(jr))-I). For a self-reciprocal component. (x) E. 
(,r"') = £, {x)^-Ei {x) with wi {E, {x)) cocfficienls. For the differences 
10 be dislinci wt (£, (.r)) (wi (£", (.v))- I)) < wt (£", (x)) and hence wi 
(Ei (x)) must be equal lo 2 or less. 

Condition 3: Following (2), £, (x) must not contain E, {x~*), V/e./M 
unless Ei (x) is self-reciprocal. 

Proof: If £ . (x) docs contain E, (x"') for i^M then V (£. {x)) will 
contain both f j {x) E, (x~') and Ei {x"') E, (x). hence the same differences 
will be produced. 

Condition 4: Following (3), wi {V {E^ (x))) ignoring ihc .r" component 
musl be equal to wi (£", (x)) (wt (£ , (.r)) - I). 

Proof: For all of ihe nonzero differences lo be distinct, each one must be 
a separate exponent of I? (£, (x)). 

Another condition is that the exponents of E, (x) must not coniain a 
common factor of n, otherwise a degencraie code is produced. 
Although the above conditions seem overly restrictive they lum out 
to be helpful in code consiruciion. Afler enumerating all of ihe 
cyclolomic idempoicnis for length n, codes may be designed slep-by-
slep by adding candidate idempoicnis lo £ , (x) checking Ihc above 
conditions ai each stage. Moreover, by adding the candidate idcmpo
lenls in a recursive manner, all cyclic codes with no cycles of length 4 
may be generated. 

Following Mac Williams (-1 we can define C entirely by £, (x) 
avoiding the need lo dcicrmine g (x) and A (x). With a defined as the 
primiiive /iih-rooi of unity, £ , (a') for I < < < /» is cither I or 0 as a 
consequence of the property E, {x)^ = £ , (x). With V being the roots of 
g (x). I <J<n-k and as £ , (x) docs noi contain a/ as roois, il follows 
that £ . (y) = I for I <> < n - k. For GF(2). I 4- E, (V) = 0 and the code 
idempoteni is £^ (x)= I + £ , (x). E^ (x) may be used to generate the 
code as an atlcmalive lo g{x). The dimension k of C is equal to the 
number of zeros of the Malison-Solomon polynomial ( I J of £ , (x). Note 
that i /„ ,„ , < wi {Ef (x)). i.e. wi (£ , (x))4-1. Because of space limitation, 
only a limited number of cyclolomic idempoteni codes are included in 
•fable 1. 

Table I : Examples of cyclolomic idcmpoleni codes 

(n. k) Cosets in. k) Coscu 

(63J7) ( U I I 9 (219.101) < 3,731 12 

(255,135) ; i . i i9 ) 13 (255.175) (1.271 17 

(273.19l> (1.91.117) IS (341,205) 11,55} 16 

(5ll,ll<j» {5.371 19 (819.4-17) 11.351) 19 

(1023,661) {1.53.3-111 23 (1023,781) (1,53.123,341} 33 

(1057.813) {5.43.131) 34 (1387.783) (1.247) 28 

(I9I7.II0S) 11.6571 21 (2017.1167) {1^7} 23 

(2325,1335) {1.75.775} 28 (2325,1373) (1,525.1035} 30 

(2359.1347) I I I 22 (3741.2229) ' 1' 29 

(3813^037) {1,369.1271) 28 (4095.2767) (1,41.235.733) 49 

(4095.3367) (1.41,235.273. 
411.7331 

65 (4161.3431) (I.285,307J57,I387) 66 

(-1161.2827) (1.307,13871 39 (468I.26S1I (1.51) 31 

Simulation results: Computer simulations have been carried out for 
the (63,37) cyclolomic idcmpoicnt code and a (63,37) irregular 
random code and the frame error rote ( F t R ) performance is shown 
in rig. I. It is clear that, under standard BP decoding, the performance 
of the cyclolomic idempotent code is superior to that of the irregular 
code. The modified BP decoder which approximates 
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the maximum-likelihood decoder, realises ihc full performance of the 
cyclolomic idempotcrit code showing ihai it is about 0.4 dB away 
from the best theoretical (63.37) binary code [o] at 10"^ FER. 

D cycbL uarc.-cantinl c 
o cyclo.i0e<io—<TKxflioa< • tinarj l irri 

Kij*. I FER of (63.37) cyclolomic idempolent and irregular code 

Conclusions: The constniciion method based on summing ihc cyclo
lomic idempoicnts is able to produce a large number of cyclic codes 
with no cycles of length 4. Some of these codes arc equal to DSC 
codes. Euclidean-Gcomeliy (EC) and Projective-Geometry (PG) 
codes which arc already well known, but some other codes are new. 
The ability to increment the of the code by adding further weight 
from olher cyclolomtc idempolents and so steadily decrease the 
sparscncss of the parity-check matrix is an interesting property. As 
an example consider n of 1023. with the idempotent defined by C j , a 
(1023.511,5) code is produced and adding Csj produces 

(1023.463.10) code. Adding C ,4i to the idempotent rcsult.s in 
(1023.661.11) code and finally a (1023,781.16) code is produced by 
further adding Cm. 

Tlie cyclolomic idempotent codes as a class arc not as.good as BCH 
codes in that there lends to be a BCH code of similar length and d„t„ 
but with higher rale. However the BCH codes have dense parity-check 
matrices and thus are not suilable for BP decoding. 

As shown by ihe simulation results the cyclotomic idempolent codes 
can have outstanding performance. 
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Abstract—In coding for error detection over (he q-ary sym
metric channel with cross-over probability p, it is well known that 
the probubilily of decoder failure or Ihc probability of undetected 
error is dictated by (he weight distribution of the code. In (his 
paper, sonic binary and (crnary primitive BCH and irreducible 
Goppa codes of Ihc same parameters are compared in terms 
of (heir error detection capabilities. Using the [128,85^ I4J2, 
[128,92,12]2 [256,207,14)2 and [256,215,12)2 extended 
UCH and shortened irreducible Goppa codes as case studies, 
it is found that (he shortened irreducible Goppa codes have 
lower expected value for probability of decoder failure over (he 
interval p 6 [ 0 , 1 | . It is also found (hat apart from (he codes 
with parameters [128, 85,14)2, the shortened irreducible Goppa 
codes arc better suited for error detection over the intervals 
P ^ §1 P ^ [0) 5]* On the other hand, for ternary BCH 
and Goppa codes, [80,60)3 and [242,222)3, BCH codes are 
preferable due (n (heir superior minimum distance. 

I . I N T R O D U C T I O N 

A typical communication sy.stcm uses channel coding lo 
ensure reliable transmission of information from source to 
destination. Channel coding can be employed in two different 
ways: error correction and error detection. In cither case, a 
message is split into several data blocks and fur each data 
block, some redundant symbols are obtained (these redundant 
.symbols are functions of the symbols in the data block) 
and appended to each data block. In transmission, instead 
of sending strings of data blocks only, strings of data and 
redundant symbols arc (ransmitlcd. In the error correction 
case, these redundant symbols arc used by the decoder in 
the receiving end to correct any errors that may have oc
curred during transmission. In the error detection case, channel 
coding is used in conjunction with auiomaiic-repeat-request 
(ARQ) retransmission scheme. Upon the receipt of the data 
and redundant symbols, the decoder recomputes a new set 
of redundant symbols based on the received data block. I f 
the recomputed redundant symbols are the same as those of 
the received, successful transmission is declared, otherwise 
an error is detected and retransmission is requested. In this 
paper, we consider the application of channel coding for error 
detection. 

When a decoder requests retransmission, it is certain that 
some errors have occurred. On the contrary, when a decoder 
declares successful transmission, (his decision may not nec
essarily be correct. There is a possibility that errors during 

transmission have transformed the transmitted symbols to a 
pattern which is not detectable by the decoder as an error. 
The probability of this event is known as the probability of 
decoder failure or the probability of undetected error. 

Tliroughout the development of channel coding since (he 
early 1950s. there exi.sts many good linear codes. One of the 
many popularly used codes is a class known as the Bose-
Chaudhuri-Hocquenghem (BCH) codes. Given an extended 
BCH code of length which is a power of a prime f/, there 
also exists a shortened Goppa code of the same length and 
dimension. Tlic question addressed here is which class of 
codes has better error-detecting capability. In the other words, 
we arc interested to know which of the two codes has lower 
probability of decoder failure. As a preliminary study, we 
consider some high-rate binary and ternary BCH and Goppa 
codes and determine their probability of undetected error and 
also ihcir expected value. 

I I . B A C K G R O U N D A N D N O T A T I O N 

Let F^' denote the space of vectors of length n with elements 
in IF,,. A linear code over is a fc-dimensional linear subspace 
of FJ'. We denote (7j,A:,rf|q as a linear code over F , of 
length n, dimension k and minimum distance d. The Hamming 
weight enumerator function of a code is dcfmcd as A{z) = 
mLo'^'^' ' where Ai denotes ihe number of codewords of 
Hamming weight i. I f C is a linear code over F^, its dual code 
C-L is defined as C-̂  = {tw G FJ| El'Jo .̂"^i = 0̂  ô*" v € 
C}. Lei A(z) and B(z) be the weight enumerator functions 
of C and respectively, from the MacWilliams Identity 
for Hamming weight enumerator [1][2], we know that the 
relationship of A(z) and B{z) is given by 

_ ( i + ( < ? - i ) ^ r „ / 1 - ^ \ 
— m — n r n T ^ j 

^ r ( l + ( g - l ) ^ ) • (1) 

where [C-̂ -j is the size of C-"-, which is q""*'. 
In a typical ARQ system, given a user data u G 

we map u of length A: to c G C of lengdi n. which is a 
vector that we transmit. Errors may have occurred during the 
transmission and Ihe decoder receives r G FJ, where r = c+e 
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and (I € F^'. The decoder rcque.sis rclransmis.sion if r ^ C, 
otherwise successful iransmission is declared. 'Pie declaration 
of successful Iransmission occurs for any r regardless of c 
where r e C. Therefore, an error will not be detected by the 
decoder if the error vector e has transformed the transmitted 
vector c into another codeword of C. Since, we consider linear 
codes, this means an undcicctcd error will occur if e e C and 
wt(e) > 0. whore w t ( i ) denotes the weight of vector x. 

We consider a discrete memoryless channel with q inputs 
and // outpuLs, a ry-ary symmetric channel (r/SC). Let p be (he 
symbol error probability so that the probability of a symbol 
being received correctly is I - p. The probability of a symbol 

ForC over IF. |4|, 

being changed to a specific other symbol is simply It 
is assumed that 0 < ^ < p. Hence, the probability of 
undetected error with symbol error probability of code C, 
Puc{C,p), is simply 

Ke{C.p) = P{ceC and wt(c) > 0) 

(2) 

Using the Mac Williams Identity, Pue{C,p) can also be ex
pressed in terms of ̂ ( 2 ) : 

Puc(C,p) = 

( i - p ) - " o ^ - q / ' - i \ 

( 1 - 7 ' ) " 

1 1 ( 1 - p)" 

= - ( l - p ) " + 

(3) 

It is obvious from (2) and (3) thai the weight distribution of 
the code or that of the dual code may be used. Optimising Ai 
or Bi will result in reduced probability of undetected error. 

I I I . T H I ; l i X P E C T B D V A L U B 01- THI: P R O B A B I L I T Y OF 

DECODKR F A I L U R E 

It is shown in |3|. that the expected value of the probability 
of undetected error can be used to determine how good a 
code is for error detection. Let p be a random variable with 
a uniform distribution over some interval [0, x), the expected 
value of the probability of undetected error with symbol error 
probability p of code C, E[Puc(C,p)], is defined as [3] 

E[Pu,(C,p)\ = r f(p)Puc(C,p)dp, (4) 
Jo 

where / (p ) , ihe probability density function of the uniformly 
distributed random variable p, is 

f { p ) = 
if 0 < p < x 

otherwise. 

1 " / 1 \ • 

(5) 

where 

Q(x\i + 1 , 71-1 + 1) 
-1: 

p * ( i - p r - ' d p 

is an incomplete Beta function. For the reason which will be 
stated later, the expression of E{Puc(C,p)\ involving B(z) 
is more useful than (5) in this paper. Equipped with (3). 
E\Puc(C,p)\ can be rewritten in alternative form as (4| 

E\Puc(C,p)\ = - | " l ( ! - p ) " d p -I-

l - ( l - : ^ ) " + ' ] , 

. T { « - H ) J 

— 1 " / . \ ' 

^ { ( - j ? t ) ' - } ] 

(6) 

In the binary case, <i = 2, E\Puc(C,p)\ simply reduces to 

I - ( 1 - x ) " + ' " 
ElPuc{C,p)] = 

1 - (1 - 2x) ' + ' 

i=0 
20 + 1) 

(7) 

Given some [n,k,d\q linear codes, E\Puc{Cyp)\ can be nu
merically evaluated to determine which code is best suited for 
error detecting applications over an interval (0, x] of cross-over 
probability p, which is assumed to be uniformly distributed. 
In a later .section, E[Puc(C,p)\ is used to compare the error 
detecting performances of some B C H and Goppa codes, over 
F2 and F.I, having the same length and code rate for a; = 1, 
X = ^ and X = ^. 

IV. B C H A N D GoppA C O D E S A N D T H E I R W E I G H T 

D I S T R I B U T I O N S 

In this paper, t-crror correcting primitive B C H and irre
ducible Goppa codes over F2 and F3, which arc well-studied 
in the literature, are considered. A brief outline of the theory 
of these two classes of codes is given below. 

A. BCH Codes 

A terror correcting primitive B C H code is a cyclic code 
of length g'" - 1, for some integer rn, which is able to 
correct up to t errors. Let a be a primitive nth root of 
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unity of F ^ , : i ^-crror correcting primitive UCM code has : i 
generator polynomial g{x) which has 2t consecutive powers 
of Q, i.e. o \ a ' ' + a * ' + 2 ' - ' (The imegcr 6 is usually 
chosen to be I . and the BCH code of this type is known 
as a narrow-sense. BCH code), l l i e dimension of the BCH 
code is q"^ — dcg(*7(x)) - 1, where deg(/(a;)) denotes the 
degree of polynomial / ( x ) , and its minimum distance is at 
least 2i + 1 . Tlic parity-check matrix of a I?"' - 1, fc, > 2t +1)^ 
primitive BCH code, Hij = (aJ(''+*)) for 0 < t < 2i and 

o<j< <r - 1 

H 
6+1 

a Oc 

, , ( 9 - - 2 ) 6 

(fl'"-2)(6+l) 

Q {q--2){b+2l-\) 

(8) 

A primitive BCH code of lengUi q"^ - 1 may be extended 
by annexing an overall parity check to increase the minimum 
di.siance and length by one. For the binary case, the weight 
distributions of many primitive BCH codes and the extended 
codes are well documented, for example see L5J, [6], and this 
is one reason why we have chosen these codes in this paper. 
We consider the 5- and 6-error correcting extended BCH codes 
of lengths 128 and 256 over Fs- These codes, whose weight 
distributions are given in [5], [61, arcCi = (128,85,14)2,02 = 
(128.92,12]2, C3 = [256,207,14)2 and = [256,215.12)2 
and their dual codes are [128,43,32)2. 1128,36,32)2, 
[250,49,64)2 and [256,41,64)2 respectively. Using the results 
in [5], [6] and the MacWilliams Identity, the Hamming weight 
distributions of C/-, for 1 < i < 4, are obtained and tabulated 
in Tables I and I I . 

In addition to these binary codes, we also construct C5 = 
[80,60,8).T and Co = (242,222,7)3 BCH codes and the 
Hamming weight distributions of the dual of these ternary 
codes (C^ = 180,20,30)3, and = [242,20.126)3 respec
tively), which are obtained using GUAVA [7], are tabulated in 
Tables V and VI . 

B. Goppa Codes 

Let G{z) be a polynomial with coefficicnis from FJ" of 
degree r and let Pj be the j i h element of F ^ . If we now 
replace (QJ^'+O) i„ (g) with ( ^ j + , G ( f t + i ) " ' ) forO < i < r, 
a new matrix H is obtained 

1 1 
GUL-A 

( 9 ) 

which is the parity-check matrix of a Goppa code over Fq. 
The polynomial G(z) = X3"Jo' 9iZ^ is known as die Goppa 
polynomial. If C ( 2 ) is irreducible over FJ*, the resulting code 
is a [?"',A:,rf), irreducible Goppa code. As a class, Goppa 
codes contain the narrow-sense primitive BCH codes. From 

TABLB 1 

W K I G M T D I S T R I B U T I O N S 01' UINARV CODtiS: C^. r / . C,f A N D f . f 

i fii of Ci^ Bi of r/- Bi of Bi of I V 
0 

26 
1 
0 14 

1 
0 0 

27 0 14 0 0 
28 0 315 0 0 
29 0 560 0 0 
30 0 4103 0 21 
31 0 8652 0 28 
32 124460 43813 10668 70 
33 0 82474 0 406 
34 0 367311 0 1778 
35 0 659092 0 5068 
36 8810752 2553502 16256 14288 
37 0 4455458 0 38879 
38 0 14939232 0 97748 
39 0 25371472 0 228732 
40 263542272 74806634 2048256 521696 
41 0 124227908 0 1116227 
42 0 325466258 0 2314879 
43 0 526423780 0 4640031 
44 4521151232 1233207653 35551872 8887707 
45 0 1940111516 0 16529051 
46 0 4083199400 0 29751750 
47 0 6227830742 0 51829218 
48 44899876672 11839034032 353494848 K7414166 
49 0 17450194650 0 142753082 
50 0 30114370552 0 225845752 
51 0 42776504596 0 345723099 
52 262118734080 67353199823 2028114816 512303743 
53 0 91925083068 0 735020965 
54 0 132713265006 0 1020845539 
55 0 173505905412 0 I3730I96K3 
56 915924097536 230745825270 7216135936 1789255624 
57 0 287996387752 0 2259040886 
58 0 354384710354 0 2764278666 
59 0 420768878768 0 3279535861 
60 1931974003456 481152508403 14981968512 3771725846 
61 0 541519789580 0 4205861926 
62 0 577875305546 0 4546798459 
63 0 614231340058 0 4764526042 
64 2476672341286 ) 614220896660 19484794406 4839622902 

(8) and (9), it can be seen that if we let G{z) = z'\ b = 1 
(narrow-sense) and pj = cv^"*, the columns of H, for which 
/?j 5^0, become H \ll 

Given a (9"* - iyk.d]^ primitive BCH code, in many cases, 
there also exists a [q"^,k + l ,f / ' )q irreducible Goppa code, in 
order to have codes of the same length and dimension, we 
can either I) shorten the irreducible Goppa code; or 2) extend 
both codes and then shorten the extended Goppa code. 

For comparison purposes, shortened extended irreducible 
binary Goppa codes, T,, of the same parameters (n, k and d) 
as iliose of C,, for 1 < t < 4 arc constructed. Unlike the BCH 
codes, the weight distribution of Goppa codes is not widely 
known. In order to compute Puc(^i,p) and its expected value, 
A{z) for each Goppa code has to be determined. However, 
since the dimension of T, is larger than n — k, it is more 
efficient to deal with Vf- to obtain B{z), which can be used to 
evaluate the probability of decoder value and also its expected 
value from (3) and (7) respectively. The dual codes V^, for 
1 < t < 4, are (128,43,26)2. (128,,36,30)2, [256.49.66)2 
and (256,41,76)2 respectively. We have computed the Ham
ming weight distributions of these dual codes exhaustively 
by splitting the codeword enumerations on grid computers. 
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TAHI>; II 

Wl- ICHT DISTRIBUTIONS OH BINARY CODES; C ^ . r^X^ AND r | 

1 Hi of C | of o f C | Bi of 
0 

64 
1 

2380 
1 
0 

I 
2380 

1 
0 

66 0 4 0 0 
68 0 6 0 0 
70 0 32 0 0 
71 0 8 0 0 
72 0 262 0 0 
73 0 240 0 0 
74 0 980 0 0 
75 0 2480 0 0 
76 0 6868 0 12 
77 0 16400 0 0 
78 0 44676 0 56 
79 0 101864 0 40 
80 1109760 248305 0 411 
81 0 551816 0 792 
82 0 1259956 0 2452 
83 0 2642280 0 5224 
84 20889600 5700092 0 14098 
85 0 11507496 0 30056 
86 0 23612460 0 68332 
87 0 45753672 0 I4(W72 
88 362565120 89735664 783360 298732 
89 0 167507664 0 585248 
90 0 315172736 0 115(K)32 
91 (1 568642784 0 2132960 
92 4076605440 1029255126 14622720 3949642 
93 0 1797840736 0 7006744 
94 0 3137142904 0 12340180 
95 0 5309417328 0 21018968 
96 35858333376 8946696483 148737216 35486775 
97 0 14678583272 0 58263776 
98 0 23901609576 0 94666664 
99 0 38012234984 0 150089568 

100 238056837120 59844242312 942120960 235326864 
101 0 92238297408 0 361449808 
102 0 140446070520 0 548843516 
103 0 209723747424 0 817691032 
104 1240028198400 308930784216 4793902080 1202968312 
105 0 446910570200 0 1739673224 
106 0 637057073900 0 2480378992 
107 0 892762599672 0 3477843856 
108 4908429312000 1231932050062 19134873600 4803654944 
109 0 1672490161744 0 6527987208 
no 0 2234904493124 0 8730342848 
111 0 2939644499088 0 11490935480 
112 15280308701440 3805070363875 59846440960 14880225073 
113 0 4849553108928 0 18967868984 
114 0 6082010272324 0 23787385796 
115 0 7511362959416 0 29369663008 
116 36375691345920 9128782911738 142149550080 35679435538 
117 0 10925384150352 0 42684122136 
118 0 12868429439732 0 50255272788 
119 0 14925100921104 0 58269207056 
120 68422918011904 17038499973682 266972882944 66509177532 
121 0 19151788306856 0 74754952568 
122 0 21192114533768 0 82725113732 
123 0 23086749529024 0 90143029568 
124 98661457551360 24762784394308 385367162880 96714994390 
125 0 26147370900152 0 102150696568 
126 0 27186437005404 0 106243390132 
127 0 27825813800936 0 108761419544 
128 112615534493670128045588520464 440281097190 109622652088 

This spliiiing is possible due to the nice property of the 
Revolving-Door combination generator algorithm (81, which 
will be described in the following section. The Hamming 
weight distributions of the r-"-. for 1 < i < 4, are tabulated in 
Tables I and 11. 

Similarly, ternary Goppa codes Ts = (80,60,5jj and To = 

(2'12,222,r))3 have been constructed with the same length 
and dimension as the ternary BCH codes, Cs = [80,60.8)3 
and CG = (242,222,7).-i. The respective dual , codes arc 

= |80,20,2rj|3 and = (242,20,119)3 and since their 
dimensions arc relatively small, GUAVA [71 have been used 
to obtain their weight distributions, sec Tables V and V I . 

V . C O M P U T I N G T H E W I - J G H T DISTRIBUTION.S OF A 

L i N H A R C O D E 

The core of all algorithms to evaluate the minimum dis
tance or to compute the number of codewords of a given 
weight is codeword enumeration. Given a reduced-echelon 
generator matrix, codewords can be enumerated by taking 
linear combinations of rows of the generator matrix. Having 
an efficient combination generator will certainly speed up the 
process and one of the mosi efficient algorithms to do so is the 
Revolving-Door algorithm [81- An efficient implementation of 
this algorithm is given in (9| (Algorithm R), which is attributed 
1 0 Payne and Ives |10]. 

When the number of codewords that need to be enumerated 
is large, it is common practice to resort to a multi-threaded 
approach by splitting the enumerations on multiple computers. 
Tlie Revolving-Door algorithm has a nice property that allows 
the splitting to be realised. Let a ( « ( _ i . . . a i , where tii > 
Ot-i > . . . > a i , be a pattern of a I out of s combinaiion-
Cf. A pattern is said to have rank i if this pattern appears as 
the (t + l ) ih clement in the list of all Ct combinations'. Let 
Rank((i(a(_i . . . o i ) be the rank of pattern a t f l / . i . . . a \ , the 
Revolving-Door algorithm has the property (hat 

Rank((7(_i .. .a\) 

(10) 

and consequently, an integer A^ 0 < < (J) - 1, can be 
represented uniquely with an ordered pattern Oiat^i ...ai \9\, 

( - l ) ' ( ° ' * ' ) - ( « n o < 1 2 ) 

As an implication of this, i f all ( j ) codewords need to be 
enumerated, we can split the enumeration into {{'D/M] blocks 
where in each block only at most M codewords need to be 
generated. We know that at the ith block, the enumeration 
would start from rank (i - 1 )M and the corresponding pattern 
can be easily obtained following AlgoriUim I . 

V I . ERROR D E T E C T I N G PERFORMANCE 

Using (3), the probability of decoder failure of C, and f j , 
for 1 < t < 4, is compared and plotted in Figure 1. Parts 
(a), (c) and (d) of Figure 1 .show that Ci and Vi have similar 
error detecting performance in the interval 0 < p < ^ , and P,-
is slightly better at higher p. On the other hand, Figure 1(b) 
clearly demonstrates that r2 is a better code for error-deiection 

' Hen: it is assumed thai the first elcmeni in the list of all Cf comhinutions 
has rank 0. 
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T A B L E III 

E{PueiC,p)\ OF BCH A N D GOPPA CODES OV\lR T H E INTERVALS [0, i j 

X 

1 1/2 
c, 
r, 

7.7519379846 x lO"""* 
9.53732G1925 x 10"^^ 

8.9541221659 x 10"'" 
9.0229906879 x lO"*-* 

7.7469280990 x lO" ' " 
7.8503176182 x lO"'** 

7.7519379967 x lO""-^ 
1.2579157334 x l O " " 

1.2247468664 x 1 0 " " 
1.1993692497 x l O " " 

1.1095246250 x 10"" 
1.0714581999 x 10' '* 

C3 3.8910505837 x 10'""* 
2.2262568958 x 10"'* 

1.5916087892 x 10"*^ 
1.5907414275 x 10"'^ 

1.4988010832 x l O " ' " 
1.4970663598 x IQ- '^ 

3.8910505841 x lO""-* 
2.2683065929 x 10"** 

4.1658256705 x 10"*** 
4.1435518211 x 10"'^ 

3.0750147GI8 x lO" ' * 
3.9415866404 x 10"'^ 

Cs 
Ts 

2.6022301319 x 10"'" 
3.2835295473 x 10"'^ 

2.3364878628 x 10" '" 
3.0990871108 x lO"'*' 

2.0707456936 x 10"'" 
4.1146446410 x 10"'" 

Co 
To 

2.7890836365 x 10" 
3.0616854727 x 10"'̂ ^ 

2.7101952821 x 10" '" 
3.2553989547 x lO"'** 

2.6313069278 x l O " ' " 
3.44911243G6 x 10"'" 

Algorithm 1 RccursivcComputefl,-(Rank(Q.a,-i • • . a i ) ,Q 
Input: i and Rank{a(a,_i . . . a i ) 
Output: Qi 

I: Find tti, where 0 < a , < a^+i, such that ("') < 

R n n k ( a , a . - , . . . « , ) < [ ( " 7 ' ) - 0 
2; i f I > r then 
3: Compute Rank(a,-i . . . a , ) = " ^ " 

Rank(rtia,-_i .. .cti) 
4: RccursivcComputea, (Rnnk(a,_i . . . a i ) , i - 1 ) 
5: end i f 
6: return a, 

than Ci over the entire interval 0 < 7) < 1. It is interesting 
to note that R 2 has a non increasing PueC 2 I / > ) for interval 

'Vhc expected value of probability of decoder failure, 
E[Puc(C,p)\, provides an alternative way to determine 
whether or not a code is good for error detection over a given 
inierval of cross-over probability p. The evaluation results for 
the binary and ternary codes for E[Puc{C,p)] over the intervals 
p 6 [0,1), p G [0, and p € [0, arc tabulated in Table I I I . 
From the results in Table I I I , for binary codes, we can see 
that, over the interval (0,1], Goppa codes have superior error-
detection performance than the corresponding BCH codes. 
Apart from the case of (128,85,14)2, Goppa codes over F2 
are also better codes dian binary BCH codes over the intervals 
[0, ^ ] and (0, ^ | . These results arc evident from the comparison 
of the weight distributions of the two different classes of codes. 
The extended BCH codes over F2, except the [128,85,14)2 
code, have larger number of minimum weight codewords than 
the corresjx>nding Goppa codes of the same parameters, see 
Table IV. 

From the results in Table I I I , for all ternary cases, the Goppa 
codes have higher expected value of probability of undetected 
error than the BCH codes over all intervals. This, as can 
be expected, is attributable to the Goppa codes having lower 

T A B L E IV 

N U M U H R o r C O U E W O R D S 01^ M I N I M U M W E I G H T I N C , A N D l \ 

i d 
A d i d 

Ci w 
1 14 341376 436073 
2 12 1194816 749112 
3 14 159479040 155077077 
4 12 152592000 120901024 

TABLti V 

WniCHT D I S T R I B U T I O N S O I - T I - R N A R Y CODES: A N D I"^ 

i Bi of i « . of Cr^ Bi of PJ-
1 1 1̂ 

25 0 2 52 0 309144814 
27 0 10 53 0 326596460 
28 0 34 54 983598560 326659346 
29 0 62 55 0 308825018 
30 3536 218 56 0 275769562 
31 0 830 57 694183360 232266736 
32 0 2368 58 0 184225808 
33 0 6822 59 0 137419354 
34 0 18394 60 289896264 96193026 
35 0 47926 61 0 63036320 
36 436400 118658 62 0 38628490 
37 0 281772 63 65663200 22053746 
38 0 633114 64 0 11723814 
39 3707200 1361306 65 0 5768592 
40 0 2784116 66 8014880 2623612 
41 0 5435176 67 0 1095830 
42 31565040 10091226 68 0 422794 
43 0 17835450 69 422400 148026 
44 0 30017882 70 0 46746 
45 141440480 48050492 71 0 13470 
46 0 73161396 72 10180 3500 
47 0 105839904 73 0 858 
48 440431860 145528364 74 0 132 
49 0 190060574 75 0 16 
50 0 235646498 76 0 8 

minimum distance than the corresponding BCH codes. 

RlLFtiRENCliS 
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T A B L E VI 

Wt-IGMT DlSTRIBUrrONS O F T K R N A RY CODES: 

• m 01 u «« e.1 at «.r «• fti i 

(a) 128,85. M 

|<n.u<i|C 

(b) (128.92, 12) 

m* n r. I ij LIMMM out ca* 

(c) (25G.207. 1-1] 

(d) [256,215. 12] 

Fig. I. Probability of decoder Tailure of the binary, extended primitive BCH 
and shortened extended Goppa codes 

121 

(3] 

[61 

[7] 

[10] 

t Ui of of IVf i 0, of CrI ff. of rit 
0 1 1 )61 0 192018992 

119 0 Id )62 1701743516 183149106 
120 0 50 )63 0 188647060 
121 0 84 164 0 173303550 
122 0 180 165 0 172381920 
123 0 550 166 0 152631080 
124 0 1060 167 0 146628608 
125 0 2390 168 0 124837850 
126 56628 4340 169 0 )) 5472860 
127 0 8240 170 0 94260640 
128 0 13)40 17) 726354288 83946240 
129 0 24030 )72 0 65579594 
130 0 40060 )73 0 56084640 
131 0 68970 174 0 41779700 
132 0 109360 175 0 34251970 
133 0 177370 176 0 24374790 
134 0 271530 177 0 19156820 
135 3165360 432890 178 0 13020410 
136 0 635240 179 0 98)5460 
137 0 983270 180 62325648 6378750 
138 0 1409560 181 0 4691180 
139 0 2145070 182 0 2936376 
140 0 2971660 183 0 2103010 
141 0 4419210 )84 0 1272060 
142 0 5984198 185 0 890230 
143 0 8721000 186 0 520720 
144 109727640 11533820 187 0 360980 
145 0 16286960 188 0 201770 
146 0 20877500 189 798600 135390 
147 0 28681410 190 0 73930 
148 0 35564020 191 0 48(K)0 
149 0 47023490 )92 0 248)0 
150 0 56208322 )93 0 )62I0 
151 0 71784888 194 0 8030 
152 0 82597694 195 0 4400 
153 882590940 101282440 196 0 1890 
154 0 112038570 197 0 1290 
155 0 132740810 198 21780 520 
156 0 I4I3S(K)40 199 0 300 
157 0 16)186760 200 0 50 
158 0 165437080 201 0 72 
159 0 182316770 202 0 20 
160 0 180409086 
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A B S T R A C T 

This paper presents a more elficiem algoriihrn lo count codewords 
of given weights in self-dual double-circulani and formally self-
dual quadratic doublc-circulani codes over GF{2). A meihod of 
deducing (he modular congruence of (he weight distributions of ihc 
binar>' quadratic double-circulant codes is proposed. This meihod 
is based on that proposed by Mykkeliveii. I j im and McElicce. JPL 
Tech. Rep., 1972. which was applied (o (he extended quadratic-
residue codes. A useful application of this modular congruence 
method is lo provide independent verification of the weight dis
tributions of the extended quadratic-residue and quadratic double-
circulant codes. Using this method in conjunction with the pro
posed efficient codeword counting algorithm, we arc able i) to give 
the previously unpublished weight distributions of the (76, .18,12| 
and (124,G2.20j binary quadratic doublc-circulani codes; ii) to 
provide corrections to the published results on the weight distri
butions of the binary extended quadratic-residue code of prime 
151. and the number of codewords of weights 30 and 32 of the 
binary extended quadratic-residue code of prime 137: and iii) to 
prove that the 1108.84,24] extended quadratic-residue and qua
dratic double-circulant codes are inequtvaleni. 

I . I N T R O D U C T I O N 

Binaiy .self-dual codes form an important class of codes due (o 
their powerful error-correcting capabilities and their rich mathe
matical structure. As such, this family of codes has been a subject 
of extensive research for many years. Much of diis work is on their 
classification and the search for the cxu^emal codes (I j . Many bi
nary self-dual codes are codes with the highest known minimum 
distance. Recently, van Dijk et al. [2], constructed two inequiv-
alent binary self-dual codes of length 160 that have higher min
imum distance than the previously known half-rate codes of that 
length. 

Closely related to the self-dual codes are the double-circulant 
codes. Many good binary self-dual codes can be constructed in 
double-circulant form. An interesting family of binary, double-
circulant codes, which includes self-dual and formally self-dual 
codes, is the family of codes based on primes. A classic paper for 
this family was published by Korlin [31 in which double-circulant 
codes based on primes congruent to ± 1 and ± 3 modulo 8 were 
considered. Moore's PhD work [4] investigated the class which is 

This work was partly funded by an Qvenicas Research Siudenis (ORS) 
award scheme. The high throughput computing resources provided by ihc 
PlymGRID team of the tjniversity of Plymouth arc gmiefully acknowl
edged. 

congruent (o 3 modulo 8. and his work was later extended by Gul
liver el a!. |S) to longer codes. An extensive discussion on these 
two types of circulani is also given by MacWilliams et al. [6\. The 
prime-based double-cifculam codes can also be constructed over 
non binary fields, e.g. see Pless 1?) and Beenker 18) for C F ( 3 ) . 
and Gaborit [91 lor the generalisation lo prime (ields. The weight 
distributions of double-circulant codes based on primes congruent 
± 1 modulo 8. of lengths from 74 to 152 (except 138). i.e. binary 
extended Quadratic Residue (QR) codes, may be found in (lOj. 
as well as those based on'prinics congruent to ± 3 modulo 8. of 
lengths 108 and 120. 

This paper considers the weight distributions of the binary 
doublc-circulani codes based on primes, and it is organised as 
follows. Section 2 introduces the notation and gives a review 
of double-circulant codes based on primes congruent to ± 1 and 
± 3 modulo 8. Section 3 presents an improved algorithm to com
pute the number of codewords of given weight in certain doubtc-
circulani codes. In order to count codewords of given weight, (his 
algorithm requires the enumeration of less codewords than a re
cently published technique [2.10]. Based on the fact that the ex
tended QR codes are invariant under the projective special linear 
group. Mykkeltveit et al. [ I I ] developed a technique lo deduce 
the modular congruences of the number of codewords of a given 
weight in these codes. In Section 4. we describe the automor
phism group of the family of double circulani codes with primes 
congruent to ± 3 modulo 8 which contains the projective special 
linear group. Accordingly, we show that, with some modifications, 
the modular congruence method of Mykkeltveii is also applicable 
to these double-circulant codes. Using this meihod in conjunc
tion with that given in Section 3. we compute the weight distri
butions of (he quadratic double-circulant codes of lengths 76 and 
124. In Section 5, we prove that some of the results rcponed by 
Gaborit c/rt/. 110] on (heex(endedQRcodeof leng(h 138 and 152 
are incorrect, and provide corrections to these results. U has been 
obscr\'cd that, for some primes, ihcre exist two douhlc-circuluni 
codes from different constructions which have the same parame
ters, but it is not known if the two codes are equivalent. Section 6 
discusses two such codes of length ICS. and using the techniques 
presented in Section 4. determines that these codes are inequiva-
Icni. Section 7 concludes the paper. 

2. B A C K G R O U N D AND N O T A T I O N 

Let denote the space of vectors of length n with elements in 
GF(2) . A binaiy linear code is o /:-dimensional linear subspace of 

. We denote [u, as a binary linear code of length rt. dimen
sion k and minimum distance d. The weight enumerator function 

I-4244-0411-8/06/520.00 © 2 0 0 6 I E E E . 



ol yctHle istlelincd;is = / l . z ' . where/I, demties the 
number of codewords of weight i. If C is a binary linear code, 
its dual code is defined as = {w € F21 E . V n = 
0 (mod2) , f o r a l l u G C } . 

A code is called self-dual iff C = C ^ . A self-dual code is 
called Type 11. or doubly even, it' the weight of all codewdrds an; 
divisible by 4; otherwise il is called Type \, or singly even. A Type 
II self-dual code has a length that is divisible by S. A code is called 
formally self-dual (fsd) if its weight enumerator is equal to thai of 
its dual. If an fsd code contains an odd weight codeword, it is 
called an odd fsd code; olherwise it is an even fsd code. Unless 
otherwise stated, when we refer to an fsd code, we shall mean 
an even I'sd code. A self-dual, or fsd. code is called extremal IT its 
minimum distance is ihe highest possible for the given parameters. 

As a class, double-circulant codes are \n,k,d\ codes, where 
k — t)/2, whose generator matrix C consists of (wo circulanl ma
trices. A circulanl matrix is a square m x rn matrix in which 
each row (resp. column) is a cyclic shilt ol the adjacent row (resp. 
column). Such n matrix R is completely characterised by a polyno
mial fonned from lis first row,/(x) = J2!^o' r i i ' , which is called 
the defining polynomial, and the algebra of polynomials modulo 
x*" — 1 is isomorphic to that of circulants. 

Doublc-cia-u!ant codes can be put into two classes, namely 
pure, and bordered double-cirvulant, codes, whose generator ma
trices Gp and Gb are shown in (1) and (2) respectively, where tk 
is Ihe A:-dimensional identity matrix, and n 6 { 0 , 1 } . For the pur
pose of this paper, we consider the bordered case only and, unless 
otherwise staled, wc shall assume that the term doublc-circulani 
codes refers to (2). 

G. ( I ) . G,= 

1 . . . 1 n 
1 

Ik n 
1 

(2) 

Two binary linear codes, and are equivalent if there ex
ists a permulation TT on the coordinates of the codewords which 
maps Ihe codewords of .a^ onto codewords of We shall write 
this as ^ = 7 r ( £ / ) . If TT transforms C into itself, then we say that 
IT fixes the code, and the set of all permutations of this kind form 
the automorphism group of C, denoted as Aut(C). MacWilliamsw 
n/. |f>l gives some conditions on the equivalence <»f double-circulant 
codes, which are restated for convenience in the lemma below. 

Lemma I . Lei A / and he double-cirvulant codes with gen
erator matrices [l\A\ and [l\B] respectively. Ut the polynomi
als a{x) and b{x) be the defining polynomials of A and 13. The 
codes and SS are equivalent if any of the following conditions 
hold: i) B = A^. or H) b(x) is the recipmcal of a{x). or Hi) 
o(x)6(x) = I {mod x^ - 1). or iv) b{x) = rt(x") where m and 
u are relatively prime. 

For the purpose of this paper, we call the double-ctrculant 
codes based on prime congruent to ± I modulo 8 the |p -I-1, 5 (p -h 
I ),d) extended quadratic residue (QR) codes, i.e.;) = ± 1 (mod8); 
and, following [9], those based on prime congruent to ± 3 modulo 
8 the [2(p 4- l ) , p + \,d] quadratic double-circulanl codes, i.e. 
p = ± 3 (mod 8). 

2.1. Extended Quadratic Residue Codes as Double-Circulants 

The following is a summary of the extended QR codes as doublc-
circulant codes |3.6,121. Let p be a prime congruent to ± 1 mod

ulo 8 and let Q and A' he the sets vi quadratic residues and non 
residues modulo p respectively. Binary QR codes are cyclic codes 
of length p over GF(2) . For a given p. there exists four QR codes: 
S^. S which are equivalent and have dimension \{p - 1). and 

which are equivalent and have dimension ^(p + 1). The 
|p -I- 1, ^(p + l),c/ | extended quadratic residue code, denoted by 
i f (resp. J^), is obtained by annexing an overall parity check to 
i f (resp. J / ) . If p = -1 (mods), i f (rcsp. J^) is Type II; 
otherwise it is fsd. 

Il is well-known that A u t ( i f ) contains the projective special 
linear group PSL2(p) |61. If r is a generator of the cyclic group Q 
then a : i —• rx (mod p) is a member of PSL2(p). Given n € A', 
the cycles of a can be written as 

( « ) ( » , nr. nr^ n r ' ) ( l , r, ^ ^ . . . , r ')(0) (3) 

where i = ^ ( p - 3 ) . Due (o this propeny. 6', the generator matrix 

of i f . can be arranged into circulants as shown in (4). 

G 

ro ri ... nv' 1 . . . »' 0 
00 1 I . . . 1 I . . . 1 1 

0 

L R 

1 (4) 

0 1 

The rows P,pr,... ,f)r* in the above generator matrix contain 
fio(^),*^flr(3:}, . . . ,efl..<(.r), where c,(x) = x ' c ( x ) whose cotirdi-
nates are arranged in the order of (3). Note that. i f p = l (mod8), 
then a=:l , P=n and the idempoteni e(x) = ^ZMgAf̂ '"* otherwise 
n = 0. fl = \ and r.{.r.) = 1 + 5 3 „ g ; ^ j : " - If L is non-singular, 
(4) can he transformed to (2). For many i f . L is invcrlihle and 
Karlin 131 has shown ihatp = 73.97,127.137,2.11 are the known 
cases where ihc canonical fom) (2) cannol be obtained. In addition 
to form (2). G can also be transformed to (1), and Jenson 1121 has 
shown that, for 7 < p < 199, except p = 89,1G7, the canonical 
form ( I ) exists. 

2.2. Quadratic Doublc-Circulant Codes 

Let p be a prime that is congruent to ± 3 modulo 8. A binary 
[2(p + 1),P + 1,'̂ ] quadratic double-circulanl code, denoted by 

can be constructed using the following defining polynomials 

6(1) = 
x"-

i fp = 3 (mod8) , and 

i f p = - 3 (mod 8). 
(5) 

The generator matrix G of ^ can be written as follows |6] 

lo ... / p . . ro . . . T p - i 

1 0 

G = 

I 0 
B 

0 0 . . . 0 1 I ... 1 

(6) 

which is equivalent to (2) with o = 0 and = p -t- 1. If p B 
3 (mod 8), & is Type II; olherwise it is fsd wiih B = b'^. Codes 
of the form Sd form an interesting family of double-circulanl codes. 
In terms ol self-dual codes, the family contains the largest extremal 
Type II code known, n = 136. 



J . A N liMPROVKD A I X O K I T I I M T O C O U N T 
C O D E W O R D S O K G I V K N W K I G I I T F O R 

D O U B L E - C I R C U L A N T C O D E S 

An algorithm to count codewords of given weight in half-mte code.s, 
which have two full rank disjoint information sets is described 
in |21 and 110). This algorithm requires the enumeration of f̂ .̂ )̂ + 

'^'Yii'=i'^ ( i ) codewords in counting all codewords of weight vi. 
We show in the following thai, for self-dual doublc-circulant and 
fsd quadratic doublc-circulant codes, it is sufTicleni to enumerate 
Z r l ' (^) codewords only. 

Let Ci and Cs be a self-dual doublc-circulani, and a fsd qua
dratic double-circulant codes respectively, which has defining poly
nomial r(a:). We assume that wl ( / (x ) ) represents the weight of 
the polynomial f { x ) and T n , ( i ) is a set of binary polynomials 
with degree at most m. 

Lemma 2, Ut u{x).ti{T.) e 7 \ . - r ( i ) . where u'/(ii(.T)) = i. W 
a( i ) .6 (x ) 6 Tt-_2(z). The number of weight w c()de\y!ords of 
the forms c(x) = ( u ( x ) | f ( i ) | and c'(x) = (u'(x)lu'(x)l is equal, 
where i) u ' ( i ) = u ( x ) ' . t/'(x) = v { x y . in the case ofC\: and 
it) « ( x ) = [c|a(x)l . v{x) = |7l6(x)I. u'{x) = [c|a(x)=|. u'(x) = 
[7|6(x)^] and 7 = ti7(n(x)) (mud2). in the case ofC^. 

Pniof i) The proof is immediate from the self-dual property, ii) 
For C2. we have (x +1 ) | r (x ) . r(x)^ = 1 -Hj(x). rf(x)( 1 -|->(x)) = 
d{x) if wi ( r f (x)) is even, otherwise rf(.T)(l+>(x)) = rf(x)+.7{x). 
where d{x) € VV-2(x) and j { x ) is an all-ones polynomial. If 
wi(a(x)) is odd and c = 0, we have c{x) = [0 |a(x) |I |6(x) | where 
6(x) = a (x )r (x ) . H follows that 6 (x) 'r (x ) = a{xYr{xf ~ 
a ( x ) ^ + j ( x ) . which has even weight. By adding the first row 
of (2). we arrive at c'(x) = |ll&(x)''|0|n(x)'^l. which has the same 
weight as that of c(x) since the weight of a polynomial and its 
squared is the same. irwt(rt(x)) is even and c = I , we havccCx) = 
| I | a ( x ) | 0 | 6 C x ) - ^ > ( I ) i and it follows lhal ( 6 ( x } + > ( i ) ) V ( x ) = 
a{xf since j ( x ) V ( x ) = 0. We know thai wi((6(x)+>(x)) ' ) is 
odd and hence. c'(x) = [0i{6(.x)+j(x))^|l |n(i)^j which has the 
same weight as that of c(x). The same result holds for the remain
ing cases of \v»(a(x)) and c. Given c ( i ) there exists c'(x) of the 
same weight, thus the number of codewords of the forms c(x) and 
c ' ( i ) is equal. • 

From Lemma 2. ii follows ihai, in order to count codewords 
of weight w, the enumeration of 51"=? (t) codewords only is re
quired and 

W 2 - i 

(7) 

where a, is the number of weight u; codewords which have i non 
zeros in the first k coordinates. 

4. N U M B E R O F C O D E W O R D S O F G I V E N W E I G H T S IN 
Q U A D R A T I C D O U B L E - C I R C U L A N T C O D F S 

Let Q and N be the sets of quadraiic residue and non residue mod
ulo p respectively. The linear group PSL2(p) is generated by the 
set of all permutations to the coordinates (cw.0,1, . . . ,p - 1) of 
the form 1/ — (ay + 6)/(cy + d) where a , 6 , c , d € GF(p), 
y e GF(p) u {00} and ad - be = 1. It can be shown that this 
form of permulalion is generated by S . y -* y+l, — p^y 

and 7'; i/ —• translormaiions. where p is a primitive element 
of GF(p). In fact, V is redundant, since V = TS'^TS^TS^, 
where / i € GF(p) and (p. p) = 1. Consider the coordinates 
{00,0 ,1 , . . . .p - 1). the transformation S leaves the coordinate 

invariant and introduces a cyclic shift to the rest of the coordi
nates, l-ci Ri and A, denote the iih row of the right and left circu-
lants of (6) respectively, J and J' denote the last row of the right 
and left circulant of (6) rcspcclivcly. Using the argumenis in |61. it 
can be shown that 7'(fto) = /?o -t- J, 7 ' ( f i , ) = R . i ; , + /?o. 
rU<,) = + Ro-hJ. T{Lo) = U + J\ T{L,) = 

L^xfs + LQ and7'(/.() = L.xfi + /-o + J' forp = 3(mod8) . 
andr(Wo) = / 2 o . r ( / ? J = fi.,/, + J, T{Rt) = /?_,/, + Ro, 
T{U) = U , T{L,) = L + J' and T{L,) = / . -t- U 
for p = - 3 (mod 8), where s e 0 and i € A'. This establishes 
Ihe following theorem on Aui(.0) (6.91. 

Theorem 1. The automorphism group of the \2{p-i- l ) , p + \,d] 
binary quadratic doubte-circulant codes contains PSL2 (p) applied 
simultaneously to both circulants. 

The knowledge of A\it{^) can be exploited to deduce (ho 
modular congruence of Ai of S9. WHC A u l { ^ ) . then A, of .5? 
can be categorised into two classes: one which contains all weight 
t codewords lhai are invariant under H and the other which con
tains the rest. The latter class forms orbits of size 17f|. the order of 

n. 
For .5?. we shall choose H - PSL2(p). Each A, of ii? con 

be wriuen as Ai = n, • |7<| + A,(7<). where \'H\-^^p{p' - I ) 
and AiiH) is ihe number of weighi i codewords fixed by some 
elements of 7t. We can faciorise the order of Ti into product of 
distinct primes, i.e. \'H\ = f l j <lj' where q^ arc distinct primes. 
As a result, Ai{H) (mod can be obtained by applying the 
Chinese-Remainder-Theorem to -4.(5,^) (mod q^') lor all qj that 
divides (7^1. where 5,̂  is the Sylow-q^-subgroup of W. In order 
10 compute v 4 , ( 5 , J . we can find the subcode of C that is fixed 
by 5o.. and compute the number of codewords of weight i in this 
subcode. 

In order to obtain the subcode fixed by 6',̂  for all primes qj 
that divide |7^|. the following method can be used. Ixt c/, (resp. 
Cr.) and ct., (resp. Cr,,) denote ihc iih coordinate and ilh per
muted coordinate, with the respect lu the permutation in the 
left (resp. right) cireulant form respectively. The invariant subcode 
can be obtained by solving a set of linear equations consisting of 
the parity-check matrix of i ^ . C(,-f-Q., = Oand*;r,-l-Cr,, = 0 f o r 
all i € GF(p) U {00}. The solution is a matrix of rank r > (p+1), 
which is the parity-check matrix of the |2(p + I ) , 2(p + I ) - r, d'\ 
invariant subcode. 

Following [6], we repi^seni an element of PSL2(p) by a 2 x 2 
matrix (" 5 ] • where a, 6, c, d e GF(p) and ad - be = I . For 
each odd prime ^ j , is a cyclic group which can be generated 
by some 5?,, = [^5] € PSL2(p) of order ^ j . Because S,̂  is 
cyclic, il is straightforward to obtain (he invariant subcode, from 
which we can to compute j 4 i ( S , . ) . 

On the other hand, the case of <?> = 2 is more complicated. 
For qj - 2. S'a is a dihedral group of order 2'""*"*, where 111 + I 
is the maximum power of 2 thai divides According to Bum-
side [13], for p = ± 3 (mod 8), the highest power of 2 that di
vides |W| is 2^ and hence, m = I . Accordingly, ihere are 3 
subgroups of order 2 in Ŝ , namely Hi - { l . P ) . CS{1,7'1 
and a \ = {\,PT} where P , r 6 PSL2(p). f^ = = I and 
r P f ' = P " ' . Let 7 ' = ( p ^ i i j , which has order 2. It can be 



] . has b c and shown lhai any order 2 pcrniuialion, f = 
a. (f e GF{p) such Ihai ad - be = 1. 

Apart from subgroups of order 2. 6 3 also contains a non cyclic 
subgroup of order 4. denoted by G'^. This subgroup contains, apan 
from an ideniiiy. ihree permutations of order 2 (I3 | . i.e. a Klein 4 
group. CM = { l . P.T.PT}. 

Following [111. i( can be shown (hat. in order 10 compute 
/liC-^j'a). it is only necessary 10 consider the three subgroups of 
order 2 and G4. However, all the three subgroups of order 2 are 
conjugate in PSL2(p) and therefore, the subcodes fixed by C.'2.6'2 
and / / 2 have identical weight dislributions and consider cither <mc 
of them, say G S . is sufficient. Thus, the number of codewords of 
weight I in the subcodes (ixed by S2 is given by 

A,{S2) - .1-4,(C;S) - 2/1.(6-4) (mod 4). (8) 

In summary, in order to deduce the modular congruence of the 
number of weight i codewords in ^ , il is sulHcicnt to compute 
the number of weight i codewords in the subcodes fixed by C2, 

and Z„ for all odd primes </ that divide |7^j. The result fol
lows by applying the Chinese-Remainder-Theorem to the number 
of weight i codewords in the subcodes. 

As examples, wc con.<;ider the previously unknown weight dis
tributions of the [7G. .38,12) and (124,62,20) fsd quadr^itic double-
circulanl codes. The weight enumerator of an fsd code is given by 
Gleason's theorem 111 

A{z) (9) 

for integers K,. Hence, in order lo compute A{z). A2, forG < i < 9 
and 10 < i < 15 have to be computed for the [76, .38. 12] and 
(124,62,20) codes respectively. 

In the case of Ihe [76,38,12| code, p = .37 and |PSL2(37)| = 
2^ -3^ • 19 -37 = 25308, and for the (124.62,20) code, p = 61 
and |PSL2(61)| = 2"' • 3 • 5 • 31 • 61 = 11.34G0. The elements of 
PSL2(p) which generate (he required permutations are as follows 
P = [ j 3 M . V ' = [ 3 ' i ; i ] . ^ 3 = [ 3 " o l ] . ^ r . . = [ 3 l i l ^ n d Z 3 7 = 
[3'!i3^] for p = 37. and I'^UAl^T =[S^\,], Z-s^l^^]], 

= [A . ' 7 ] ^ ^31 = [Soil and = [,% for p = 61. The 
number of weight t codewords in various subcodes of dimension 
fc, which arc fixed by the PSL2(p) permutations arc 

G4 53 Sa 531 5c 1 
C4 53 Sio S37 Jl: 32 18 22 14 2 2 

h 20 12 14 2 2 A^a 2U8 12 30 3 0 0 
21 3 3 0 0 and A22 400 12 10 0 0 0 

Ai4 0 0 0 0 0 
and 

A24 1930 3G 50 0 0 0 
153 11 24 0 0 A26 81S0 40 200 2'] 0 0 

Ais 7'M 20 5'1 0 0 Aia 20430 MO 020 48 0 0 
A-so 8493G 170 900 6 0 0 

forp = 37 and 61 respectively. Applying the Chincse-Rcmainder-
Theorem. we have 

>lia=n,2-25308+2109 
/li(i = niG-25308-1-10545 

/ lu=n i4 -25308 
/1i8 = ni8-25308 

(10) 

for the (76,38,12) code, and 

/120 = "20-1I3460+907C8 
>l24 = n24 113460-^94550 
/I28 = » 2 s l l 3 4 6 0 - f - 7 1 8 o 8 

>l22 = H22-II3'160+75640 
/l20 = "26 113460+83204 (I 
/»30 = n3oll3460-H68076 

forihe 1124,62,20) code, where ti, are non negative integers. 
Using the algorithm in Section 3, we count codewords of the 

weights required by Glea.son's theorem and then derive the weight 
distributions of the codes, which are shown as follows, using (9). 
Since the weight dislributions are symmetrical with A, = A,,.,, 
only half terms are given. 

t Ai 1 At t A, t A, 
0 1 20 7489059 28 362C095793 30 4520U010G7U 
12 2109 22 53574224 30 9404812736 38 50157375456 
16 80469 21 275509215 32 19010283420 
18 961704 26 1113906312 34 33007534032 

6.38.12) 

[124.02;20 
t A, 1 A, 
0 1 42 977979841051908 
20 90708 44 3433274842143012 
22 529480 40 10482288501057056 
24 10873250 48 27900300809721380 
20 171180884 50 64924782329852000 
28 2159102198 52 132248827882014296 
30 22608808776 54 230218089014480048 
32 199576550020 50 370432817595720572 
34 1489045013508 58 510493584341738312 
30 9400389337938 GO 0180491)0418079982! 
38 51549138453256 62 650543439108163370 
40 241551099887720 

Comparing the above A, with (10) and (11). we can immediately 
see (hat ni2 = 0. n u = 0 . nic = 3 and nm = 38 for [7C,38,12] 
code; n20 = 0. TI22 = 4. H24 = 05, 7120 = 1508. JIQ^ - 19029 and 
7130 = 199795 for (124,62,20] code. Clearly (10) and (11) provide 
an independent check on die accuracy of the weight distributions. 

5. C O R R K C T I O N S T O T H K W K I G M T D I S T R I B U T I O N S 
O K T H K K X T K N D I - I ) Q U A D R A T I C - R E S I D U E C O D E S 

In this .<;ection, we dcmon.<Llrate the importance of the modulai'con
gruence method in providing independent verification to the num
ber of codewords of given weights enumerated exhaustively. Wc 
consider two cases of [p+ l . ^(p-l-l),rf) code i f . namely p = 137 
and p = 151. Note that, in the case ol* J£f. the method originally 
proposed in [ 11) is used. 

5,1, Extended Quadratic-Residue Code of Prime 137 

Gaboril el ai gave A2,. for 22 < 2i < 32. of i f for p = 137 
in [10] and we will check the consistency of these result.s. For 
[p-l-1, ^ (p-l-1), d] code i f . we know that PSL2(p) C A u t ( i f ) and 
f o r p = 137.wehave|PSL2(p)) = 2^-3-17 23-137 = 1285608 
and we need to compute >42i(5g). where 22 < 2i < 32. for all 
primes q dividing IPSL2(p)!• Lei P = [ 3°7 311 • = [ .36 01 • = 
[ .So 11. 2iT = ( ,SG i I . and Z 2 3 = [ ,So ^\ 1 • Il is not necessary 
10 find Zp as it only fixes the all zems and all ones codewords. 
The number of weight i codewords in various fixed subcodes of 
dimension k are 

53 5,7 523 5|37 
k 35 19 IS 23 3 1 

A22 170 6 0 0 0 0 0 
A24 612 10 18 40 0 0 0 
A26 1000 36 0 0 0 0 0 
A2S 8194 36 00 0 0 0 0 
A3n 34810 126 22 943 0 0 0 
As2 114563 261 189 0 0 0 0 



and from the Chincse-Rcmaindcr-Theorcm. we know that 

/122 = "22 • 1285G08+3214 02 
/l24=n24 1285008+1071340 
A2G = '120 • 1285G08+9G420C 

/l28 = "?9 1285008+321402 
= nao • 1285C08+428536 

>l.i2 = ».i2 • 1285G08+1124907 
(12) 

for .some integers n i . Comparing these to the results in [10], we 
can immediately see that n j ^ = 0. n24 = I . nau = 16, mA = 381, 
and both and / I ja were incorrectly reported. By codeword 
evaluations, we have established that Am = G648307504 [n-so ~ 
5171) and /I32 = 77805259035 (n.-ia = G0506) in (12). 

5.2. I^xtcnded Quadnitic-Residuc Code uf Prime 151 

Por J£f o f p = 1 5 1 . |PSL2(p)| = 2^ • 3 • 5^ • 19- 151 = 1721400 
« n d P = [ ; 2 . ^ o ^ 4 l . V = ( . S u i | . ^ 3 = [ . S o l l . 2 . = | .S ,2 '7 l - -nd 

= [ 150 e ] ' number of weight i codewords in the various 
fixed subcodes of dimension k arc 

55 5'l9 
k 38 20 20 IG 4 I 

A-io 38 2 0 25 0 0 
A2A 26G 4 4 100 0 0 0 

and we have 

A20 = "20 • 1721400 + 28090 and 

A2A = • 1721400 + 717250. 

It follows thai A20 is correctly reported in 110], but A24 is incor
rectly reponed as 717230. Using the method in Section 3. we have 
established that i42o = 28fi90 and/h^ = 717250. Using Glea.son's 
theorem for Type 1! codes 111. wc give the corrected weight distri
bution of this code. 

iI52,7C,20| 
1 Ai 1 Ai 
0 1 48 542!J874340y3298550 
'̂ 0 2SGD0 rp2 9222:tG:i801C9G2G9G5S 
24 717250 ^6 98458872937331749G15 
•26 lG42502o() GU G7O74032552O7ySlII83O 
32 39390351505 G4 294967447U653G15754525 
•M 54984181IG2110 G6 844G0255y248350G824150 
40 43093071t62I8aO 72 158405G4760239238232420 
44 1971491484G00']50O 76 195273G465900Gti972G53G8 

6. (168, 84, 24] D O U B L K - C I R C U L A N T C O D E S 

If (2p + 1) is a prime forp = 3 {mod 8). there exists J5f and iS? 
which have the same length 2(p + 1) and dimension p + 1, and in 
some cases, the minimum distances are also the same. Some ex
amples of .such codes arc the |8 ,4 ,4j . [24,12,8| and [168,84,24] 
codes. Using Lemma I, we found that, for the two former codes, 
Sf andSJ arc equivalent. Wc consider the (ICS,84,24] double-
circulant codes in this section. Note that the minimum distance of 
^ was shown to be 24 in [14] and that o f ^ was shown to be < 28 
in 15] and our computation confirms that it is 24. 

The defining polynomials (in hexadecimal) of Jjf and £3 are 
cCac71<ia446cd0c8rfrfd3c and d978c57/4cc8rf015cclG4 respec
tively. Although these two polynomials have the same weight, the 
resulting double-circulant codes do not satisfy any condition in 
Lemma I . indicating that they are likely lo be inequivalent. The 

inequivalence of these codes can he confirmed by deducing their 
A{z). Using (he modular congruence me(hod. iican be shown that 

-424 = • 2328048 +77C2I0 and, /I24 = "24 • 285852. 

where A2A and A2A arc >l24 of i f and rcspecdvely. For inte
gers "24, >0. /I21 ?^>424 and thus, they are inequivalcnl. 

7, C O N C L U S I O N S 

We have presen(ed a more el llcient meihod of codeword counting 
algorithms for self-dual double-circulanl and fsd quadratic doublc-
circulani codes in addition to a meihod to deduce the modular con
gruent of the weight distributions of (he quadratic double-circulanl 
codes. This modular congruence method is derived from the clas
sic (echnique proposed hy Mykkchvetl et al. in 1972, which was 
applied to the extended QR codes. Using this method, wc are able 
to deduce the inequivalence of tJie (168.84,24] extended QR and 
quadratic double-circulani codes, and also to C0TTec( (he previously 
published results on the weight distribution of the (138,09,22| and 
(1.52.70.20) cxiended QR codes. 
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Abatmcl — A n efficient algorithm to count all code
words of given weight and a method to deduce the 
modular congruence of the weight distributions of 
the binary quadratic double-circulani codes arc pre
sented. Using this algorithm, we give the weight dis
t r ibut ion of the quadratic double-circulant code of 
length 1G8 and that of the extended quadratic-residue 
code of the same length. The weight distributions of 
these two inequivalent codes of length 168, which were 
previously unknown, arc independently verified and 
proved to be accurate using the modular congruence 
method. 

I . I N T I I O D U C T I O N 

Binary double-circulant codes forms an important class 
of codes due to thoir rich mathematical stnictitre and 
their high minimum distance properties. Closely related 
to these double-circulant codes are the self-dual and for
mally self-dual codes. The self-dual |)roperty of a code 
places a tight restrictions to its weight distribution. In 
terms of deducing the complete weight distribution of a 
code, these restrictions are of great advantage since the 
number of codewords of certain weights only are required. 

An interesting family of binary double-circulant codes, 
which includes self-dual and formally self-dual codes, is 
the family of codes based on primes. A classic paper for 
this family was published by Karlin [1] in which double-
circulant codes based on primes congruent to ±1 and ± 3 
modulo 8 were considered. Moore's PhD work (2| investi
gated the class which is congruent to 3 modulo 8, and his 
work was later extended by Gulliver cl al. [3| to longer 
codes. The prime-based double-circulant codes can also 
be constructed over non binary fields, e.g. see Pless [4] 
and Bcenker [5| for GF(3), and Gaborit (6j for the gener
alisation to prime fields. 

This paper considers some methods related to code
word counting and the weight distributions of binary 
double-circulant codes based primes congruent to ± 3 
modulo 8, which following (6), wc will refer to as the 
quadratic double-circulant codes. This paper is organised 
as follows. After introducing notations and summarising 
the background of the quadratic donble-circulant codes 

'This work was partially supported by an Overseas Research 
Studcnls ( O R S ) award scheme. 

in Section I I , a more efficient algorithm to count all code
words of a given weight is presented in Section I I I . This 
codeword counting algorithm requires the enumeration of 
less codewords than a recently publislicd technique [7,8]. 
Based on the fact that the automorphism group of the 
quadratic double-circulant codes contains the projective 
special linear group, we present a method of deducing 
the modular congruence of the weight distribution of this 
family of codes in Section IV. For many codes, to obtain 
the number of codewords of a given weight in reasonable 
time refpiires parallel comptitations. In this case, the enu
merations may have to be split into many sub processes 
and errors in any of the sub processes wil l render the 
overall comptitations to be incorrect. Thus, it is impor
tant to have an independent check on the results and the 
modular congruence method can be used for this purpose. 
For the extenderl quadratic residue (QR.) code.s, we have 
demonstrated the importance of having an independent 
check in |9|, where wc were able to correct some published 
results. Using the efficient codeword counting algorithm 
and the modular congruence method, we give the weight 
distribution of the [168,84,24] quadratic double-circulant 
code in Section V and that of the [168,84,24] extended 
QR codes in Section V I . The weight distributions of these 
two codes were previously unknown. Finally, conchisions 
are given in Section V I I . 

I I . B A C K C I I O U X D AND N O T A T I O N 

Lot F2 denote the spiice of vectors of length n with ele
ments in GF(2). A binary linear code is a /c-dimensional 
linear subspacc of E^. We denote [n, k, d] as a binary lin
ear code of length n, dimension k and minimum distance 
d. The weight enumerator function of a code is defined 
as A(z) = ^"^iiAiZ\ where Ai denotes the number of 
codewords of weight /. If C is a biiuxry linear code, its 
dual code C-^ is defined as C-^ = {w e ^ " J Q ' U.W, = 
0 (mod 2), for all u € C}. 

Two binary linear codes, and are etjuivalcnt if 
there exists a permutation n on the coordinates of the 
codewords which maps the codewords of ^ onto code
words of ^ . We shall write this as ^ = 7 r (^ ) . If TT 
transforms C into itself, then we say that it fixes the code, 
and the set of all permutations of this kind form the au
tomorphism group of C, denoted as Aut(C). 

A code is called self-dual i f and only i f C = C-^. A self-
dual code is called Type I I , or doubly even, if all codeword 
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wfiights aro divisibln by 4; ol.horwiso i t is oallcKl Typo. I , or 
singly even. A Type IF self-dual code has a length that is 
divisible by 8. A code C is called formally self-dual (fsd) 
if C ^ C^, but. it.s weight enumerator is equal to that of 
its dual. If an fsd code contains an odd weight codeword, 
it is called an odd fsd code; otherwise i t is an even fsd 
code [10], Unle.s.s otherwise stated, when wc refer to an 
fsd code, we shall mean an even fsd code. A self-dual, or 
fsd, code is called cxb'einal if its tninimurn distance is the 
highest possible for the given paruiiieters. 

As a class, double-circulant codes are [TI,/:| codes, 
where k = n/2, whose generator matrix G consists of 
two cii'culant iimtiiccs. A citculant matrix J-t is a square 
771X m motrix in which each row (resp. column) is a cyclic 
shift of the adjacent row (resp. column). Such a matrix R 
is'completely characterised hy a polynomial formed from 
its first row, r{x) = J2T=V n i * , which is called the defin
ing polynomial, and the algebra of polynomials modulo 
.r'" — 1 is isomorphic to that of circulants. 

Double-circulant codes can be put into two classes, 
namely pure, and bordered double-circulant, codes, whose 
generator matrices Gp and Gb aro shown in (1) and (2) re
spectively, where 1^ is the /:-dimcnsional identity matrix, 
and a G { 0 , 1 ) . Wc consider the bordered case only in this 
paper and, unless otherwise stated, we shall assume that 
the term doublc-circulant codes refers to (2). 

R ( 1 ) . G 6 = 

1 . . . 1 Q 

1 

R 
1 

(2) 

A. Quadmtic Double-Circulani Codes 
Lot p be a prime that is congruent to ± 3 modulo 8. Let 
Q and be sets of quadratic and non quadratic residues 
modulo p respectively. Wc assinne that the polynomials 
' / W = E,eQ^' '-̂ "f* n{x) = ZieN'''''- A (2(;>+ !) , />+ 
binary quadratic double-circulant code, denoted by £9, 
can be constructed using the defining polynomial 

7(x) if p = 3 (mod 8), and 

if p = - 3 (mod 8). 
(3) 

Following [ U ] , the generator matrix G of ^ is 

G = 

L to ..• /p-t Too TQ . . . rp_1 
1 0 

1 0 
B 

0 0 . . . 0 1 1 . . . 1 

(4) 

"which is equivalent to (2) with a = 0 and /c = p + I . Let 
j{x) = I + X -{• x'^ ... xP-\ the following are some 
properties of ^ [ I j : 

L since {x + l ) | 6 ( i ) , wt(6(a:)), i.e. the weight of 6 ( i ) , 
is even and hence, b{x) does not have inverse, but 
( 6 ( x ) + j ( x ) ) d o e s ; 

2. for p = ± 3 (mod 8), 2 € A' and we have q{xf = 
n{x}, b(xr = 1 + 7 ( x ) and (6(x) + j ( z ) ) 3 = 1; 

3; for p = 3 (mod 8), - 1 6 Â  and we have b{x)' =^ 
1 + 7i(x) and thus, ^ is Type-II by property 2; and 

4. for p = - 3 (mod 8), - 1 G Q and wc have b{x)'^ = 
/^(.7;) and it follows from property 2 that ^ is fsd. 

Codes of the form ^ form an interesting family of 
double-circulant codes. In terms of self-dual codes, the 
family contains the longest extremal Type I I code known, 
71 = 136. Moreover, ^ is the binary image of the extended 
QR code over GF(4) [12]. 

It is well-known that the automorphism group of the 
[(/^ + l ) i ^(p + 1).<^1 binary extended quadratic-residue 
codes contains the projective special group, PSL2(p) [ l l | . 
This linear group PSL2(7J) is generated by the set of all 
permutations to the coordinates (oo, 0 , 1 , . . . , p — 1) of the 
form y —* (ay + b)/{aj + d) where a,6,c,d G GF(p), y G 
GF(7j)U{oo} and nd-hc=i. I t can be shown that this form 
of permutation is generated by following transformations 

5 : 2 / - y + l , V:y and T : y 

where p is a primitive element of GF(7>). i n fact, V is re
dundant, since V = TSf'TS^TS^, where M G GF(p) and 
(p,p) = 1. Consider the coordinates (oo ,0 ,1 , . . . ,p - 1), 
the transformation 5 leaves the coordinate invariant 
and introduces a cyclic shift to the rest of the coordi
nates. Let Ri and denote the i th row of the right and 
left circtilants of (4) respectively, J and J' denote the last 
row of the right and left cirenlant of (4) respectively. Us
ing the arguments in (11), it can be shown that the effects 
of T to the circulants are as follows: 

T for p = 3 (mod 8) for p = - 3 (mod 8) 
r{Ro) 
nRs) 
T(Ri) 

R-Ms + i^ 
R-x/f^Ro-\-J 

R-Xfs + J 
R - X / I + RQ 

T{Lo) Lo + 
+ i-o 

//_!/( -\- Lo + J' 

Lo 
L-i/s-^J' 
L^i/t + Lo 

where s e Q and t G A^ This establishes the following 
theorem on A u t ( ^ ) [ l l | [ 6 j . 

T h e o r e m 1. The anlomoqjhism group of the [2(p + 
l ) , p + l,d\ binary quadratic double-circulant codes con
tains PSL2(p) applied simultaneously, to both circulants. 

The knowledge of Au t ( , ^ ) can be exploited to deduce 
the-modular congruence of 4̂̂  of ^ and this is shown in 
Section IV. 

I I I . A M O R E E F F I C I E N T A L G O R I T H M T O C O U N T 

C O D E W O R D S OF G I V E N W E I G H T S 

An algorithm to count codewords of given weight in half-
rate codes, which have two ful l rank disjoint informal 
tion sets is described in (8) and [7]. This algorithm re
quires the enumeration of (^y^^) + 2 • (^) code
words in counting all codewords of weight w. We show in 
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the following I hat, for .solf-dual floiiljlo-circtilaiit. luid fsd 
quadratic double-circulant codes, it is sufficient to cmi-
inerate ( i ) codewords only. 

Let C\ and C2 be a self-dual doublc -c irculHii t code, and 
a fsd quadratic double-circulant code respectively. The 
set of binary polynomials with degree at most m is de
noted by Tm(x). 

Lemma 1. Let u{x),v(x) € Tk-i{x), where wt{u{x)) = 
7", and a{x),h{x) € Ti._2(.7.*). The nninhcr of weight w 
codewords of the fonns c{x) = (7i(x) | i ; ( i)) and c'(x) = 
(t;'(x)|u'(x)) is equal, where i) = v(x)^, v'{;x) = 
t / ( .7;) ' ' , in ihe case of C\ ; and it) n(j:) = (c)a(:/;)), v(x) = 
[7l6(x)), xi'(x) = [ t H x f ] , v'(x) = (7|6(x)2) and 7 = 
wt{a{x)) (mod2), in ihe case 0/C2. 

Proof, i) The proof is immediate from the self-dual proi> 
crty. ii) For wc have (i(x){\-hj{x)) = d(x) if wl{rf(x)) 
is even, otherwi.se d{x){\ + j{x)) = d{x)+j{x), where 
d{x) € T]t_2(^)- If wt(a{x)) is odd and c = 0, we have 
c(x) = (0|a(x)]l|6(x)) where b(x) = a(x)r(x). I t fol
lows that 6(x)2r(x) = a{xfr{xf = a{x)^+j(x), which 
has even weight. By adding the first row of (2), we 
arrive at c'(x) = [l|6(x)^]0)a(x)^], which has the same 
weight as that of c(x) since the weight of a polynomial 
and its square is the same. If wt(a(x)) is even and 
t = \ , wc have c(x) = ( l ]a( i ) ]0 |6(x)-f j (x ) ) and it fol
lows that (6 ( x ) + j ( x ) ) 2 r ( x ) =( j (x)2 since j{xfr{x)^0. 
We know that wt((6(x)-^j(x))^) is odd and hence, c'(x) = 
(0|(6(x}4-j(x))^|l|a(x)2] which has the same weight as that 
of c(x). The same result holds for the remaining cases of 
wt(a(x)) and c. Given c(x) there exists c'(x) of the same 
weight, thus the muiiber of codewords of the forms c(x) 
and c'(x) is equal. • 

From Lemma 1, it follows that, in order to count code
words of weight w, the enumeration of Y^"'^i (^) code
words only is required and 

Au, = o-wn + 2 ^ a, (5) 
i = l 

where Q ; is the number of weight w codewords which have 
i non zeros in the first k coordinates. 

I V . N U M B K R OK C O D K W O R D S OF G I V E N W E I G H T I N 

Q U A D R A T I C D O U B L E - C I R C U L A N T CODES 

I f A u t ( ^ ) , then Ai of ^ can be categorised into two 
classes: one which contains all weight i codewords that 
arc invariant under 7i and the other whicli contains the 
rest. The latter class forms orbits of size ]H), the order 
of W [ I 3 ) [ l l , pp. 505). 

For we shall choose H = PSL2(/j), which luis or
der 5p(p^ - 1). Each Ai of ^ can be written as Ai = 
Hi • \n\ + Ai{H), where Ai(7{) is the number of weight 
i codewords in a subcode fixed by some elements of Ti 
and n, is a non negative integer. Since \H\ = Oj ^ j ' ! 
where qj are distinct primes, Ai{H) (mod \H\) can be 

obtained by applying; the Chine.so-Remaindnr-Thoorein 
to Ai{St^.) (mod q'j') for all qj that divides where 
Sq. is the Sylow-f/j-subgroup of Ti. In order to comptitc 
Ai{Sq.)y we simply find the stibcode of C that is fixed by 

, and compute the number of codewords of weight i in 
this subcode. 

In order to obtaiti the subcode fixed by Sg- for all 
primes qj that divide \H\, the following method can be 
used. Let Q ; (resj). C r . ) and c/,, (resp. C r , , ) denote the 
tth coordinate and i th permuted coordinate, with respect 
to the permutation Z^., in the left (resp. right) circu-
lant form respectively. The invariant subcode can be ol>-
tained by solving a set of linear equations consisting of the 
parity-check matrix of Q . + C / . , = 0 and + C r . , = 0 
for all i 6 GF(;j) U { n c } . The solution is a n i H t r i x of 
rank r > (p -I- 1), which is the parity-check matrix of the 
{2{p + l ) , 2 { p -I- 1) - r) invariant subcode. 

Following (11), we represent an element of PSL2(p) by 
a 2 x 2 matrix [° J ] , where a , 6 , c , £ / 6 GF (p) and od-bc -
1. For each odd prime qj, Sq^ is a cyclic group which can 
be generated by some Zq^ ~ ["d] ^ PSL2(p) of order qj. 
Because 5,,̂  is cyclic, it is straightforward to obtain the 
invariant subcode, from which we can compute Ai{Sq.). 

The cixse of qj = 2 is more complicated. For qj = 2, S2 
is a dihetiral group of order 2"*+', where m + l is the max
imum power of 2 that divides According to Burn-
side [14], for p = ± 3 (mod 8), the highest power of 2 that 
divides \H\ is 2^ and hence, m = I. Accordingly, there 
are 3 subgroups of order 2 in 52, namely H2 — { I i P}^ 
C7g{ l , r } and = { 1 , ^ ^ } where PT € PSLZCP): 
P'^ = 72 = 1 and TPT-' = ' . Let T = [ i ] , which 
has order 2. I l can be shown that any order 2 permuta
tion, P= J ] , has h = c.atul a,d € GF{p) such that 
a d - 6c = I. 

Apart from subgroups of order 2, 52 also cotitains a non 
cyclic subgroup of order 4, which contains, apart from an 
identity, three permutations of order 2 [14], i.e. a Klein 4 
group, G, = {U.P/J\ PT). 

Following [13), it can be shown that, in order to com
pute Ai{S2), it is only necessary to consider the three 
stibgrotips of order 2 and €4- However, all the three .sub
groups of order 2 are conjugate in PSL2(p) and therefore, 
the std^codes fixed by G^^^i '^2 'lave identical weight 
distribtitions and considering any of them, say G§, is suf
ficient. Thus, the number of codewords of weight i in the 
subcodes fixed by 52 is 

Ai{S2) = 3yl.(G^) - 2Ai{G^) (mod 4). (6) 

In summary, in order to deduce the modular congru
ence of the number of weight i codewords in i t is suffi
cient to compute the numiicr of weight i codewords in the 
subcodes fixed by H2, G4 and Zq, for all odd primes q that 
divide |W|, and apply the Chincse-Remainder-Theorem to 
them. In the following .section, we apply this method to 
the [168,84,24] binary quadratic double-circulant code as 
an example. 
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V . O N T H E WI-ICJHT D i s T i t i B u r i O N OK T H E 

[108,84,2^1 Q U A D R A T I C D O U B L E - C I R C U L A N T C O D E 

Gulliver ot. rtl. lifts .shown thai, thn (108,84,2^1) 
quadratic double-circnlant code is not an extremal self-
dual code since i t has niininuini distance less than or equal 
to 28- The weight, enumerator of a Type H code of Icnfttli 
71 is given by Gleason's theorem, which is expressed as (10) 

A{z)= 53 Ki(\ +Uz^ + z'^)^-'^'{z\\ - z'^yy (7) 

1=0 

where /C, are some integers. As shown in (7), only the 
first few terms of Ai are required in order to completely 
determine the weight distributions of Type I I codes. For 
the case of [108.84,24] code ^ , only the first 8 terms of 
Ai arc required. Using a parallel version of the eflicient 
codeword emnncration method described in Section I I I , 
we determined that all of tlicse 8 terms are 0 apart from 
Ao = 1, A24 = 571704 and A2& = 17008194. 

,Although computing the number of codewords of 
weight i is straightforward, it is desirable to liave a 
method of checking the number of codewords computed. 
The modular congruence method introduced in the pre
vious section can be used for this purpose. Consider 
the case of the [168,84,24] code ^ , now p = 83 and 
IK] = 2^ . 3 • 7 • 41 • 83 = 285852. We will consider the odd 
prime c*\ses in the first place. 

For prime ^ = 3, a cyclic group of order 3 53 can be 
generated by = [BII] found that the subcode 
invariant under ^3 has dimension 28 and has 03 and 0 
codewords of weights 24 and 28 respectively. 

For prime q = 7, we have Z7 = [^2 10] ^^hich generates 
67. The subcode fixed by 67 has dimension 12 and there 
are no codewords of weights 24 and 28 in this subcode. 

Similarly, for prime = 41, the subcode fixed by 541, 
which is generated by Z^i = [si I] dimension 4, 
contains no codeword of weights 24 and 28. 

Finally, for prime q — 83, the invariant subcode has 
only the all-zeros, all-ones, { 0 , 0 , . . . , 0 , 0 , 1 , 1 , . . . , 1,1}, 

84 84 
The cyclic and ( 1 , 1 , . . . . 1 ,1 ,0 ,0 . . . . .0 .0} codewords. 

84 84 
group 5g3 is generated by Zsa = [§2 si ] • 

For the case of g = 2, we have P = [}j ^^^^ = 
[g2o • The subcode fixed by S2, which has dimension 
42, has 196 and-1050 codewords of weights 24 and 28 
respectively. On the other hand, the subcode fixed by 
C 4 , which has dimension 22, has 4 and G codewords of 
weights 24 and 28 respectively. 

Thus, using (6), the number of codewords of weights 
24 and 28 fixed by 52 are 

A 2 A ( S 2 ) = 3 • 196 - 2 • 4 = 0 (mod 4), and 

A 2 Q { S 2 ) = 3 - 1050 - 2 -6 = 2 (mod 4) 

and by applying the Chinese-Rcmainder-Theorem to all 

Ai{Sq) for i - 24,28, wo arrive at 

A2A = "24 • 285852 

/ l2a = 'i28 -285852 + 142926. 
(8) 

From (8) and (9), we have now verified / I24 fmd A2S, 
since they have equality for non negative integers /i24 and 
"28 ("24 = 2 and "23 = 59). Using Gieason's theorem, 
i.e. (7), the weight enumerator of the (168,84,24] code ^ , 
denoted by A{z), is obtained and is given in (10). 

571704 •(22-» + 2i44j^ 

.17008194 •(22« + 2»i»)+ 

5507510484 - (2^2+ i'^*^)+ 

1252615755636 • {z^^ + ^'^'^) + 

106058829151929 • {z^^^ + z^'^^)-\-

13047194638256310 - (2"" + z'''')-h 

029048483051034984 • (z'^^ + 2'^") + 

19087129808556586056 - (z^^ + 2'**^)+ 

372099697089030108600 - (z^^ + z^^^)-\-

4739291490433882602066 -{z^^ + z^°^)-h 

39973673426117.369814414 • (z^^ + 2»"^)+ 

225696677517789500207052• (z^^ + 2'"^) + 

860241109321000217491044 - {z^^ + 2"^^)+ 

222739068293980G465038006 - (z"^^ - f z^'^)-\-

3935099587279668544910370 • (2**̂  + 2^^)+ 

4755747411704650343205104 • z^"^ (10) 

V I . C O M P A R I S O N T O T H E E X T E N D E D Q U A D R A T I C 

R E S I D U E C O D E OK L E N G T H 168 

There exists an extended QR. code, denoted by -Sf for 
convenience, which is also a [168,84,24] code. Since JSf 
can be put into double-circulant form and it is Type-
I I self-dual, the algorithm in Section I I I can be iLsed to 
compute the number of codewords of weights 24 and 28, 
J424 and ^428, from which we can use Gleason's theorem 
to derive its weight enumerator, A'{z). By evaluations, 
we determined that /1̂ 4 = 776216 and /lag = 18130188. 

In order to verify the accuracy of A24 and A2S, the 
modular congruence method originally described in [13] 
was used. In tiiis case, we liave A u t ( ^ ) 2 H = PSL2(p). 
Now, p = 167 and |PSL2(p)| = 2^-3-7-83 167 = 2328648. 
We have P = [,\ ?^], T = [.g^i], Z, = Z, = 

166 19 ] . ^83 = [ i?6 4 ] ' ^̂ ^̂  ^167 = [ igg 1651 • The number 
of codewords of weights 24 and 28 in the various invariant 
subcodes of dimension k are 

G\ 53 57 
k 42 22 21 28 12 2 1 

A24 252 6 4 140 0 0 0 
A23 1812 36 0 0 6 0 0 
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F o r ^ , (6) becomes (13] . 

Ai{S2) = (2'" 4 - \ )Ai (H2) - 2 " ' - M . - ( G S ) 

- 2 " » - ' > l , ( G i ) (mod2 '"+ ' ) , ( I I ) 

where ni -f- 1 is the highest power of 2 that divides \7i\. 
I t follows that A24(S2] = 0 (mod 8) and A2d{S2) = 
4 (mod 8), and thus 

= «2.i • 2328G48 776216 (12) 

A'2s = "28 • 2328648 + 1829652 (13) 

from the Chinese-Remainder-Theorem. 
Equations (12) and (13) establish that A24 = 776216 

= 0) and A'2^ = 18130188 (n'ag = 7). The weight 
enumerator of i f of length 1C8 is derived from (7) and it 
is given in (14). 

>l'(2) = (z" + z'^«)-K 

776216 (z''*'4-2"*'*)-f 

18130188 • (z^^ + 2 ' " ° ) + 

5550332508-(^32^ z*^^)-}-

1251282702264• {z^^ + 2'^^) + 

166071600559137. ( 2 ' ' ^ - H 2 * 2 « ) - ^ 

13047136918828740 • (z**'' + 

629048543890724216 • (z'*** + z^'^*^)+ 

19087130695796615088 • {z^^ + z " ^ ) - H 

372099690249351071112 • (z^^ -h 2 " ^ ) + 

4739291519495550245228 • {z^^ 4- e'"^) + 

- 39973673337590380474086 • {z^"^ + z'"'') + 

225096077727188690570184 • {z^^ -I- z'"")-!-

800241108921860741947676 • ( 2 " + 2''*̂ ) + 

2227390683565491780127428 • (2^° -f 2^^)+ 

3935099586463594172460648 • (2^** + z^^)+ 

4755747412595715344169376 • z**** (14) 

In comparison to (10), it may be seen that, for n = 168, 
^ is a slightly inferior code than ^ having more code
words of weights 24, 28 and 32. 

V l l . CONCLUSIONS 

We have presented, in addition to a more efficient code
word counting algorithm, a method to deduce the mod
ular congruence of the number of codewords of given 
weight for the quadratic double-circulant codes. This 
modular congruence method is derived from the clas
sic technique proposed by Mykkeltveit et al. in 1972, 
which was applied to the extended QR codes. With 
this method, the modular congruence of the number of 
codewords of weight i in a \2{p + l ) , ( p -I- l),d\ binary 
quadratic double-circtilant codes can be deduced by ap
plying the Chinese-Remainder-Theorem to the number of 

codewords of weifrlit, / in the invariant subcodes. Bach of 
these subcodes is fixed by some non identity element of 
the Sylow-(/-subgrottp of PSL2(p) where q is a prime divid
ing |PSL2(/^)|. The dimension of the subcodes is generally 
much smaller than that of the original code and hence, 
counting the ntimber of codewords of given weights in 
these sttbcodos is straightforward. 

The beauty of this technique is that it provides an inde
pendent, invaluable checking tool for the number of code
words of given weights computed exhaustively. Using this 
technique in conjimction with the more efficient codeword 
counting algorithm for doublo-circulant codes, wc give the 
weight emnnerator of the [168,84,24] binary quadratic 
double-circtdant and extended quadratic-residue codes, 
which are inequivalent. 
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Introduction 
The general view is that the current use of a continuous magnetic thin-film for data storage will not 
be suitable for attaining storage densities in excess of ITbit/in^. As such, new storage technologies, 
such as the use of a patterned medium, must be explored [ I ] . 
However, the development o f patterned media as viable storage media is limited by the availabili
ty of cost-effective fabrication techniques. In addition, the variation in island size and distribution 
due to the limitations o f current fabrication techniques introduces lithography jiner in the replay 
signal, which invariably affects the ability to recover recorded data [2]. The data recovery process 
from a magnetic storage system incorporating patterned media was initially analysed by Hughes [3] 
and more recently in [4), where the effect o f the media configuration on the bit-crror-rate (BER) 
performance of the read channel was explored and the BER was shown to highly dependent upon 
the amount of lithography jitter present. These results will undoubtedly have a considerable effect 
on the commercial viability of data storage on patterned magnetic media and wi l l define suitable 
manufacturing processes for the fabrication of such media. 
The aim o f this paper is to investigate how careful media design and the use of low density parity 
check (LDPC) codes, can be used to optimise the read channel BER performance in the presence 
of lithography jitter, as well as offer increased areal density without sacrificing too much BER per
formance. 
Replay and Channel Simulation 
A complete simulation of the data recovery process in a patterned magnetic medium storage sys
tem has been developed in order to predict the performance o f the read channel in terms o f BER 
against system SNR. The complete simulation, including both replay and read channel models has 
been described in [4. 5]. The replay model adopted [4] takes into account the geometrical (across-
track) aspects o f both the patterned recording medium and the GMR read sensor. In this analysis, 
a GMR head of sensor width 20nm, sensor length (along track) 4nm, and shield-to-shield spacing 
16nm has been used. The patterned medium comprises square islands of length 12.5nm with a peri
od and track pitch of 25nm, which translates to an arcal density o f ITbit / in^ A recording medium 
of perpendicular anisotropy has been assumed, the panemed film is lOnm thick, and the head-
medium separation is lOnm. The channel simulation is described in detail in [5], and consists of 
either a generalised partial response (GPR) filter and Viterbi decoder, in the case o f no LDPC code, 
or a PR4 target and MAP decoder i f an LDPC code is adopted. The LDPC codes used are irregu
lar codes constructed using the progressive-edge-growih (PEG) algorithm [6] of block-length 4096 
and code-rate 0.8. Lithography jitter is specified as a percentage of the island period, along-track 
only. 

Results-Discussion 

We have demonstrated previously that for the specific media/head configurations adopted a pat
terned medium with no SUL offers overall better BER performance compared to a patterned medi
um employing a SUL [5]. In addition, the performance is improved significantly through the use 
of hexagonally packed islands [71. These results show that with no error correction scheme 
employed, the maximum amount of lithography jitter that can be tolerated is 10% of the island peri
od (2.5nm), whilst still maintaining a BER<10''. Here wc demonstrate the advantage of using 
LDPC codes in terms of improving the BER performance. Fig. 1 illustrates the BER performance 
when utilizing irregular LDPC codes, a) for varying lithography jitter and b) for varying island peri
od. Fig. la demonstrates that even with 20% lithography jiner (5nm) present, a BER<IO"/ can be 
achieved at an SNR of=17dB. In addition, in the case of no lithography jitter. Fig. lb illustrates that 
a reduction of the island period to 20nm (areal density of 1.6Tbit/in^) still permits a BER of 10'̂  at 
an SNR o f= lOdB and even when the period is 17.5nm (areal density of 2.1Tbii/in^) a BER of 10* 
* is obtained at an SNR of = I7dB. In conclusion, even in the presence o f large amounts of lithog
raphy jitter, an acceptable BER is observed when utilizing irregular LDPC codes. In addition, the 
use o f LDPC codes permits increased areal densities whilst still maintaining acceptable BER per
formance. 

[1] B. D. Terns & T. Thomson, J. Phys. D: Appl. Phys.. vol. 38, pp. R199-R222. 2005. 
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(4] P. W. Nutter et a l . lEEETrans. Mag., vol. 40. pp.3551-3558, 2004. 
[5] R W. Nutter et al.. lEEETrans. Mag., vol. 41, pp. 4327-4334. 2005. 
[6] X. Hu et. all IEEE Inform.Theory, vol 51. pp.386-398.2005. 
[7] P. W. Nutter ct al., IEEE Trans. Mag., vol. 41. pp. 3214-3216. 2005. 

I7ST1. 

Fig. 1 BER against SNR for a) var>'ing lithography j i t ter and b) \'ar>ing island period. 
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Abstract 

Based on the ideas o f cyclotomic cosets, idempotents and Maitson-Solomon polynomials, we present a new method 
to construct GF(2'"), where m > 0, cyclic low-density parity-check codes. The construction method produces 
the dual code idempoient which is used to define the parity-check matrix o f the low-density parity-check code. 
An interesting feature of this construction method is the ability to increment the code dimension by adding more 
idempotents and so steadily decrease the sparseness of the parity-check matrix. We show that the constructed codes 
can achieve performance close to the sphere-packing-bound constrained for binary transmission. 

1 Introduction 
Since the recent rediscovery o f low-density parity-
check (LDPC) codes, a great deal o f efTort has been 
devoted to constructing LDPC codes that can work 
well with the belief-propagation iterative decoder. The 
studies of long block length LDPC codes are very 
much established. The recent works of [1],[2] have 
shown that, for long block lengths, the best perform
ing LDPC codes are irregular codes and these codes 
can outperform turbo codes o f the same block length 
and code-rate. These long LDPC codes have degree 
distributions which are derived from difTerential evo
lution [ I ] or Gaussian Approximation [3]. It can be 
shown that, using the concentration theorem [4], the 
performance o f infinitely long LDPC codes o f a given 
degree distribution can be characterised by the average 
performance o f the ensemble based on cycle-free as
sumption. This assumption, however, does not work for 
shon and moderate block length LDPC codes due to the 
inevitable existence o f cycles in the underlying Tanner 
graph. Consequently, for a given degree distribution, 
the performance o f short block length LDPC codes 
varies considerably from the ensemble performance. 
Various methods exist for the construction o f finite 
block length irregular codes, for example see [5],[6], 
and [7]. In addition to irregular LDPC codes, alge
braic constructions exist and the resulting codes are 
regular and usually cyclic in nature. Some examples o f 
algebraic LDPC codes are the Euclidean and projective 
geometry codes (8J. 

It has been noticed by the authors that, in gen
eral, there is a performance association between the 
minimum distance (rfrnin) o f a code and the decod
ing convergence. The irregular LDPC codes converge 

This research is partially funded by on UK Overseas Research 
Siudcnls Award Scheme. 

very well with iterative decoding, but their are 
reasonably low. On the other hand, the algebraically 
constructed LDPC codes, which have high d„ ,„„ tend 
not to converge well with the iterative decoder. It is 
not surprising that algebraically constructed codes may 
outperform the irregular codes. The latter have error-
floor which is caused by the rf„„„ error-events. On (he 
encoding side, the existence o f algebraic structure in the 
codes is of benefit. Rather than depending on the parity-
check or generator matrices for encoding, as in the case 
of irregular codes, a low-complexity encoder can be 
built for the algebraic LDPC codes. One such example 
is the linear shift-register encoder for cyclic LDPC 
codes. Assuming that n and k denote the codeword and 
information length respectively, algebraic codes that are 
cyclic offer another decoding advantage. The iterative 
decoder has n parity-check equations to iterate with 
instead o f n — k equations, as in the case o f non-cyclic 
LDPC codes, and this leads to improved performance. 

It has been shown that the performance o f LDPC 
codes can be improved by going beyond the binary 
field [6][9]. Hu et al. showed that, under iterative 
decoding, the non binary LDPC codes have better con
vergence properties than the binary codes [6]. They also 
demonstrated that a coding gain of 0.25 dB is achieved 
by moving from GF(2) to G^[2^'). Non binary LDPC 
codes in which each symbol takes values from GF(2"') 
ofTer an attractive scheme for higher-order modulation. 
The complexity o f the symbol-based iterative decoder 
can be simplified as the extrinsic information from the 
component codes can be evaluated using the frequency 
domain dual codes decoder based on the Fast-Walsh-
Hadamard transform. 

Based on the pioneering works o f MacWilliams on 
the idempotents and the Mattson-Solomon polynomi
als [ I 0 ] [ I 1 ] , we present a generalised construction 
method for algebraic GF(2"') codes that are applicable 
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as LDPC codes. The construction for binary codes 
using idempotcnis has been investigated by Shibuya and 
Sakaniwa [12], however, their investigation was mainly 
focused on half-rate codes. In this paper, we construct 
some higher code-rate non binary LDPC codes with 
good convergence properties. We focus on the design o f 
short block length LDPC codes in view o f the benefits 
for thin daia-siorage, wireless, command/control data 
reporting and watermarking applications. One of the 
desirable features in any code construction technique 
is an efTective method o f determining the and 
this feature is not present in irregular code construction 
methods. With our idempoienl-based method, the d,„i„ 
of a constructed code can be easily lower-bounded 
using the well-known BCH bound. 

The rest o f the paper is organised as follows. In Sec
tion 2, we briefly review the theory o f the cyclotomic 
cosets, idempotents and Mattson-Solomon polynomials. 
Based on the theory, we devise a generalised construc
tion algorithm and present an example in Section 3. 
We also outline an eflicicnt and systematic algorithm 
to search for algebraic LDPC codes in Section 3. In 
Section 4, we demonstrate the performance of the 
constructed codes by means o f simulation and Section 5 
concludes this paper. 

2 Cyclotomic Coset, Idempotent 
and IMattson-Solomon Polynomial 

We briefly review the theory o f cyclotomic coseis, 
idempotents and Matison-Solomon polynomials to 
make this paper relatively self-contained. Let us first 
introduce some notations that wi l l be used throughout 
this paper. Let m and m ' be positive integers with 
m\m', so that GF(2'") is a subficid o f GF(2" ' ' ) . Let n 
be a positive odd integer and GF(2 '" ' ) be the splitting 
field for x" - 1 over GF(2"^), so that 7112"*' - L 
Let r = (2 '" ' - l ) / n , / = (2"*' - l ) / ( 2 " ' - 1), 
a be a generator for GF(2"' ) and P be s generator 
for GF(2"') , where f ) = o ' . Let r « ( x ) be the set of 
polynomials o f degree at most n — 1 with coefficients 
in GF(2° ) . 

Definition 2.1: I f Q ( X ) e 7 ; „ ' ( z ) , then the finite-
field transform o f a{x) is: 

n - l 
/ l W = MS(a (x ) ) = ^ a ( a - ' - > ) 2 > , (1) 

where -4(2) € Tm'{z)- This transform is widely known 
as the Mattson-Solomon polynomial. The inverse trans
form is: 

a(x) = M S - ' {A{z)) = ^ ^ / l ( a " ) x ' . (2) 
ic=0 

Definition 2.2: Consider e(x) € Tfnix), e { i ) is an 
idempotent i f the property of e (x) = e(x)^ (mod x " -
I ) is satisfied. In the case o f 7 / 1 = 1, the property o f 
c{x) - e(x^) (mod x " - 1) is also satisfied. 

An (71,/c] cyclic code C can be described by the 
generator polynomial g{x) € V'n,(x) o f degree n — k 
and the parity-check polynomials h{x) e V',n(x) of 
degree k such that */(x)/t(x) = x " - 1. It is widely 
known that idempotents can be used to generate C. 
Any GF(2'") cyclic code can also be described by a 
unique idempotent e,j{x) e '•/;„(x) which consists o f a 
sum of primitive idempotents. This unique idempotent 
is known as the generating idempotent and, as the 
name implies, g{x) is a divisor of this idempotent, i.e. 
eg[x) = in(x)g{x), where m{x) contains the repealed 
factors or non-factors o f x " - 1. 

Lemma 2.1: I f e(x) G T,„(x) is an idcmpoient, 

Proof: (cf. [10, Chap. 8]) Since e ( i ) = 
e(x)2 (mod x " - l ) . f r o m ( l ) , it follows that e(o-'"-') = 
e.(f\~^^)'^, V j e {0, 1 , . . . . 71 - 1} and for some integers 
r and /. Clearly, e(a-'"-') e { 0 , 1 } implying that i:(z) 
is a binary polynomial. • 

Definition 2.3: I f .s is a positive integer, the binary 
cyclotomic coset o f s (mod 71) is: 

Cs = {Ts (mod 71) I 0 < i < i } , 

where we shall always assume that the subscript, 
is the smallest element in the set C^, and t is the 
smallest positive integer with the property that 2'"*''.s = 
5 (mod n) . H ^f is the set. consisting o f the smallest 
elements o f all possible cyclotomic cosets then 

C= U C , = { 0 . 1 , 2 . . . . , n - 1 } . 

Lemma 2.2: Let ,s € and let Cs,i represents the 
ith element o f C\. Let the polynomial 65(1) e ' / ;„ (x) 
be given by 

o<i< |CM-i 

where \Cs\ is the number o f elements in C , and c c . . 
is defined below. 

i) i f 7M = 1, ec\., = 1, 
ii) i f m > 1, ec,,; is defined recursively as 

follows: 

f o r i = 0, c c , , € { l . / ? . / 3 ' , 
f o r t > 0 . ec... = 4 . . . . . . 

The polynomial so defined, 65 ( x ) , is an idempolent. We 
term C , ( . T ) a cyclotomic idempotent. 

Definilion 2.4: LtX M C M and let « ( x ) € T^(x) 
be 

n(x) = ^ c,(:c), (4) 

then (refer to Lemma 2.2) u(x) is an idempotent and 
we call u ( i ) a parity-check idempotent. 

The parity-check idempotent H ( X ) can be used to 
describe the code C, the parity check matrix being 
made up o f the n cyclic shifts o f the polynomial 
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Note that («(:/:), I = /;(x)* and, in general, 
wt(u{x))^ is much lower than wt(li(x)). Based on this 
observation and the fact that u{x) contains all the roots 
o f fi{x), we can construct cyclic codes (hat have a low-
density parity-check matrix. 

Definition 2.5: Let the polynomial / ( i ) G T]{x). 
The difference enumerator of f{x.), denoted as 
Z>(/(x)) , is defined as follows: 

v ( f { x ) ) = f { x ) n x ' ' ) 

(5) 

where we assume that P ( / ( x ) ) is a modulo x " - 1 
polynomial with real coefficients. 

Lemma 2.3: Let m = 1 and let rf, for 0 < i < 
n- 1 denote the coefficients o f I ? ( H ( X ) ) . I f di € { 0 , 1 } , 
for i = 1,2, . . . , n - I , the parity-check polynomial 
derived from u(x) is orthogonal on each position in 
the n-tuple. Consequently (i) the d„„„ of the resulting 
C is 1 +wt(u{x)) and (ii) the underlying Tanner Graph 
has girth of at least G. 

Pmof: (i) (of. [13, Theorem lO.I]) Let a codeword 
c{x) - Co + cix + . . . + c „ _ i x " - ' and c{x) e 
7̂ 1 (x ) . For each non zero bit position cj of c{x) where 
j G { 0 , 1 , . . . , n - I } , there are wt(u(x)) parity-check 
equations orthogonal to position cj. Each o f the parity-
check equation must check another non zero bit q 
I ^ j so that the equation is satisfied. Cleariy, wt(c(x)) 
must equal to 1 - I - wi(u{x)) and this is the minimum 
weight o f all codewords, (ii) The direct consequence of 
having orthogonal parity-check equation is the absence 
of cycles o f length 4 in the Tanner Graphs. It can be 
shown that there exists three integers a, b and c, such 
that 2(6 - a) = (c - 6) for a < 6 < c. I f these 
three integers are associated to the variable nodes in 
the Tanner Graphs, a cycle o f length 6 can be formed 
between these variable nodes and some check nodes. 

• 
From Lemma 2.3 we can deduce that, for i = 

l , 2 , . . . , n - 1, u(x) is the parity-check polynomial 
for One-Step Majority-Logic Decodable codes i f di G 
{ 0 , 1 } , or the parity-check polynomial for Difference-
Set Cyclic codes i f d, = L 

Lemma 2.4: For the non binary GF(2"*) cyclic 
codes, the d„,i„ is bounded by: 

do < dmin < mm{wt{g{x)), 1 + wt{u{x))) , 

where do denotes the maximum run o f consecutive ones 
in U{z) taken cyclically modulo n. 

Proof: The lower-bound o f the (i„,M, of a cyclic 
code, BCH bound is determined from the number o f 
consecutive roots o f eg{x) and from Lemma 2.1, it is 
equivalent to the run of consecutive ones in il{z). • 

*(o,6) denotes the greatest common divisor of a and b 
denotes the weieht of polynomial / ( x ) . 

3 Code Construction Algorithm 
Based on the mathematical theories outlined above, we 
devise an algorithm to construct GF(2"') cyclic codes 
which are applicable for iterative decoding. The con
struction algorithm can be described in the following 
procedures: 

1) Given the integers m and n , find the splitting field 
(GF(2"' ')) o f x " - 1 over GF(2'"). We can only 
construct GF(2"') cyclic codes of length n i f and 
only i f the condition o f 7/*|m' is satisfied. 

2) Generate the cyclotomic cosets modulo 2'"' - I 
and denote it C. 

3) Derive a polynomial p(x) from C . Let 5 G A*" be 
the smallest positive integer such that IC^I = m. 
The polynomial p(x) is the minimal polynomial 
of o ' : 

(6) 

0<i<m 

Construct all elements o f GF(2"') using /)(x) as 
the primitive polynomial. 

4) Let C be the cyclotomic cosets modulo n and 
A/* be a set containing the smallest number in 
each coset of C. Assume that there exists a non 
empty set C A/* and following Definition 2.4, 
construct the parity-check idempotent H ( X ) . The 
coefficients o f u(x) can be assigned following 
Lemma 2.2. 

5) Generate the parity-check matrix o f C using the 
n cyclic shifts o f x'*=fi("('^>u(x-^). 

6) Compute r and /, then take the Mattson-Solomon 
polynomial o f w(x) to produce U(z). Obtain the 
code dimension and the lower-bound of the f/,„i„ 
from V{z). 

Note that care should be taken to ensure that there is no 
common factor between n and all o f the exponents o f 
i / (x ) , apart from unity, in order to avoid a degenerate 
code. 

Example 3.1: Let us assume that we want to con
struct a GF(64) 71 = 21 cyclic idempotent code. The 
splitting field for x^ ' - 1 over GF(64) is GF((i4) and 
this implies that m — in' = 0, r = 3 and / = 1. 
Let C and C" denote the cyclotomic cosets modulo n 
and 2"*' - 1 respectively. | C ; | = 6 and therefore the 
primitive polynomial p(x) has roots o f Q ^ , V j e C\, 
i.e. p{x) = I -t-x-Hx°. By letting 1 +/?+/?*^ = 0, where 
^ = a, all o f the elements o f GF(64) can be defined. I f 
we let t i (x) be the parity-check idempotent generated 
by the sum of the cyclotomic idempotents defined by 
Cs where s e M = { 5 , 7 , 9 } and ec . .„ , Vs G A^ be 

1 and 1 respectively, 

•u{x) = P^'x'^ + x' + x» + f 3 V + 

x ' ^ + x ' ^ + ^^^x^^ x>« + + 

and its Mattson-Solomon polynomial U{z) tells us that 
the [21,15) cyclic code over GF(G4) has dmin > = 5. 
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A systematic algorithm has been developed to sum 
up all combinations o f the cyclotomic idempotents to 
search for all possible GF(2"') cyclic codes C of a 
given length. The search algorithm is targeted on the 
following key parameters: 

1) Sparseness o f the resulting parity-check matrix. 
Since the parity-check matrix of C is directly de
rived from u{x) which consists o f the sum of the 
cyclotomic idempotents, we are only interested 
in low-weight cyclotomic idcmpotenis. Let us 
define \V„iax as the maximum wt{n(j:)) then the 
search algorithm wil l only choose the cyclotomic 
idempotents whose sum has total weight less than 
or equal to IVmai-

2) High code-rale. The number o f roots o f tj{x) 
which are also roots o f unity define the dimension 
of C and let us define A:„„„ as the minimum 
information length o f C. We are only interested 
in the sum of (he cyclotomic idempotents whose 
Mattson-Solomon polynomial has at least A.-„,„| 
zeros. 

3) High dmin. Let us define d as the minimum x'atue 
of the djjfin o f C. The sum of the cyclolomic 
idempotents should have at least d~ 1 consecutive 
powers of 0 which are roots of unity but not roots 
o f « (x ) . 

The search algorithm can be relaxed to allow the 
existence o f cycles o f length 4 in the resulting parity-
check matrix o f C, The condition o f cycles-of-Icngth-4 
is not crucial as we wi l l show later that there are codes 
that have good convergence properties when decoded 
using iterative decoder. The same observation can also 
be found in (14], [15] and [16]. Clearly^ by eliminating 
the cycles-of-lenglh-4 constraint, we can construct more 
codes. 

Following Definitions 2.1 and 2.4: 

^ y W = Ms(X^e . (z ) ) = ^ £ . ( 2 ) , 

and hence, it is possible to maximise the run o f the 
consecutive ones in iJ{z) i f the coefticienis o f Cs{x) 
are aligned appropriately. It is therefore important that 
all possible non zero values o f ec..oi € are 
included in the search in order to guarantee that we 
can obtain codes with the highest possible f/mm. or at 
least to obtain a better estimate o f the 

4 Code Performance 
As an example o f the performance attainable from 
an iterative decoder, computer simulations have been 
carried out for several GF{2"*), where m > 2, cyclic 
LDPC codes. Results for m == 1 can be found in [16]. 
We assume binary phase-shift keying (BPSK) signalling 

and the iterative decoder used is the modified belief-
propagation decoder which approximates the perfor
mance o f a maximum-likelihood decoder [17]r i81[l9] . 

Fig. I shows the frame-error-rate (FER) performance 
of the GF{2'*)|S5,48) cyclic LDPC code. The perfor
mance o f this code is compared against the sphere-
packing-bound [20],[2I] for binary codes of length 340 
bits and code-rate o f 0.r)G47. Since this bound does not 
take modulation into account, we offset it by a BPSK 
transmission loss^. We can see that the performance o f 
the code is within 0.8 dB away from the bound at 10"** 
FER. 

While the code in Fig. I does not have cycles o f 
length 4 in the underlying factor graph, there are good 
convergence codes which do have these short cycles. 
One such example is the GF(4)(51,29| cyclic code 
whose FER performance is shown in Fig. 2. At 10"** 
FER, this code performs within 0.4 dB away from the 
sphere-packing-bound for length o f 102 bits and code-
rate o f 0.5686. 

The performance of the cyclic codes is also com
pared against that of LDPC codes from other con
structions and this is shown in Fig. 3 and 4. Fig. 3 
compares the FER of the GF(64)(21,15| cyclic code, 
[126,90,4] binary irregular LDPC code constructed 
using the progressive-edge-growth (PEG) algorithm [6] , 
and (128,96,0] binary quasi-cyclic LDPC code. The 
GF(64)[21,15] cyclic code has outstanding perfor
mance; at 10" ' FER, it is around 0.2 dB away from 
the sphere-packing-bound. Similarly, Fig. 4 demon
strates the performance o f the GF(4)(255,175] cyclic 
LDPC code in comparison to the binary irregular (PEG 
construction) and quasi-cyclic LDPC codes o f similar 
block length and code-rate. Compared to the sphere-
packing-bound at 10"** FER, the performance of the 
GF(4)[255,175] cyclic code is around 0.45 dB away. 
As shovsTi in Fig. 3 and 4, the algebraically constructed 
codes have superior performance in comparison to the 
irregular and quasi-cyclic LDPC codes. Irregular LDPC 
codes are known to have capacity-approaching per
formance, however, this applies for long block length 
codes only. To design an irregular LDPC code, one 
needs to know the degree distribution, which can be 
optimised using the density-evolution approach. Due to 
the infinite block length assumption, this optimisation 
approach is not accurate for short block length, and 
as a consequence, it is difticult to design capacity-
approaching shon irregular LDPC codes. For the case 
of quasi-cyclic codes, we believe the superior perfor
mance o f the cyclic codes is due to the extra parity-
check equations. 

Table I outlines some examples o f the non binary 
GF(2"') cyclic LDPC codes. The detail parameters are 
given in the table. 

^In the rest or this paper, wticn the tcnii sphere-packing-lMund is 
used, wc shall rcrer to thai oflsci by ihe information ihcoretical loss 
associated wltti binary transmission. 
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(•ig. I. FUR pcrfomiancc of ihe GFCiMlH'i. cyclic IDPC code Fig. 2. HIR performance of the GF(2')l51,29l cyclic LDPC code 
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Fig. 3. FliR perfonnancc of the Gr(2*')[2l. 15) c)clic code and 
irregular and quasi-c>clic I.DPC codes of similar block length and 
code-raie 
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Fig. 4. FliR performance of ihc GF(2''')[2o5. 175] cyclic code and 
ineguar and quasi-cyclic LDPC codes of similar block length and 
codc-niic 

5 Conclusions 
An algebraic construction technique for GF(2"') (;ri > 
0) LDPC codes based on summing the cyclolomic 
idempotents to define the parity-check polynomial is 
able to produce a large number o f cyclic codes. Since 
we consider step-by-step summation of the cyclotomic 
idempotents, we are able to control the sparseness o f 
the resulting parity-check matrix. The lower-bound o f 
the djT^jn the dimension of the codes can be easily 
determined from the Mattson-Solomon polynomial o f 
the resulting idempotent. For GF(2) case where the 
parity-check polynomials are orthogonal on each bit po
sition, we can even determine the true dmin o f the codes 
regardless o f the code length. In fact, this special class 
o f binary cyclic codes are the Dincrcncc-Sct Cyclic and 
the One-Step Majority-Logic Dccodable codes, which 
can be easily constructed using our method. For non-
binary cases, i f the constructed code has low dmm, we 
can concatenate this code with an inner binary code to 
trade improvement in dmin with loss in code-rate. 

Simulation results have shown that these codes 
can converge well under iterative decoding and their 

performance is close to the sphere-packing-bound of 
binary codes for the same block length and code-
rate. The excellent performance o f these codes coupled 
with their low-complexily encoder offers an attractive 
coding scheme for applications that required short 
block-lengths such as thin data-storage, wireless, com
mand/control data reporting and watermarking. 
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x ' > 7 + / ? x ' ^ » + / ? 2 l > 5 5 + / 3 2 a : l 8 2 ^ ^ ^ 1 S 4 ^ . ^ ^ 1 9 n + 3 . l 0 5 + ^ 3 . 2 U + 3 . 2 3 4 
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CF(8) |G3,40] l+fi-'x^+Px^^ + P^T*'^+P'^T^'^ + (i^j-^'^ + ft'ix^f^+p-*x^^ + fij:''^ + > c 10 m = 3. m ' = 6, 
r = 1 and / = 9 

GF(8) IG3.43| P'^X^ + fl3j.U ^ff4^i8^.j.2l _^. pGyr2^ff3^2'^^j.-i7^ffj.3G .^^^5^,37 ^ 

I « + + I « + /3Cx=̂ " + X^^ 
> 8 < 12 tn = 3. m' — G. 

r = 1 and f = 9 
GF(8) [91.63} P^'X + /y"x2 + /J^x" + /i '^x' ' + /'ix'-'' (- /*''x""' + /Ĵ 'X^^ + /?2-^2(i + 
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> » < 10 m ~ 3, ni' = 

12, r = 45 and 
/ = 585 

GF(16) [85.48) l - f / i ' 2 x 2 ' + / 3 V « + / 3 « x " + / * V f i " + / y ' V " + / y ' 2 x " ' + / ) ' ^ x " 4 Y ^ V ' ' ' > 7 < 12 m = 4, m' = 8. 
r = .-iond/ = 17 

GF(32) [31,20) l + / 3 2 8 x 6 + | 9 7 x O + ; 3 2 5 x > o + x ' > + x ' a + / 3 ' - ' i ' 8 + / 3 i O x 2 " + i ' - " + 
x « + x 2 C 

> 7 12 tn = 5. m' = 5. 
r = / and / = 1 

GF(32) [31,21) ^23^5 + ^29^9 + ^153.10 + Q^ll + ^ ^ 1 3 ^ ^27^18 + ^30^20 + 
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> 4 8 m = 5. m' = 5, 
r = 1 and / = I 

GF{64) [21,15) a^^x-' + x^ + x^* + /^r't^x'o + £r^3x'3 + x ' ^ + x ' ^ + / j ^ x ' ^ + x'" + 
ffiB^l'J ^ p20^20 

> 5 8 ni = C, m ' = G. 
r = 3 and / = 1 
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Abstract^ A new method of finding binary cyclic codes from 
the fmite-field transform domain is presented. These cyclic 
codes have sparse parity-check matrix and thus are suitable for 
iterative decoding. Some interesting properties of the proposed 
construction method include the knowledge of the minimum 
distance and the obility to trade the increase in code dimension 
wilh a redaction in the parity-check malri.v sparsity. By means 
of simulations, wc show that the error correcting performance 
of (he codes under iterative decoding is very close to the sphere-
packing-bound constrained for binary transmission. 

I . I N T R O D U C T I O N A N D B A C K G R O U N D 

The use of idcmpoients in the construction of cyclic error 
correcting codes is well established and the resulting literature 
is extensive (for example, sec 11 |,I21,|3I). The basic building 
blocks for this theory are the primitive idempotenis. Any 
cyclic code may be described by a unique idempoicni and 
this idcmpoient is a sum of primitive idempoienls. Tor binar>' 
cyclic codes, efficient algorithms exist for the calculation of 
these primitive idempoients. 

Another way of constructing idempotents in the binary case 
is by using cyclotomic cosets and it was this property which 
was exploited by Shibuya and Sakaniwa in |41. Their goal 
was to use idempotents to construct parity-check matrices 
for LDPC codes which have no cycles of length 4 in their 
bipartite graphs. Al the heart of their technique is a lemma 
which is a variation of a result used by Weldon |5|. for the 
construction of difference set cyclic codes. Using this lemma 
and a subsequent theorem, they were able to simplify the 
problem of determining which of the idcmpotcnts that are 
constructed, using a single cyclotomic cosel, do not have 
cycles of length 4. They then extended this theory to more 
general idempotents. 

This approach to the construction of LDPC codes has the 
great advantage of simplicity, the parity-check matrices depend 
only upon the correct choice of cyclotomic coscts and these are 
very easily calculated. However, wc believe that this advantage 
is offset by some fundamental weaknesses. 

Whilst the absence of 4 cycles is a desirable objective in 
the construction of LDPC codes it is not mandatory |6I, since 
there are some good codes which do not have this property. An 
example of such a code is included in this paper. The code 
rale is also an important property of codes but, as Shibuya 

and Sakaniwa admit in their conclusion, the codes which they 
construct in this way are expected to have a large minimum 
distance al the e.xpcnse of rate. The minimum distance of a 
code is a crucial properly but there is no indication of how 
either a single cyclolomic cosct, or combinations of more than 
one cyclotomic coseis, should be chosen to guarantee thai ihe 
code constructed has a large minimum distance. 

In order to address the question of how to choose idempo-
lenls which will produce good LDPC codes we propose an 
entirely different route. As in 141. vve shall deal exclusively 
with binarj' cyclic codes. Making effective use of the finite-
field transfomi, which is commonly known as the Malison-
Solomon polynomial, we produce an algorithm which not 
only allows us to choose, in a systematic way, idempotcnts 
with low weight, and therefore a correspondingly sparse 
parity-check matrix, but also with the desirable features that 
the corresponding codes have a high code-rale and a large 
minimum distance. 

This paper is organised as follows. In section I I wc shall 
review the necessar>' lheor>' and explain how it will be used 
to provide an algorithm for the determination of idempoienls 
which may be used to construct good codes. In section I I I 
the design and implementation of this algorithm is given and 
then, in section I V , some of the results are given. Fmally. in 
section V . we druw our conclusions on this approach. 

I I . B I N A R Y I D E M P O T E N T S 

U'l F = GF{2), u be a positive odd integer and T be the 
splitting field for i " — 1 over F. Lcl o € be a primitive 
nih root of unity and let T{x) be the polynomials in Tlx] of 
degree < n - 1. If a(i) G T{x) then ihe map * : T T is 
defined by 

ma)\{z) = Y,a{anz"-^ ( I ) 

and [*(a)](2) is the Malison Solomon polynomial of a(i) 
(see 111). (We use x and z for the polynomial variables to dis
tinguish between the polynomials in (he domain and codomain 
of*.) If o is multiplication of polynomials mod (x"-l) and • 
is defined on T{z)by the rule ( j ; a.-J 'XE ^•-') = En.''.^' 
then it is well known |11,|31, that 

*:(7-,+,o)-*(r,+,*) 
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is an isomorphism of rings, in particular it is an isomorphi.sm 
of the additive groups. 

A polynomial e{x) € (r,-*-,o) is called an idempotcnl i f it 
satisfies e(x) o c{x) = e ( i )^ = c{x) properly. If S{x) is the 
subset of T{x) consisting of polynomials with coefficients in 
GF(2) (binary polynomials) and E{x) is the subset of T{x) 
consisting of idcmpoicnis. both of these subsets arc additive 
subgroups of T{x). It is easy to sho\v (see |11) that 

* : (S(x) , -F) {E{zl+) (2) 

* •.{E{xl+) ( 5 ( r K + ) (3) 

are both isomorphisms and from this it is obvious thai 

* : (S(i) n E{x), +) {E(z) n SU), +) (4) 

is also an isomorphism. 
Suppose thai n{x) is a binary* idempolcnt which is used 

to construct a parity-check matrix for a cyclic code. The 
parity-check matrix is constructed from the ri-cyclic shifts of 
x " i / ( x ~ ' ) . and so for the resulting code to be a LDPC code. 
u(a;) must have low weight. 

If h(x) = g c d ( i " - and g{x) = (x " - \)/h{x). 
then g(x) is the generator of the cyclic code. If the generator, 
g(x), has degree n - k. the dimension of the code is k and the 
larger the value of k, the better the code rate. Since ^ (x ) is a 
divisor of x " - L all of the zeros of g{x) arc nth roots of unity, 
and there are « - k of these. Further. gcd((/(x), h{x)) = 1 and 
x " - J = h{x)g{x), so that the number of distinct nth roots 
of unity which arc also roots of u(x) is k. The dimension of 
the code is therefore the number of »th roots of unity which 
are also roots of u(x) . 

The BCH bound of Ihe code is determined by the number 
of consecutive powers of a. taken cyclically (modn). which 
arc also roots of g{x). For the reasons outlined in the previous 
paragraph, this is precisely the same as the number of con
secutive powers of o. taken cyclically (modn), which arc not 
roots of u{x). 

The important features of the code are therefore determined 
by: 

1) the weight of Ihc idempotent u{x), 
2) the number of nth roots of unity which are roots of u(x) . 
3) the number of consecutive powers of a which arc not 

roots of u{x). 

Take u(x) € S(x) D E{x) and let = e{z) be its 
MS polynomial. The inverse mapping 

: (5 (^) n E{z), +) {E{z) n S(x) . + ) (5) 

is defined as follows: I f A{z) = l^{a)]{z) is the Maitson 
Solomon polynomial of the polynomial a(x) = ao + oia: + 

+ a „ x " - * then, for i = { 0 , . . . , r i - 1), 

(6) 

(see HI) . Let ii{z) = &cd{e{z),z^ - 1) and let f { z ) = 
(z" - l)/h{z). The three key properties relating to the idem-
potent u(x) , listed above, are easily gleaned from its Mattson 

Solomon polynomial 0{z). and f{z). as follows: 

A. The weight of u[x). 

The weight of i i (x) is the number of nth roots of unity 
which are zeros of J{z). To see this note that / ( a ' ) = 0 if 
and only if d (a ' ) = 1, since idcmpoicnts take only the values 
0 and 1 in T. Now u(x) = (4>-'(0))(%) and the coefficients 
of u ( i ) = uo + " 1 ^ + . . - + « n - i a : " " ' are given by 

U i = 0{Q') mod 2 for i = 0 , . . . , n - 1 (7) 

{cf. cqualion6). Thus u , = 1 precisely when / ( a ' ) = 0, giving 
the weight of u(x) as the degree of the polynomial f(z). 

B. The zeros of u{x). 

From the definition of the MS polynomial (equation I ) , 

5(^) = J^u(o^)z" -
j=l 

(8) 

and the number of zeros of u(x) which arc roots of unity is 
cleariy n - wt{e{z)). 

C. The BCH bound of the code. 

The BCH bound of the code is the largest number of 
consecutive powers of a which are not roots of u (x) . i.e. (he 
number of consecutive i , taken (modn), such that U ( Q ' ) = L 
From equation 8, this'is the largest number of consecutive 
non-zero coefficients in d{z). taken cyclically (mod n). 

Using this information, a systematic search for idempoicnts 
can now be made in increasing order of weight, with accom
panying knowledge of the number of roots which are nth roots 
of unity and the corresponding BCH bound. This algorithm is 
constructed in the Matlson Solomon domain. 

I ^ l the decomposition of - 1 into irreducible (over F = 
GF{2)) polynomials be 2" - 1 = fi(z)h{z)... h(z). For 
t = ! , . . . . ( , let ki{z) = {z" - \)lfi(z) and lei Oi{z) be 
the associated primitive idempotent (see (11 or [31). These arc 
displayed below in an array, together with other idempotenls: 

» 2 ( X ) Q2(Z) Mz) 

ue(x) dt{z) ft{z) 

Here u i ( i ) , 112(1),... ,U i ( i ) are the idempotcnis whose Malt-
son Solomon polynomials are ^ i (z ) ,02(2) , . . . ,^((2). respec
tively. Ui I C { l , 2 , . . . , i ) and let xi(x),0{z) and f { z ) 
be defined as i i (x) = E r g / " - W . ^i^) = Zi^t^M 
and f { z ) = f l i g / /••(^)- properties of primitive 
idempotents, i f h{z) = gcd(5(2),2" - 1) then it follows that 
gc6{f{z),h{z}) = 1 and - 1 = f{z)h{z). The idempotent 
u(x) wil l now have the following properties. 

wt(u(x)) = Y.^cgUi{z)), (10) 
• 6/ 

number of zeros of u(x) = n- wt{e{z)). ( I I ) 



The BCH bound is determined from 9{z) as explained in 
section II-C. 

Since methods for finding the Oi{z) and / , ( z ) arc well 
documented (for example, see |7|) a search algorithm can 
be built around this observation to find a suitable weight 
idcmpotenl wiih a known number of zeros and a known BCH 
bound. The rows of the arraj' (equation 9), arc ordered by the 
degree of the polynomials, i.e. deg(/i(^)) < d e g ( / , > i ( 2 ) ) for 
all I , and a search can be made in increasing order of weight. 
When a successful outcome has been obtained, only al this 
stage is Ihe inverse finite-field transform ( M S " ' ) evaluated 
to find the corresponding idempoient. A l l of the information 
which is required wil l already be known. 

\ \ \ . DESIGN AND IMPLBMENTATION 
If t denotes the number of cyclolomic coscis modulo n. the 

complexity of an exhaustive search algorithm is C?(2'). We 
reduce this search complexity by targeting the search on the 
three key parameters: 

A. Sparseness of the parity-check matrix 

In |5 | , Weldon introduced difference-set cyclic codes. These 
codes have the desirable property that the parity-check equa
tions are orthogonal on all bits and have no cycles of length 
4 in iheir bipartite graphs. A necessary condition for this is 
thai if u ( i ) is the polynomial which generates the parily-chcck 
matrix then the weight of i ; ( i ) must satisfy the inequality 

w t ( i ; ( i ) ) ( w t . ( i ; ( x ) ) - l ) < » , (12) 

where n is the code length. Since the weights of the idcm-
potcnts u{x) are related to the degrees of Ihe / , ( z ) by 
equation 10. a reasonable bound is 

(13) 

In practice we have gone a little beyond this limit and this has 
enabled us to find some good codes which do have cycles of 
length 4 in their bipartite graphs. 

B. Code-rate 

The code-rate is directly proportional to the number of roots 
of u(z). I f wc let Rmin represent our minimum desired code-
rale then, following equation I I , we can refine our search 
bound to 

wt(^?(^)) < {\~R,„i„)n. (14) 

C. Minimum distance 

Let d be the lowest desired minimum distance and let ro be 
the largest number of consecutive non-zero coefficients, taken 
cyclically mod n, of 0{z). Then, following the discussion in 
section II-C. we restrict our search algorithm to those 0{z) for 
which 

r o > d - } (15) 

Algorithm I . is initialised by setting V and index to 0 and 
- 1 respcciivcly. 

Algorithm I CodcScarch(V. index) 
Input: 

Rmin <= minimum code-rate of interest 
d <= lowest expected minimum distance 
6 <= small positive integer 
r{z] <= { f i { z ) ] Vi e I sorted in ascending order of ihc 
degree 
Q(5)<={(? . ( z )} v , e / 

Output: CodcsLis t contains set of codes 
I : V 
2: for (i=index+\; i < Size(/); »++) do 
y. <= T 
4: i f iZ^j^^ deg( / ; ( i ) ) + deg(/,(x)) < + rf) Ihcn 
5: Append i to T 

7: i f (wl{0{z)) < (1 - nmin)n and r e > d - \ ) then 
8: M(X) ^ M S " ' ( 0 ( 2 ) ) 
9: i f (u{x) is non-degenerate) Ihcn 

10: C <= a cyclic code defined by u{x) 
I I : i f (C i C o d c L i s t ) then 
12: Add C to CodeLis t 
13: end i f 
14: end i f 
15: end i f 
16: CodeSearch(T, i) 
17: end i f 
18: . T Tpn^ 
19: end for 

IV. C O D E E X A M P L E A N D P E R F O R M A N C E 

The code construction method presented in this paper is able 
to produce, in addition to some new codes, many well-know 
cyclic codes for example the Difference-Set Cyclic codes and 
the Euclidean and Projective Geometry codes. Some of the 
new codes are presented in Table I . 

We develop an efficient, but exhaustive recursive tree-search 
based on the above bounds. The developed search algorithm, 

Fig. I. Frame error performance of the [127,841 cyclic code 

Figure I shows the framc-crror-rate (FER) performance of 
the [127, S'l] cyclic code. Throughout the paper, it is assume 



T A B L E I 

EXAMPLES OF THI- CONSTRUCTED CODES 

In , k\ u(x) Minimum distance 
151,201* 1 + X3 + x" + X»2 + 2,17 + 2,24 + 2,27 + 2,34 + 2,39 + 3.45 + 3.48 10 
IG3.441* I -1- X ^ + X» + X ' " -H X»8 + + 3:28 + 2,35 + 2,30 + 3,45 + 3,49 + 2,54 + 2,56 8 
193,471 l + x 2 + x 8 + x 3 ' + x 3 2 + x 3 = ^ + x " 8 

. 1105,531 1 + + 3,30 + 2,32 + 2,45 + 3,40 + 2,53 8 
1117.721* 1 + X + x 2 + 2,4 + 3.8 + 2,11 + 2.10 + 3.22 + 2,32 + 2,44 + 2,59 + 3,04 + 2,88 12 
1127.841* l + X + x 2 - f . x ' ' + x 8 + x ' f + x " +1^5 + 3 , 5 9 + 3,04 + 2 , 0 1 + + x"'^ + X » + x ' ' ^ 10 
1219,1011 1 + x 2 4- X8 + x32 + x " + X^^ + x " + X ^ ^ + x ' ' ^ + x '28 + x'^^ 12 

1255,1351 1 + X** -f- + x 2 ' + x 3 f + X^^ + + x"' + x ' 2 ' + x '23 + x'-^^ + 3,105 13 
1255,1751 I + X + X = * + X ^ + X * ^ + x 2 0 + x 3 » . t - x " 3 + x G 3 + 2 . 9 8 + 2 . l 0 7 + 2 , 1 2 7 + 2 , l 4 0 + 3 . 1 7 G + 2 , l 9 7 + 3 . 2 1 5 17 
1341.2051 l + x 2 0 + x " - H x 0 2 + x » ^ + x ' ' * ' + x ' 2 2 + x l 5 0 + x 2 0 2 + 3 , 2 0 3 + 3,213 + 3,217 + 2,234+3,257 + 2,273 IG 
1511.1991 1 + X + x 3 + X^ + X ' ^ + X ^ ' + x " + x82 + x '"0 + x ' " + x ' 5 2 + 3,105 + 2,201 + 2,255 + 

3,290 + 2,305 + 2,331 + 3,403 
19 

1511,2591 1 + X 3 ' + x « + X ^ ^ + X " ^ -H x 2 ' 7 + x 2 « + x 2 0 ' + X^^O + x ^ ^ + X^^^ + X^«^ 13 
1819,4351 1 + X + X ^ -H x^ + X*S + X ^ ' + X ° 3 + x '27 + x204 + 3,255 + 2,409 + 2,511 13 
1819.4471 l + X + x 3 + X ^ + x ' H x 3 ' + x t ' 3 + x > 2 7 + x 2 0 4 + 3 , 2 5 5 + 2 , 3 5 0 + 2,409 +3 .511 +2 ,584 +2 ,701 16 

15461,37811 1 + X + x 3 + x^ -H X»^ + x 3 ' -1- x03 + + x ' 2 7 + x > " + x255 + 3,307 + 3,511 + 2,578 + 

3.01s + 2,754 + 2,770 + 2,1023 + 2,1157 + 2,1100 + 3 . I23I + 2,1509 + 2,1553 + 2,2047 + 2,2144 + 

3,2315 + 2,2393 + 2,2403 + 2,2730 + 2,2708 +3 ,3019 + 2,3107 + 2,3118 + 2,3328 + 2,3802 + 2,4095 + 

X**"** + i-̂ ZeO + 2,4394 + 2,4031 + ^4787 + 2,^027 

43 

Fig. 2. Frame error performance of Ihe [255,175l codes Fig. 3. Frame error performance of ihc [341,205] codes 

lhal the codewords are transmitted across a noisy communica
tion channel with BPSK modulation and at the receiving end is 
Ihe modified Belief-Propagation decoder which appro.ximales 
the Maximum-Likelihood decoder (8J. 19). The performance 
of this code is ouisianding and ai 10"** FER, it is within 0.2dB 
away from the sphcrc-packing-bound' |10 | . [ l l | . 

Figure 2 shows the performance of two [255,175] codes: 

'In this paper, wc assume Uiat the sphere-pncking-bound has been offset 
by the information theoretical loss associated with binary transmission. 

code constructed using our method and irregular computer 
generated code. We can see that our code, which achieves 
a coding gain of around 0.4dB compared to the equivalent 
irregular code, performs approximately within 0-15dB away 
from the sphere-packing-bound. 

Our construction meihod can produce' LOPC codes with 
high minimum distance and therefore they do not suffer from 
error-floor. Figure 3 demonstrates that the performance of our 
[341,205] code is inferior to the equivalent irregular code 
in the low signal-to-noise ratio region, however, the irregu-



Rg. 4. Frame error performance of the [5461,3781] code 

lar code exhibits eariy error-floor due to its low minimum-
distance. 

For long block lengths, our construction method produces 
LDPC codes wiih ver>' high minimum distance and qs a conse-
qeunce. the error-floor of the resulting codes is extremely low. 
However, this low error-floor advantage is counterbalanced 
by the increase in the signal-io-noise-ratio (SNR) threshold, 
which is a point at which the FER cur\'e starts to fall rapidly 
with SNR. This region is commonly known as the waterfall 
region and the SNR threshold is the starting point of the wa
terfall region. As an example, consider the [SIGljGTSl] cyclic 
LDPC code which has minimum distance of 43 and code-rate 
of 0.69. Figure 4 demonstrates its FER performance under 
standard Belief-Propagation iterative decoder with maximum 
iterations of 100. As seen in this figure, due to its high SNR 
threshold (approximately at Eb/No of 3.0dB). the distance to 
the sphere-packing-bound is around L9dB at 10 ""̂  FER. On 
the other hand, wiih minimum distance of -13 the approximated 
error-floor is extremely low. 

minimum distance of these codes ensures the absence of the 
cariy error-floor in their performance. 
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V. CONCLUSIONS 

The application of idempolenis and Mattson Solomon poly
nomials in code construction produces a large number of 
binary cyclic codes which have high minimum distance and 
code-rate. These codes have sparse parity<heck matrix and 
thus, are applicable as LDPC codes. Due to the cyclic nature, 
these LDPC codes have n parity-check equations instead of 
n ~ k equations as in the case of random LDPC codes. 
With this extra parity-check equations to iterate with, the 
performance of the iterative decoder is improved. 

In designing cyclic- LDPC codes of length n . our new 
method allows one to steadily increase the minimum distance 
of the code by combining additional irreducible factors of 
2 " - 1 which in turn reduces the sparseness of the parity-check 
matrix. The ability to control the sparscness of the parily-chcck 
matrix by trading the code dimension and thus the minimum 
distance off is an interesting property. 

Simulation results have shown that, at short block lengths, 
our cyclic codes have outstanding performance which are 
superior lo the equivalent irregular LDPC codes. The high 
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Abstract 
// i.s .shown that .some well-known and .some new 
cyclic codes with orthogonal parity-check equa
tions con be constructed in the finiie-field transform 
domain. It is also shown that, for some binary lin
ear cyclic codes, the performance of the iterative 
decoder can be improved by substituting some of 
the dual code codewords in the parity -check matrix 
with other dual code codewords fanned from linear 
combinations. This technique can bring the perfor
mance of a code closer to its maximum-likelihood 
performance, which can be derived from the erro-
neoiLS decoded codeword whose euclidean distance 
with the respect to the received block is smaller than 
that of the correct codeword. For |G3, ST]. (93,47) 
and[\Ob, 53] cyclic codes, the maximum-likelihood 
performance is realised with this technique. 

1. Introduction 
Low-density parity-check (LDPC) codes | I ] . | 2 I 
form a cla.ss of [n, A;| linear block codes, where 
n is the codeword length and k is ihc informa
tion Icngtli, that can approach near capacity per
formance. The good performance of LDPC codes 
is attributed to the code representation and the use 
of an iterative decoder. It is an essential condi
tion that the code represenlalion docs not contain 
more than one purity-check equation checking on 
the .same two or more bit positions, in the other 
words there is no cycles of length 4 in its underlying 
parity-check matrix. The avoidance of these short 
cycles is important to allow convergence of the it
erative decoder [3]. The.best performance gains to 
date have been obtained with long LDPC codes, i.e. 
several thousand hits in length. 

There are many applications where short LDPC 
codes can be potentially useful. Applications 

such as watermarking, thin data storage, com
mand/control data reporting and packet communi
cations require; blocks of data ranging from 32 to 
512 bits 10 be either robustly protected or reliably 
transmitted. We concentrate on cyclic LDPC codes 
of similar lengths in this paper. The particular class 
of cyclic codes we consider are dilVercncc set cyclic 
(DSC) codes | 4 | and one-step majority logic dc-
codablc (OSMLD) codes [5] which have orthog
onal parity-check equations on each bit position, 
thus there are no cycles of length 4. For short 
block lengths, these cyclic codes' have been shown 
to outperform the ad-hoc computer design (ran
dom) counterpart of the same code-rate and block 
length [6]. For an [n,/:] LDPC code, the ad-hoc 
computer design code has n-k parity-check equa
tions but the cyclic code has n parity-check equa
tions that can be used by the iterative decoder. Con
sequently, cyclic codes exhibit better convergence 
than the random LDPC codes when iterativcly de
coded. 

In this paper, we present a modified Belief-
Propagation iterative decoder that can perform near 
maximum-likelihood (ML) pcrfomiancc for binary 
transmission over the additive-white-Gaussian-
noisc (AWGN) channel. It is also shown that, for 
certain cyclic codes, the modified iterative decoder 
can achieve M L performance. 

Tlie organisaiioTTofthis papcrisas follows. Sec
tion 2 gives a brief review on binary cyclic code 
construction method in Ihe finite-field transfonn do
main. Wc shall deal exclusively with binary cyclic 
codes throughout this paper. Section 3 introduces 
the idea of a more-likely codeword and its relation
ship to M L and iterative decoders. We present mod
ification to the iterative decoder in section 4 and 

"Wc will refer (he OSMLD and DSC code.'; as cyclic codw 
from chis point onwards 
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some simu)aiion results of the modified decoder arc 
prcscnicd in section 5. Section 6 contains the con
clusions. 

2. Finite-Field Transform Do
main Construction of Cyclic 
Codes 

There are ix;latively few OSMLD and DSC codes. 
As shown in [7). we have extended ihese codes 
by a construction method that wurlcs in the finite-
field transfomi domain, which is also known as the 
Mattson-Solomon domain. Wc briefly review (he 
construction method in ihis section. 

Let n be a posilivc odd integer and GP(2"') 
be the spliiting field for 1 -I- x " over GF{2). 
We assume thai a is a generator for GF(2"') 
and Ta{x) is a polynomial with coefficients in 
GF(2°) and degree < / / - ] . Lci us denote 
:F = { / i W , / 2 W , . . . , / t ( 2 ) } . where Mz) G 
Ti{z) is an irreducible polynomial, such thai 
n , < , < t / . ( 0 = 1 + Hor each Mz), there is 
a corresponding primitive idempolenl^ denoted as 
Oi(z), which can be obtained as follows; 

Where Jl{z) = ^ / . ( z ) , /;{z) e 7 ^ ^ ) and ihe 
integer ($ is: 

6 
| l i f d e g ( / , ( z ) ) i s 

lo otherwise. 

odd. 

where deg(a(x)) represents ihe degree of ihe poly
nomial a{x). 

Let a(x) 6 7',n(x). the finite-field transform or 
Mattson-Solomon (MS) polynomial of a(x) is: 

i i - i 
A{z) = MS(fl( .r)) = ^ a ( f ^ - - ' ) 2 - ' (2) 

j=0 

T I - 1 

a(x) = MS-'{A(z)) = / 1 ( Q ' ) X ' (3) 
i=0 

where A{z)erm(z). 
Let I C { 1 . 2 , . . . . f } , we define f { z ) = 

Yli^jfiiz) and 0{z) = Ei^jOi(z), where 
f{z)jO{z) e Ti{z). I-ci us define a binary polyno
mial u{x) = MS{0{z)). Since the MS polynomial 
of a binary polynomial is an idcmpotcni and vice-
versa [8], u (x ) is an idempotcnt with coefficients 

in GF(2). I f we write ii{x) = uo + u\X - f . . . + 
i / „ _ i x " - ' then, from (3) 

« , = ^ ( ? ( Q ' ) , V / G { U , L . . . , M - 1). (4) 

The idempolcnl n{x) can be used to describe an 
\n, k\ binar>' cyclic code which has a parity-check 
polynomial, li(x), of degree k and a generator 
polynomial, g{x), of degree ii - k. The polyno
mial it{x) is a divisor of llie idempoteni 7 /(x), i.e. 
(u(x) , 1 - f x " ) * = / ( ( i ) and u(x) = 7/i(x)/ t(x) 
where 7/i(x) contains the repeated factors and/or 
non-factors of I x". 

From the inlonnalion above, we can summarise 
that: 

1) The weight of H(X) is equal to ihe number of 
inh roots of unity which are roots of f { z ) . 
Note that for 0 < i < ri - 1, fl(o') = 1 i f 
and only i f / ( o ' ) = 0 and from (4), = 1 i f 
and only i f (?(Q') = I . In the olhcr words. 
lit — 1 precisely when / ( o ' ) = 0. giving 
w i ( u ( x ) ) 5 = d e g ( / ( 2 ) ) . CIcariy. wi (u(x) ) = 
E . e i d c g ( / . ( 2 ) ) . 

2) Since 0(z) = MS((i(:r)), the number of ze
ros of u{x) which are roots of unity is clearly 
n~m(0{z)). This deiennines the code dimen
sion. 

In general. W\[H{X)) is much lower than 
wi ( / i (x ) ) and as such, we can derive a low-density 
parity-check matrix from t i (x) and apply iterative 
decoding on it. The pariiy-check matrix of the 
resulting code consists of the n cyclic shifts of 
i d e g ( u ( j r ) ) ^ ( j . - i ) idcmpoieni u(x) is or
thogonal on each bit position, Ihe resulting LDPC 
code has no cycles of length 4 in the bipartite graph 
and the true minimum-distance. c/,niM. of the code 
is simply w i ( l -|- u (x ) ) , see [9, Theorem lO.I] for 
the proof. 

Table 1 shows some examples of cyclic codes 
derived from this technique. From Table I , it is 
clear that our technique can also be used to con
struct the well-known OSMLD and DSC codes. 

3. More Likely Codewords in Re
lation to M L and Iterative De
coders 

Realising an optimum decoder for any coded sys
tem is NP-complcic [ I 0 | . For general \n,k\ bi
nary linear codes, the optimum decoding complex
ity is proportional to min{2*"",2"~*^}. Due to this 

^A binary polynomiaJ, P.[X), \% an idcmpoieni if Ihe propvny 
of c { i ) = c ( i ) 2 = c ( i 2 ) mod 1 + i " is satisfied. 

denotes the greatest common divisor of a and 6. 
denotes the weight of polynomial a{x). 
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Table 1. .Sonic examples of the constructed cyclic codes 
[r^^-J u(x) 

[21,11] 1 + + r** + : / : " G 

[03,37] 9 

173,45) 1 + X- + + j-J + x'"^ + ./;•»' -1- x^^ + x-"» + 10 

[93,47] 1 + + :,;!> + + .7:28 + x'*-'̂  + x^^ 8 

[105,53] 1 + a ; 7 + x S + T 2 ' - f - + i - lO + 8 

(255, 175] 1 4- .r - f . r ^ + x ' ^ + X ^ ^ + .;;31 + ,.53 + ,,.63 + ^.9S + ^.107 + ^.127 + ^.140 + 
X » 7 6 + 3 - 1 9 7 + 3 . 2 1 5 

17 

[34 L 205] l + X » + X ^ + x ' + l ' = + X ^ ' - f - X ^ ^ H l ^ = * + X ^ « + x ' " ' * - f x ' 2 7 + x I 7 0 + 3 . i y7+3 . 219+3^^^^ IG 

( o i l , 199] 1 + X + X ^ + X ^ - f X ' = + X ^ ' + X«^ + X « 2 + X>"0 + X ' 2 ' + x ' " + X»*^^ + X 2 0 ' + 
3-255 + 3.29G + 3.3O5 + ^331 + ^-^OS 

19 

[511,259] 1 + + X'*^ 4- + x » ' I i + + i 2 4 0 + 3.2GI + ^.SCn ^ 3.420 ^ 3.450 + ^4C5 13 

complexity, the optimum decoder can only be re
alised for very short, very high-rate or very low-
rale codes. An M L decoder is the optimum decoder 
in terms of minimising the frame-error-rate (FER). 
An M L decoder wi l l output a codeword thai has the 
closest cuclidcan distance [5] to the received block. 

soft-decisions. 
The significance of the inrl codewords is that 

an M L decoder either ouipuLs correct codewords or 
mrl codewords. Tlie percentage of mrl codewords 
output from the iterative decoder gives us a perfor
mance indication of how close the iterative decoder 
is from the M L decoder for (he same code. 'Vhc 
mrl-FER provides ihe lower-bound on the M L per
formance of a code in comparison to the Maximum-
Likclihood-Asympioic ( M L A ) which provides the 
upper-bound. 

Figure I . ML decision criterion 

The iterative decoder is a subopiimal decoder 
approximating M L performance. In decoding 
LDPC codes, the Belief-Propagation (BP) iterative 
decoder can produce a codeword that is not iden
tical to the transmitted codeword. This is illus-
Iruicd by the two-dimensional representation of the 
M L deci.sion criterion shown in Figure I . Points 
R and A represent the received block and transmit
ted/correct codeword respectively. The point B rep
resents a codeword whose euclidcan distance with 
the respect to R is smaller than that of A. I f die it
erative decoder outputs codeword B then a decod
ing error is produced, but an M L decoder wi l l also 
make an error. Wc classify codeword B as a more 
likely (mrl) codeword (11],[I21. By counting the 
number of mrl codewords produced in a simulation, 
wc can derive an inrl-FER curve. A similar tech
nique has been used by Dorsch [13]. but (he metric 
was based on the hamming distance rather Ihan the 
euclidean distance, i.e. hard-decisions rather than 

4. Improved Belief-Propagation 
Decoder 

l ^ r (he [63,37] cyclic code, it has been noticed that 
the standard BP decoder produces many codewords 
(hai arc neither correct nor mrl. The number of 
incorrect codewords is much larger ihan (he num
ber of mri codewords output. Based on these find
ings and the fact that every codeword wi l l satisfy all 
2""*'' parity-check equations, wc should be able to 
improve the pcrfonnancc of ihc BP decoder by ex
tending the number of parity-check equations in the 
parity-check matrix, denoted as H . However, this is 
likely to be true i f the extended parity-check matrix 
have low-density and docs not contain many short 
cycles. 

For any linear codes, additional parity-check 
equations can be formed from the linear combina
tions of the equations in H . The.se additional parity-
check equations form the high weight codewords of 
the dual code and appending them to H w i l l intro
duce many short cycles. 

The proposed modified BP decoder does not ex
tend the number of parity-check equations in H . In-
s(ead, we generate a set of parity-check equations. 
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denoted as H*^, by taking the linear combinations 
of those equations in H . A subset of 11*̂  is sub
stituted into H resulting in a modified parity-check 
matrix. labelled as H . The overall procedures is de
scribed in Algorithm I [14]. Note that the selec
tion of ihc parity-check equations may be made on 
a random basis or may correspond to a predeter
mined sequence. 

Algor i thm 1 Modified Belief-Propagation Iterative 
Decoder 
Input: 

r <= received vector 
H <= original pariiy-chcck matrix of the code 
H ° <= a .set of parily-chcck equations not in H 
T <= number of trials 
xfj number of selections, tp < n - k 

Output: a codeword with the minimum cuclidean 
distance 

1: Perform BP decoding and do decoded out
put. 

2: d[r (do,r ) <= cuclidean di.stancc between do 
and r. 

3: d ' <=doandd;? ' "<=:d , c (do , r ) 
4: for T = 1 to T . do 
5: for t = 1 to maximum number of iterations, 

do 
6; Pick V parity-check equations from H*^. 
7: Substitute them into H to generate H . 
8: Based on H , perform the check nodes 

(horizonial) and bit nodes (vertical) pro
cessing as in standard BP algorithm. 

9: dr denote ihe decoded output. 
10: d E ( d r : r ) <= cuclidcan distance between 

d^ and r. 
II : i f ( d ^ H ^ = 0 ) t h c n B R I i A K 
12: end for 

13: i f ( d E ( d ^ , r ) < d | ? ' " ) and (d^H' '" = o) 

then 
14: d ' ^ d^ 
j j . , i m f n 

16: end i f 
17: end for 
18: Output d ' . 

5. Simulation Results 
In this section, we present simulation results of the 
modified BP decoder for some cyclic codes de
signed using the approach discussed in section 2. 
The selection of the parity-check equations is made 
on a random basis. It is assumed that the simu
lation sy.stem employs BPSK modulation mapping 
the symbols 0 and I to - 1 and + 1 respectively. 

Figure 2 shows the FER performance of the 

Table 2. Pcrccniage of inri codewords agyinsc /-7(,/A', 

d g ' " < = d K { d „ r ) 

Standard BP decoder 
1.5 2.0 2.5 3.0 3.5 4.0 

% 73 ' l l 27 23 16 9 

Substitutions: I.Trials:!^ 0 
1.5 2.0 2.5 3.0 3.5 4.0 

% 90 9A 00 82 74 61 

Substitutions: 8, Trials: 30U 
1.5 2.0 2.5 3.0 3.5 4.0 

% 100 100 100 100 100 100 

[03,37| cyclic code. It is shown that the mndificd 
BP decoder, provided enough .substitutions and tr i
als arc used, can achieve-the M L performance as 
indicated by Ihe mrl-FER and the fllR of the intxli-
fied BP decoder that produce the same curve. Com
pared to the standard BP decoder, al a FKR of 10"^ 
a gain of approximately 0.9 dB is obtained by us
ing the modified BP decoder. In addition, it can 
be seen that, at a PER of 10"'^. Ihe performance 
of ihe code is within 0.4 dB of ihe sphere-packing-
bound [ I 5 | , [ I 6 ] for a code of length 63 and code-
raie of 0.587 after allowing for the coding loss at
tributable to binary transmission. Table 2 shows 
how close the performance of the modified BP de
coder is to the M L decoder With the standard BP 
decoder more than 50% mrl codewords arc found 
in Ihe low signal-lo-noise ratio (SNR) region, but in 
Ihe moderate SNR region we can only find a few 
mH codewords. With just single substitution and 50 
trials, the modified BP decoder is able to increase 
the percentage of md codewords found to be higher 
than 50%. M L performance is achieved with 8 sub
stitutions and 300 trials. 

Figure 3 -5 show the FER performance of the 
|93,47l. [105,53) and [341,205] cyclic codes re
spectively. Both of Ihc [93,47] and (105,53] codes 
achieve M L performance with ihe modified BP de
coder. For the [341,205] code, the modified BP 
decoder produces a gain of approximately 0.4dB 
with the respect to the standard BP decoder. Due to 
its high minimum-distance and code-length, there 
are very few md codewords observed.Table 3 sum
marises, at ihe FER of I0~"^, ihe amount of gain ob
tained wiih the modified decoder with the respect to 
the standard BP decoder and the distance from the 
sphere packing bound after allowing binary trans
mission loss. 

6. Conclusions 
Construction of cyclic LDPC codes using idempo
tents and MS polynomials can produce a large num-
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Figure 2. FER perfonnance of (he |G3,37] cyclic code. Figure 4. FER performance of (he [105,53] cyclic code. 

1. T i M a S O 
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Figure 3. FER performance of ihe (93.47] cyclic code. Figure 5. FER performance of the [341,205] cyclic code. 

bcr of cyclic codes thai arc free from cycle of length 
4. Some of ihe codes arc already known such as the 
DSC and OSMLD codes, bui others arc new. An 
important feature of this approach is the ability to 
increase the dmin of ihe codes by taking into ac
count additional irreducible factors of 1 + 2 " and 
SO steadily decrease llic sparscness of the parity-

Table 3. Performance gain with ihe respect to BP de
coder and distance from the sphcrc-packing-bound at 
10 ^FER 

Codes Gain" SPB" 

[63,37] 0.9 dB 0.4 dB 
(!)3,47l 1.1 dB 0.8 dB 

[105,53] 2.0 dB 0.9 dB 
[341,205] 0.4 dB 0.7 dB 

' Codini gain with (he respcci 10 BP decoder. 

* Distance from the spiicre-i»ctinj-(xHind o f f j c i by biatiy tranimission 

check matrix. As an example, consider that we 
want to design a cyclic code of length 63. I f we 
let f(z) - 1 + 2 + 2 ^ . we obtain a (G3,31) cyclic 
code with dmm of 7. Now, i f the irreducible poly
nomial \ -\- z + IS also taken into account, the 
resulting cyclic code is the [63,37] code which has 
diuin 0(9. The row or column weight o f (he parity-
check matrices for the former and latter codes arc 6 
and 8 respectively. 

By substituting the parity-check equations in 
the parity-check matrix with other codewords of 
the dual code derived from their linear combina
tions, the performance of the BP decoder can be 
improved. For the [63,37], [93,47] and [105,53] 
cyclic codes, the modified BP decoder has been 
shown to achieve M L performance. 

Although the substitution method introduces cy
cles of length 4, these cycles do not pose a lasting 
negative efleei on the iterative decoder. By substi
tuting at every iteration, the effect o f these short cy
cles is broken and simulation results have shown 
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Introdticttoti 
This paper examines the application of low-density-parity-check (LDPC) codes [ l | lo 
patterned media storage s>'stems; two areas that have received considerable attention. Recent 
studies, have shown that LDPC codes outperform turbo-codes and are considered as the 
states)f-thc-an in error correction codes (ECC). Paticmed media ore widely seen as a 
candidate for ultra high-density recording f2] , hence it is interesting to investigate the 
performance of LDPC codes in this application. We have developed an advanced model of 
the read channel that allows the investigation of data recovery techniques applicable to 
pattemcd media systems. Powerful LDPC codes and their efficient belief-propagation 
decoder [3] have been incoiporaled into the system to improve the data recovery process. By 
comparing the system performance with and without the LDPC codes, we show that 
LDPC-bascd cnor correction scheme can achieve a significant hit-erroT-ratc (BER) gain. We 
also investigate what BER gain can be achieved by utilizing a soft-input-soft-output (SISO) 
run-Iength-Hmited (RLL) decoder as opposed to the conventional hatd output RLL decoder. 
A final aim of this paper is to analyze (he t>'pes of errors that occur in the system in relation 
to the convergence of the iterative decoder. 

Channel Simulation 
Figure 1 iltustrates the data recovery channel simulated. 

LOPC a/9RU. Raod EPR4 
OotD Encoder Encoder Model 

MAP I 
Otacuy 

-5155" 
R a 

Docoder 

LOPC 
TlOtaxler, 

Reoovered 

Ercodor 

Vig. 1 Read Channel for MagDCtic Pflttemcd M c d b 

The LDPC code is an irregular code constmcted in such a way to maximise the girth of the 
corresponding tanner graph. It is constructed with zigzag parity pattern |4] which results in 
very low encoding complexity. We aim to test the effectiveness of current LDPC codes of 
diftcrent code rates. The 8/9 RLL(0.4/4) modulation encoder is the most appropriate for the 
system due to its relatively high code rate and since its decoder can be easily converted lo 
srSO decoder *-hich is essential for itcTBtivc decoding. The readout signal from panemed 

media systems is evaluated as outlined in (5]. In the following analysis a OMR head of 
sensor width 80nm and length 8nm, with shietd-to^hield spacing 32nm has been used. The 
patterned medium comprises square islands of length 2Snm, with period and track pilch of 
50nm. The EPR4 target has been used and additive white Gaussian noise (AWGN) and 
media jitter have been considered. Three fonns of RLL decoder have been investigated; ihe 
conventional hard decision RLL. the soft input hard output RLL that was simulated 
following the principles of the Viterbi algorithm and the S I S O RLL The S I S O RLL encoder 
has been added in order to feed the MAP detector with more information and further improve 
the performance of the read charmel. 

Results-Discussion 
Figure 2 illustrates B E R performance against signaJ-to-noisc-ratio (SNR) plots for difTerenl 
channel configurations. The BER gain, which is achieved by using the current LDPC scheme, 
extends 3 dB at a BER of 10"̂  over the uncoded system. Significant improvement is achiocd 
by increasing the number of LDPC iterations to S, and an additional slight improvement is 
observed by utilizing 5 system iterations. Jitter noise degrades the performance of the 
chaimel as expected but the use of LDPC contributes to the correction o f the errors. A slight 
improvement in performance is achieved when using the SISO RLL instead of the hard RLL 

decoder (not illustrotcd) in Cemu of 
symbol •error-rate (SER) against 
SNR. One symbol consists of 9 
bits for the rate 8/9 RLL code and 
grouping Ihe data in this manner 
provides a meaningful way of 
measuring the RLL coding gain. 
Finally by measuring the Euclidean 
distances between codewords 
generated: from the LDPC encoder 
using random data, at the output of 
the LDPC decoder, and die 
re-encoded user data at the output 
of the LDPC decoder, the t>'pes of 
errors that occur in the system arc 
identified as being due to non 
convergence of the iterative 
decoder. 
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