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Abstract

A binary Quadratic Residue(QR) code of length n is an (n, (n+1)/2) cyclic code over

GF (2m) with generator polynomial g(x) where m is some integer. The length of this

code is a prime number of the form n = 8l + 1 where l is some integer. The generator

polynomial g(x) is defined by

g(x) =
∏
i∈Qn

(x− βi),

where β is a primitive nth root of unity in the finite field GF (2m) withm being the smallest

positive integer such that n|2m−1 and Qn is the collection of all nonzero quadratic residues

modulo n given by

Qn = {i|i ≡ j2 mod n for 1 ≤ j ≤ n− 1}.

Algebraic approaches to the decoding of the quadratic residue (QR) codes were studied

in [2], [3], [4], [5], [6] and [13] . Here, in this thesis, some new more general properties

are found for the syndromes of the subclass of binary QR codes of length n = 8m+ 1 or

n = 8m− 1.

A new algebraic decoding algorithm for the (41, 21, 9) binary QR code is presented by hav-

ing the unknown syndrome S3 which is a necessary condition for decoding the (41, 21, 9)

QR code.

Keywords: cyclic codes, Newton identities, QR code.
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Introduction

The beginning of coding theory goes back to the middle of the last century with the work

of Shannons, Hamming, Golay and others. Historically coding theory originated as the

mathematical foundation for the transmission of messages over noisy channels. In fact a

multitude of diverse applications have been discovered such as the minimization of noise

from compact disc recordings the transmission of financial information a cross telephone

lines, data transfer from one computer to another and so on. Coding theory deals with the

problem of detecting and correcting transmission errors caused by noise on the channel.

Mathematical background was at the beginning very little but with passing of time, var-

ious mathematical tools, such as group theory, ring theory, and linear programming have

been applied to coding theory. Thus, coding theory has now become an active part of

mathematical research. In many cases, the information to be sent is transmitted by a

sequence of zeros and ones called binary codes, which means that the code is defined on

the field {0, 1}.

The class of quadratic residue QR codes was introduced by Prange in 1958 [17]. It

is a nice family of cyclic codes that has approximately 1/2 code rates. There are many

decoding algorithm was given for the binary QR of length n = 8l ± 1, for some integer l

In the past decades, most of decoding methods for the QR codes were used to solve the

Newton identities that are nonlinear, multivariant equations of quite high degree. It

becomes very difficult when the weight of the occurred error becomes large. Moreover,

different QR codes use different sets of conditions to determine the error locations. As

a result, it is not practical for software implementation.
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In this thesis, A decoding algorithm was given for the (41, 21, 9) binary QR code.

Some new more general properties are found for the syndromes of the subclass of binary

QR codes of length n = 8l+1. Using these properties, the new theorems needed to decode

this subclass of the QR codes are obtained and proved in [6]. For the binary (41, 21, 9)

QR code, every known syndromes (resp., unknown syndromes) can be expressed as some

power of S1 (resp.,S3). For the detail about syndromes we refer the reader to [13]. A new

algebraic decoding algorithm for the (41, 21, 9) binary QR code is presented.

The finite field to implement the (41, 21, 9) QR code is GF (220). It contain 220 el-

ements. To calculate the syndrome polynomials over this field we use Maple 13. The

algebraic method obtained in Section 4 for decoding the (41, 21, 9) QR code is able to

correct all of the four errors and a sufficient condition for the case of ν errors is found

for this code. It is expected that some of the techniques developed here can be used to

simplify the decoding of other QR codes.

The material of this thesis lies in four chapters.

Chapter 1:- Includes algebraic preliminaries, basic definitions of coding theory, encoding

and decoding method, basic definitions on cyclic and quadratic residue codes.

Chapter 2:- Includes generator and parity check matrices of cyclic codes, encoding and

decoding method of cyclic codes, the generating idempotent e(x) for a cyclic code and

Meggitt decoding method of cyclic codes.

Chapter 3:- Includes decoding binary quadratic residue codes of prime length as (41, 21, 9),

(47, 24, 11) and (73, 37, 13).

Chapter 4:- Includes decoding the binary Golay code and gives two algebraic decoding

methods of the binary (23, 12, 7).
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Chapter 1

Preliminaries

This chapter is divided into four sections. In section one, we set some definitions which

will be applied throughout the thesis. In section two, we study generating and parity check

matrices. In section three , we study the processes of encoding and decoding in general.

finally in section four, we study a basic definition of cyclic codes and quadratic residue

codes (QR code) and some of their properties.

1.1 Basic Algebra

The purpose of this section is to review some basic facts that will be needed through the

thesis.

Definition 1.1.1. [9] A nonempty set of elements G is said to form a group if in G there

is defined a binary operation, called the product and denoted by ( . ) such that

1. a, b ∈ G implies that a.b ∈ G (closed).

2. a, b, c ∈ G implies that a.(b.c) = (a.b).c ( associative).

3. There exists an element e ∈ G such that a.e = e.a = a for all a ∈ G( the existence

of an identity element in G).
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4. For every a ∈ G there exists an element a−1 ∈ G such that a.a−1 = a−1.a = e ( the

existence of inverse in G ).

Definition 1.1.2. [9] A nonempty subset H of a group G is said to be a subgroup of G

if, under the product in G, H itself forms a group.

Definition 1.1.3. [9] A nonempty set R is said to be an associative ring if in R, there

are defined two operations, denoted by + (called addition ) and . ( called multiplication

) respectively, such that for all a, b, c, in R :

1) a+ b is in R.

2) a+ b = b+ a

3) (a+ b) + c = a+ (b+ c).

4) There is a unique element 0 in R such that a+ 0 = a ( for every a in R ).

5) There exists a unique element −a in R such that a+ (−a) = 0.

6) a . b in R.

7) a . ( b . c ) = ( a . b ) . c .

8) a . ( b + c ) = a . b + a . c and ( b + c ). a = b . a + c . a ( the two

distributive laws hold).

If the multiplication in R is such that a.b = b.a for every a, b in R, then we call R a

commutative ring

Definition 1.1.4. [9] A ring homomorphism ϕ from a ring R to a ring S is a mapping

from R to S such that for all a, b in R:

1. ϕ(a+ b) = ϕ(a) + ϕ(b).

2. ϕ(ab) = ϕ(a)ϕ(b).

Example 1.1.1. [11] Let R[x]denote the ring of all polynomials with real coefficients.

The mapping f(x) −→ f(1) is a ring homomorphism from R[x] onto R.
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Definition 1.1.5. [9] A ring homomorphism that is both one-to-one and onto is called

an isomorphism.

Definition 1.1.6. [19] Let R be a ring. A nonempty subset I of R is called an ideal if

1. both a+ b and a− b belong to I, for all a, b ∈ I.

2. r.a ∈ I, for all r ∈ R and a ∈ I.

Notation 1.1.1. For any ring R , {0} and R are ideals of R.

Definition 1.1.7. [19] An ideal I of a ring R is called a principle ideal if it is generated

by an element g ∈ I such that I = ⟨g⟩, where

I = ⟨g⟩ := {gr : r ∈ R} .

A ring R is a principal ideal ring if every ideal of R is principal. The element g is called

a generator of I and I is said to be generated by g.

Definition 1.1.8. [19] Let R be a ring and let A be ideal of R. The set of cosets

{r + A| r ∈ R} is called factor ring.

Example 1.1.2. [23] In the ring F2[x]/(x
3 − 1), the subset I = {0, 1 + x, x+ x2, 1 + x2}

is an ideal.

Definition 1.1.9. [9] An ideal U ̸= R in a ring R is said to be a maximal ideal of R if

whenever U is an ideal of R such that M ⊂ U ⊂ R , then either R = U or M = U.

Example 1.1.3. The maximal ideals of Z36 ,are ⟨2⟩ and ⟨3⟩.

Example 1.1.4. [23] In the ring F2[x]/(x
3 − 1), the subset

I := {0, 1 + x, x+ x2, 1 + x2},

is principal (i.e.I = ⟨1 + x⟩). Now, note that;

0.(1 + x) = 1 + x3 = 0 = (1 + x+ x2)(1 + x)

1.(1 + x) = 1 + x = (x+ x2)(1 + x)

x.(1 + x) = x+ x2 = (1 + x2)(1 + x)

x2.(1 + x) = 1 + x2 = (1 + x)(1 + x)
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Definition 1.1.10. [9] A zero-divisor is a nonzero element a of a commutative ring R

such that there is a nonzero element b ∈ R with ab = 0.

Definition 1.1.11. [9] Two polynomials f1, f2 ∈ R[x] are called coprime if

< f1 > + < f2 >= R[x] , or equivalently , if there exist g1, g2 ∈ R[x] such that f1g1 +

f2g2 = 1. A polynomial f ∈ R[x] is called regular if it is not a zero divisor.

Definition 1.1.12. [9] A polynomial f(x) ∈ F [x] is said to be irreducible over a field F

if whenever f(x) = a(x) b(x) with a(x), b(x) ∈ F [x] then one of a(x) or b(x) has degree

0(constant), otherwise f(x) is reducible .

Example 1.1.5. [11] The polynomial f(x) = 2x2 + 4 is irreducible over Q

Example 1.1.6. [11] The polynomial f(x) = x2 + 1 is irreducible over Z3, but reducible

aover Z5.

Definition 1.1.13. [19] We denote by Fq[x]/(1+ xn), the ring of all polynomial, modulo

(1 + xn) over the field Fq.

A polynomials I(x) ∈ Rn is called idempotent, if I2(x) = I(x) mod (1 + x2).

Example 1.1.7. [23] e(x) = x3 + x5 + x6 ∈ R7 over F2[x] ⇒ e2(x) = (x3 + x5 + x6)2 =

x3 + x5 + x6

∴ e(x) is an idempotent in R7.

Definition 1.1.14. [19] A field is a nonempty set F of elements with two operations

”+” and ”.” satisfying the following axioms. For all a, b, c ∈ F :

1. F is closed under + and . ; i.e, a+ b and a.b are in F .

2. Commutative laws: a+ b = b+ a, a.b = b.a.

3. Associative:(a+ b) + c = a+ (b+ c), (a.b).c = a.(b.c).

4. Distributive law: a.(b+ c) = a.b+ a.c.

Furthermore, two distinct identity elements 0 and 1 must exist in F satisfying the follow-

ing:
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1. a+ 0 = a for all a ∈ F .

2. a.1 = a and a.0 = 0 for all a ∈ F .

3. For any a in F , there exists an additive inverse element (−a) in F such that a +

(−a) = 0.

4. For any a ̸= 0 in F , there exists a multiplicative inverse element a−1 in F such that

a.a−1 = 1.

Remarks 1.1.1. [8]

1. If p is a prime we let GF (p) (Galois field with p elements) denote the integer ring

modulo p.

2. Zp = {0, 1, 2, · · · , p− 1}, group under + mod p, the order of Zp is p.

Z∗ = {1, 2, · · · , p − 1} = Zp/{0} is cyclic group under multiplication mod p and

order Zp/{0} = p− 1.

Zp = Fp = Z/pZ = GF (p).

p is called the characteristic of Fp.

3. Fields of order q = pm: Let Fp be a field, the set F[x] of all polynomials over Fp,

is a P.I.D (principal ideal domain).

4. We denote this field by Fq where q = pm or Fq = GF (pm) the Galois field of order

q = pm which is the extension of the prime field Fp. The characteristic of Fpm is p.

The field Fpm is a vector space over Fp of dim m and Fp is a prime subfield of Fq.

5. The set F∗
q = Fq/{0} is the set of non zero elements in Fq and it is a multiplicative

group.

Theorem 1.1.2. [23]
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(i) The group F∗
q is cyclic of order q − 1 under the multiplication of Fq.

(ii) If γ is a generator of this cyclic group, then Fq = {0, 1 = γ0, γ, γ2, · · · , γq−2} and

γi = 1 if and only if (q − 1)|i.

Definition 1.1.15. [8] A generator γ ∈ F∗
q is called a primitive element of Fq.

Theorem 1.1.3. [8] Let Fq be a finite field. For every a ∈ Fq, a
|Fq | = aq = a.

Remark 1.1.1. : If γ is a primitive element of Fq. Then γq−1 = 1, hence (γi)q−1 = 1 for

0 ≤ i ≤ q − 1, then any element of F∗
q is a root of the polynomial xq−1 − 1 ∈ Fq[x] and

hence xq − x, and 0 are a root of xq − x, so all elements of Fq are roots of xq − x.

Definition 1.1.16. [9] A nonempty set V is said to be a vector space over a field F if

V is an abelian group under an operation which we denote by (+), and if for every α ∈ F ,

v ∈ V there is defined an element, written αv subject to

1. α(v + w) = αv + αw;

2. (α+ β)v = αv + βv;

3. α(βv) = (αβ)v;

4. 1v = v;

for all α, β ∈ F , v, w ∈ V where (the 1 represent the unit element of F under

multiplication).

Definition 1.1.17. [9] If V is a vector space over F and if W ⊂ V , then W is a subspace

of V whenever w1, w2 ∈ W , α, β ∈ F implies that αw1 + αw2 ∈ W.

Definition 1.1.18. [19] Let X be a vector space over Fq. A set of vectors {x1, .......,xr}

in X are linearly independent if

λ1x1 + .........+ λrxr = 0⇒ λ1 = ..... = λr = 0

8



Definition 1.1.19. [19] Let V be a vector space over Fq and let S = {v1, v2, ......, vk} be

a nonempty subset of V . The (linear) span of S is defined as

< S >= {λ1v1 + ......+ λkvk : λi ∈ Fq}.

Given a subspace C of V , a subset S of C is called spanning set of C if C =< S > .

Definition 1.1.20. [19] LetX be a vector space over Fq. A nonempty subsetB={x1, .......,xr}

of X is called a basis for X if X =< B >, B is a spanning set for X and linearly inde-

pendent.

Definition 1.1.21. [19] A vector space X over a finite field Fq can have many basis; but

all basis contain the same number of elements. This number is called the dimension of

X over Fq, denoted by dim(X).

1.2 Background on coding theory

In this section, we define alphabet, codes, codewords, codes over fields, Hamming distances,

Hamming weights, linear code, generator matrix and parity check matrix .

We begin with some basic definitions. See [19].

⋆ Strings and codes: Let C = {c1, c2......cq} be a finite set called alphabet. A

string or a word over the alphabet A is any sequence of elements of A, we will usually

(but not always )write words in the form c = ci1ci2 ......cik

using juxtaposition of symbols. The empty word 0 is the unique word with no symbols.

The length of a word c denoted by len(c) is the number of the alphabet symbols ap-

pearing in the word. The set of all words (strings) over C will denoted by A∗.

⋆ q-ary:Let C = {c1, c2......cq} be a finite set which we call a code alphabet. An

q-ary is a nonempty subset A of the set C∗ of all words over C. The size q of the code

alphabet is called the radix of the code and the element of the code are called codewords.

9



The field F2 = {0, 1} has a very special place in history of coding theory, and codes over

F2 are called binary codes. Similarly, codes over F3 = {0, 1, 2} are termed ternary codes

, while codes over F4 = {0, 1, w, w} are called quaternary codes.The term “quaternary”

has also been used to refer to codes over the ring Z4 = {0, 1, 2, 3} of integers modulo 4.

⋆Fixed and variable length codes: If all codewords in a code C have the same

length we say that C is a fixed length code, or block code. If C contains codes of

different lengths, we say that C is a variable length code. We will consider only block

codes. We shall denote the number of codewords in a code C by |C|.

Let An be the set of all strings of length n. Any nonempty subset C of An is called a

q-ary block code , each string in C is called codeword. If C ⊂ An contains M codewords,

it is customary to say that C has length n and size M , we denote this by (n,M)-code.

Example 1.2.1. [23]

The binary code C = {000, 100, 010, 001, 110, 101, 011, 111} contains M = |C| = 23 =

8 words.

Fact:For any binary code C of length n, 1 ≤ |C| ≤ 2n.

For the purpose of this thesis, codes will have alphabet as a field or a ring under addition

and multiplication. In fact, almost our codes’ alphabet will be defined onGF(q), a Galois

field of q-elements and on commutative finite rings.

Definition 1.2.1. [8]

� The (Hamming distance) d(x, y) between two vectors x, y ∈ Fn
q is defined to be the

number of coordinates in which x and y differ.

� The (Hamming weight) wt(x) of a vector x ∈ Fn
q is the number of nonzero coordinates

in x.

Definition 1.2.2. [23] For a code C containing at least two words, the minimum distance

of a code C, denoted by d(C), is

d(C) = min{d(x, y) : x, y ∈ C, x ̸= y}.

10



Example 1.2.2. [19] Let C = {000000, 000111, 111222} be ternary code. Then d(c) = 3

since

d(000000, 000111) = 3, d(000000, 111222) = 6, d(000111, 111222) = 6. Hence, C is a

ternary (6, 3, 3)-code.

Remark 1.2.1. [19] For every element x of Fq, we can define the Hamming weight as

follows:

wt(x) = d(x, 0) =

1 if x ̸= 0,

0 if x = 0.

Theorem 1.2.1. [23] If x,y ∈ Fn
q , then d(x,y) = wt(x− y). If C is a linear code, then

the minimum distance d is the same as the minimum weight of the nonzero codewords of

C.

Proof. d(x,y) = d(0,y − x) = wt(y − x) or wt(x− y) where y − x ∈ C.

So the minimum distance {d(x,y), where x ̸= y, x,y ∈ C} = the minimum weight {wt(x−

y), where x ̸= y, x,y ∈ C}.

Then the minimum distance d(C) = the minimum weight of the nonzero codewords of C =

minimum{wt(a) : a ̸= 0, a ∈ C}.

Remark 1.2.2. [23] If the minimum distance of the [n, k]− code C is d then the code will

now be defined as [n, k, d] code.

Definition 1.2.3. [23] If x = x1x2 · · · xn and y = y1y2 · · · yn are binary words then

x ∩ y = (x1y1, x2y2, · · · , xnyn). Thus x ∩ y has a 1 in the ith position if and only if both

x, y have a 1 in the ith position.

Example 1.2.3. If x=(011011)∈ F 6
2 and y=(101011)∈ F 6

2 , then x ∩ y =( 0, 0, 1, 0, 1,

1) .

Theorem 1.2.2. [23] The following hold:

11



(i) If x, y ∈ Fn
2 , then wt(x+y) = wt(x)+wt(y)− 2wt(x ∩ y), where x ∩ y is a vector

in Fn
2 , which has 1’s precisely in those positions where both x and y have 1’s

(ii) If x,y ∈ Fn
2 , then wt(x ∩ y) ≡ x · y mod 2.

(iii) If x ∈ Fn
2 , then wt(x) ≡ x · x mod 2.

(iv) If x ∈ Fn
3 , then wt(x) ≡ x · x mod 3.

(v) If x ∈ Fn
4 , then wt(x) ≡ ⟨x · x⟩ mod 2.

Proof.

(i) If x,y ∈ Fn
2 , then wt(x+ y) = wt(x− y) = d(x− y,0)

= the number of nonzero coordinates of x+the number of nonzero coordinates of y−

2(the number of nonzero coordinates of x ∩ y) = wt(x) + wt(y)− 2wt(x ∩ y).

(ii) wt(x ∩ y) = wt(x1y1, x2y2, · · · , xnyn) = the number of nonzero coordinates of (x ∩ y) ≡

(x1y1 + x2y2 + · · ·+ xnyn) (mod 2).

(iii) If x ∈ Fn
2 , then wt(x) =

∑
xi ̸=0 xi =

∑
xi ̸=0 x

2
i ≡ x · x (mod 2).

(iv) If x ∈ Fn
3 , then wt(x) =

∑
xi ̸=0 xi =

∑
xi ̸=0 x

2
i ≡ x · x (mod 3).

(v) If x ∈ Fn
4 , then wt(x) =

∑
xi ̸=0 xi =

∑
xi ̸=0 x

2
i ≡ x · x̄ (mod 2) ≡ ⟨x · x⟩ (mod 2).

Definition 1.2.4. [23] Let Ai or Ai(C) be the number of codewords of weight i in C. The

list Ai for 0 ≤ i ≤ n is called the (weight distribution) weight distribution of C.

Example 1.2.4. [23] Let C be the binary code with generator matrix

G =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 .
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All codewords are

000000, 110000, 111100, 110011, 001111, 111111, 001100, 000011.

The weight distribution of C are A0 = 1, A6 = 1, A2 = 3, A4 = 3

Definition 1.2.5. [8] A code C is called a linear code if x+ y is a word in C whenever

x and y are in C. That is, a linear code is a code which is closed under addition of words.

Note that all linear codes contain the zero codewords, denoted by 0 = 00......0. Note

also that the dimension of a q-ary [n, k] code is defined by k = log|F |M where the size

M = qk and the rate of C is R = k/n.

Example 1.2.5. C = {000, 111} is a linear code over F2, since all four of the sums

000 + 000 = 000

111 + 000 = 111

000 + 111 = 111

111 + 111 = 000

are in C. A linear code C must contain the zero codeword.

Definition 1.2.6. [19] A linear code C of length n over Fq is a subspace of Fq
n.

Definition 1.2.7. [23] A generator matrix for an [n, k] code C is any k × n matrix G

whose rows form a basis for C.

Remark 1.2.3. In general for any code C there are many generator matrices of size k×n.

If C is any [n, k]-code, with generator matrix G, then the codewords in C are the

linear combination of the rows of G.

Example 1.2.6. [23]: Consider the binary code with generator matrix

G =


1 1 0 0

0 1 1 1

1 0 1 0

 ,

this matrix has three rows, then the dimension of the code is 3 and has 23 codewords.
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Definition 1.2.8. [23] For any set of k independent columns of a generator matrix G,

the corresponding set of coordinates form an information set of C, and the remaining

r = n− k coordinates are called the redundancy set of C.

Definition 1.2.9. [23] a generator matrix of the form

G =
[

Ik A
]
, where Ik is the k × k identity matrix of size k

is said to be in the standard form.

Definition 1.2.10. [23] Parity check matrix A parity check matrix for the [n, k] code

C, is an (n− k)× n matrix H such that

C = {x ∈ F n
q |HxT = 0}.

Note that the rows of H will also be independent. In general, there are also several

possible parity check matrices for C. The next theorem gives one of them when C has a

generator matrix in standard form. In this theorem, AT is the transpose of A.

Definition 1.2.11. [23] If C is a code over Fq then

C⊥ = {x ∈ F n
q : x · c = 0 for all c ∈ C},

is the dual code of C.

Theorem 1.2.3. [23] If G = [Ik|A] is a generator matrix for the [n, k]code C in standard

form, then H = [−AT |In−k] is a parity check matrix for C.

Proof. we clearly have

HGT = [−AT |In−k]

 Ik

AT

 = −AT + AT = 0.

Thus, C is contained in the kernel of the linear transformation x→ HxT . As H has rank

n − k, this linear transformation has kernel of dimension k, which is also the dimension

of C. The result follows.
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Notation 1.2.4. [23] Since GHT = [Ik|A]

 −A
In−k

 = -A+A = 0. Hence the rows of H

are orthogonal to the rows of G and since rank(H) = n− k = dim(C⊥). We deduce that

H is a generator matrix for the dual code C⊥.

Example 1.2.7. :[23] The binary [7, 4]-code with generator matrix

G =


1 0 0 0 1 0 1

0 1 0 0 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 ,

in standard form the first 4 coordinates form information set.

Example 1.2.8. [23] The matrix

G =
[

Ik A
]
, where G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


is a generator matrix in standard form for a [7, 4] binary code that we denote by H3. The

parity check matrix for H3 is

H =
[

A⊤ I3

]
=


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

.
This code H3 is called the [7, 4] Hamming code.

Remark 1.2.4. any linear code has a generator matrix in RREF(Reduced Row Echelon

Form).

Example 1.2.9. To find the generator matrix G for the code C = {0000, 1110, 0111, 1001}

By elementary row operations we write
0 0 0 0

1 1 1 0

0 1 1 1

1 0 0 1

→


1 1 1 0

0 1 1 1

1 0 0 1

0 0 0 0

→


1 1 1 0

0 1 1 1

0 1 1 1

0 0 0 0

→


1 1 1 0

0 1 1 1

0 0 0 0

0 0 0 0

→


1 0 0 1

0 1 1 1

0 0 0 0

0 0 0 0

 .
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so G1 =

 1 1 1 0

0 1 1 1

 is a generator matrix for C, also G2 =

 1 0 0 1

0 1 1 1

 ,

is a generator matrix for C.

Note that G2 is in RREF

Definition 1.2.12. [9] Let x = x1x2 · · ·xn, y = y1y2 · · · yn ∈ F n
q be two vectors, then the

inner product is denoted by the formula x · y =
∑n

i=1 xiyi = x1y1 + · · ·+ xnyn.

1.3 Encoding and decoding

In this section we use generator matrix and parity check matrix to encode a message

x = x1x2 · · ·xk, where G = [Ik|A], H = [−A⊤|In−k] , and then we define syndrome and

coset of a vector x and use them for decoding.

Let C be an [n, k] linear code over the field Fq, with generator matrix G. This code has

qk codewords which will be in one to one correspondence with qk messages. The simplest

way to view these messages is as k− tuples x ∈ Fk
q .

To encode the message x as a codeword c = xG, if G = [Ik|A] in standard form, then the

first k coordinates of the codeword C are the information symbol x; the remaining

n − k symbols are the parity check symbols, that is a redundancy added to x in order

to help recover x if errors occur.

If G is not in standard form then there exists indices i1, i2, · · · , ik such that the k × k

matrix consisting of these k columns of G is the k× k identity matrix consisting of those

k columns of G. Then the message is found in the k− coordinates i1, i2, · · · , ik of the

codeword scrambled but otherwise unchanged, that is the message symbol xj is in the

component ij of the codeword. This encoder is called systematic.

⋆ Encoding:

Let x be a message x = x1x2 · · ·xk. Let G = [Ik|A], H = [−A⊤|In−k]. Suppose
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x = x1x2 · · ·xk is encoded as a codeword c = c1c2 · · · cn asG in standard form, c1c2 · · · ck =

x1x2 · · · xk. So we need to determine the n−k parity check symbols (redundancy symbols)

ck+1ck+2 · · · cn.

As 0 = HC⊤ = [−A⊤|In−k]C⊤ =⇒ 0 = −A⊤x⊤ + In−k[ck+1 · · · cn]⊤ =⇒ A⊤x⊤ =

[ck+1 · · · cn]⊤. See [23].

Example 1.3.1. [23] Let G be the [6, 3, 3] binary code with the following generator matrix

and parity check matrix:

G =


1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

 and H =


1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1


Let x = x1x2x3 to obtain the codeword C = c1c2 · · · c6 using G to encode yields C = xG =

(x1, x2, x3, x1 + x2, x2 + x3, x1 + x3). Using H to encode 0 = HC⊤ leads to the system

0 = c1 + c2 + c4

0 = c2 + c3 + c5

0 = c1 + c3 + c6

As G in standard form c1c2c3 = x1x2x3 and solving this system clearly gives the same

codeword

c4 = c1 + c2 = x1 + x2

c5 = c2 + c3 = x2 + x3

c6 = c1 + c3 = x1 + x3

∴ C = (x1, x2, x3, x1 + x2, x2 + x3, x1 + x3).

If G is not in standard form, since G has k independent rows, so there exists n × k

matrix K such that GK = Ik, K is called a right inverse for G and is not necessarily

unique. As c = xG =⇒ cK = xGK = xIk = x.

Theorem 1.3.1. [7] A code C of distance d will at least detect all non-zero error patterns

of weight less than or equal to d−1. Moreover, there is at least one error pattern of weight

d which C will not detect.
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Example 1.3.2. The code C = {000, 111}, d = 3 detects all error patterns of weight 1

or 2 and C does not detect the only error patterns of weight 3.

Theorem 1.3.2. [7] A code C of distance d will correct all error patterns of weight

less than or equal to [(d − 1)/2]. Moreover, there is at least one error pattern of weight

1 + [(d− 1)/2] which C will not correct.

Example 1.3.3. The code C = {000, 111}, d = 3 correct all error patterns of weight 0

or 1, since (d− 1)/2 = (3− 1)/2 = 1.

⋆ Decoding:

The decoding problem becomes one of finding an efficient algorithm that will correct up

to t errors one of the most obvious decoding algorithm is to examine all codewords until

one is found with distance t or less from the received vector. But this is efficient for codes

of number of codewords.

Another obvious algorithm is to make a table consisting of a nearest codeword for each

of the qn vectors in Fn
q and then look up a received vector in the table in order to decode

it. This is impractical if qn is very large. See [23]

Definition 1.3.1. [11] Coset of C. If C ⊂ F n
q is a linear code (i.e subspace ) the quotient

space of F n
q , modulo C is defined by

F n
q /C = {x+ C|x ∈ F n

q }.

The set x+ C = {x+ c|c ∈ C} is called a coset of C.

Note that |x+ C| = |C|.

⋆ Syndrome decoding for [n, k, d] linear code C

We can devise an algorithm using a table with qn−k rather than qn entries where one can

find the nearest codeword by looking up one of those qn−k entries.
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Notations 1.3.3.

• The code C is an abelian subgroup of the additive group Fn
q .

• If x ∈ Fn
q , then x+ C is a coset of C.

• The cosets of C form a partition of Fn into qn−k sets, each of size qn.

• Two vectors x,y ∈ Fn
q belong to the same coset if and only if y − x ∈ C.

• The weight of a coset is the smallest weight of a vector in the coset.

• A coset leader is the vector in the coset of smallest weight.

• The zero vector is the unique coset leader of the code C.

• In general every coset of weight at most t = ⌊d−1
2
⌋ has a unique coset leader.

Definition 1.3.2. [23] Let H be the parity check matrix for C. The syndrome of a

vector x in Fn
q with respect to the parity check matrix H is the vector in Fn−k

q defined by

syn(x) = Hx⊤.

The code C consists of all vectors whose syndrome equal 0.

As rank H = n− k, every vector in Fn−k
q is a syndrome.

Theorem 1.3.4. [23] Two vectors belong to the same coset if and only if they have the

same syndrome.

Proof. If x1,x2 ∈ Fn
q are in the same coset of C, then x1 − x2 = c ∈ C =⇒ x1 = x2 + c.

Therefore syn(x1) = H(x2 + c)⊤ = Hx⊤
2 +Hc⊤ = Hx⊤

2 = syn(x2), then x1,x2 have the

same syndrome and then lie on the same coset of C.

If syn(x1) = syn(x2) =⇒ H(x1 − x2)
⊤ = 0 =⇒ x2 − x1 ∈ C =⇒ x2 ∈ x1 + C. So x1, x2

lie on the same coset of C.
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⋆ Decoding method

(i) Let y be a received vector, we seek an error vector e of smallest weight such that

c = y − e ∈ C. We find the syndrome of (the coset of) the received vector y ∈ Fn
q .

That is we compute s = syn(y) = Hy⊤.

(ii) Finding a coset leader e in the coset of the received vector y. Find a minimum

weight vector e ∈ Fn
q such that

s = syn(y) = H(c+ e)⊤ = Hc⊤ +He⊤ = He⊤.

(iii) Create a table pairing the syndrome with the coset leader, y is decoded as the code

word y − e. The table is used to look up the syndrome and find the coset leader.

Remark 1.3.1. To find the syndrome s = He⊤ = syn(y) is equivalent to finding a smallest

set of columns in H whose linear span contains the vector s.

The syndrome decoding for binary Hamming codes takes the form [2r − 1, 2r − 1− r, 3] .

(i) After receiving a vector y, compute its syndrome s using the parity check matrix Hr

of the Hamming code Hr.

(ii) If s = 0, then y is in the code and y is decoded as y; otherwise, s is the binary

numeral for some positive integer i and y is decoded as the codeword obtained from y by

adding 1 to its ith bit. See [23].

Example 1.3.4. [23] Construct the parity check matrix of the binary Hamming code H4

of length 15 where the columns are the binary numbers 1, 2, · · · , 15 in that order. Using

this parity check matrix decode the following vectors, and then check that your decoded

vectors are actually codewords.

(a) y1 = 001000001100100

(b) y2 = 101001110101100.

20



Solution:

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


(a) Let y1 = 001000001100100 Then

Hy⊤
1 =


1

1

0

1

 = col13.

So e1 = 000000000000100

∴ c1 = y1 − e1 = 001000001100000.

(b)

Hy⊤
2 =


0

0

1

0

 = col2

.So e2 = 010000000000000

∴ c2 = y2 − e2 = 111001110101100.

Example 1.3.5. [23] Let C be a linear [5, 2, 3] code over F2 with generator matrix

G =

 1 0 1 1 0

0 1 0 1 1

 .

The cosets of the code C are shown in the following table.
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00000 10110 01011 11101

00001 10111 01010 11100

00010 10100 01001 11111

00100 10001 01111 11001

01000 11110 00011 10101

10000 00110 11011 01101

00101 10011 01110 11000

10001 00111 11010 01100

Each row in the table is a coset of C and the first vector in each row is the coset leader of

minimum weight. The last two rows could start with any of the words 00101, 11000, 10001, or 01100.

Suppose that the received word is y = 01111. This word appears in the fourth row and

the third column. The coset leader of the fourth row is 00100, and the decoded codeword

is 01011, which is the first entry in the third column.

We can use the syndrome decoding to decode the receive word y by using the parity check

matrix

H =


1 0 1 0 0

1 1 0 1 0

0 1 0 0 1


Hy⊤ = H(01111)⊤ = (100)⊤ = col3.

e = (00100) so c = y − e = (01111)− (00100) = (01011).

1.4 Basic definitions on cyclic and quadratic residue

codes

In this section, we define cyclic code, duadic code and quadratic residue code

A linear code C of length n over Fq is cyclic provided that for each vector c = c0c1 · · · cn−2cn−1

in C the vector cn−1c0c1 · · · cn−2 obtained from c by the cyclic shift of coordinate i 7−→

i+1 (mod n), is also in C. So a cyclic code contains all n cyclic shifts of any codeword.
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We will represent the codewords in a polynomial form. If c0c1 · · · cn−2cn−1 ∈ Fn
q then

c(x) = c0 + c1x + · · · + cn−1x
n−1 ∈ Fq[x] of degree at most n− 1. We order the terms of

our polynomial from smallest to largest degree.

If c(x) = c0 + c1x + · · · + cn−1x
n−1, then xc(x) = cn−1x

n + c0x + c1x
2 + · · · + cn−2x

n−1

which would represent the codeword c cyclically shifted one to right, if xn = 1.

Cylcic code C is invariant under a cyclic shift implies that if c(x) is in C, then so is xc(x)

provided we multiply modulo xn − 1. See [23].

Remarks 1.4.1. [23]

(i) A linear code C is cyclic if and only if c(x) ∈ C =⇒ x · c(x) (mod xn − 1) ∈ C.

It follows that when c(x) is a codeword in a cyclic code, so are the words xi ·

c(x)(mod xn − 1) for i ≥ 0.

(ii) By linearity we conclude that in a cyclic code C, c(x) ∈ C =⇒ u(x)c(x)(mod xn −

1) ∈ C for every u(x) ∈ Fq[x], hence C is an ideal in Rn = Fq[x]/(x
n − 1).

⋆ Generating idempotent of the cyclic code [23] An element e of a ring satis-

fying e2 = e is called an idempotent, the ring Rn is semi-simple when gcd(n, d) = 1.

therefore it follows from the Wedderburn Structure Theorems that each cyclic code in

Rn contains a unique idempotent which generates the ideal. See [8], This idempotent is

called the generating idempotent of the cyclic code.

Example 1.4.1. [23] The generating idempotent for the zero cyclic code 0 is 0, while that

for the cyclic code Rn is 1.

Theorem 1.4.1. [23] Let C be a cyclic code in Rn. Then:

(i) There exists a unique idempotent e(x) ∈ C such that C = ⟨e(x)⟩, and

(ii) If e(x) is a nonzero idempotent in C, then C = ⟨e(x)⟩ if and only if e(x) is a unity

of C
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Proof. See [23]

Note that the way to find the generating idempotent e(x) for a cyclic code C from

the generating polynomial g(x) is to solve a(x)g(x) + b(x)h(x) = 1 for a(x) using the

Euclidean Algorithm, where h(x) = (xn−1)
g(x)

. then reducing a(x)g(x) modulo xn − 1

produces e(x).

Corollary 1.4.2. [23] Let C1 and C2 be cyclic codes over Fq with generator polynomials

g1(x) and g2(x), respectively. then C1 ⊆ C2 if and only if g2(x) | g1(x).

Theorem 1.4.3. [23] Let C be a cyclic code over Fq with generating idempotent e(x).

Then the generating polynomial of C is g(x) = gcd(e(x), xn − 1) computed in Fq[x].

Proof. See [23]

The previous theorem shows that We can produce g(x) if we know e(x).

Theorem 1.4.4. [23] Let Ci be a cyclic code of length n over Fq[x] with generator poly-

nomial gi(x) and generating idempotent ei(x) for i = 1 and 2. Then:

(i) C1 ∩ C2 has generator polynomial lcm(g1(x), g2(x)) and generating idempotent

e1(x)e2(x), and

(ii) C1 + C2 has generator polynomial gcd(g1(x), g2(x)) and generating idempotent

e1(x) + e2(x)− e1(x)e2(x).

Proof. (i) Let l(x) = lcm(g1(x), g2(x)) =⇒ g1(x)|l(x), g2(x)|l(x) =⇒ l(x) = g1(x)k1(x), l(x) =

g2(x)k2(x) =⇒ e(x) ∈ C1 and l(x) ∈ C2, since C1 ∩ C2 is cyclic, then ⟨l(x)⟩ ⊆ C1 ∩ C2....(1)

Let l′(x) ∈ C1∩C2 =⇒ l′(x) ∈ C1, l′(x) ∈ C2 =⇒ l′(x) = g1(x)f1(x), l
′(x) = g2(x)f2(x) =⇒

g1|l′ and g2(x)|l′(x) =⇒ l′ is a common multiple =⇒ l(x)|l′(x) =⇒ ⟨l′(x)⟩ ⊆ ⟨l(x)⟩ =⇒

C1 ∩ C2 ⊆ ⟨l(x)⟩....(2)

From (1) and (2) we have C1∩C2 = lcm(g1(x), g2(x)), since g1(x)|xn−1 and g2(x)|xn−1 =⇒

l(x)|xn − 1 =⇒ l(x) is a monic polynomial and generates C1 ∩ C2.

If c(x) ∈ C1 ∩ C2 =⇒ c(x) ∈ C1, c(x) ∈ C2 and c(x)(e1(x)e2(x) = c(x)e2(x) = c(x) =⇒
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e1e2 ∈ C1 ∩ C2 and e1e2 is the unity generator idempotent of C1 ∩ C2.

(ii) Let g(x) = gcd(g1(x), g2(x)) It follows from the Euclidean Algorithm that g(x) =

g1(x)a(x) + g2(x)b(x) for some a(x) and b(x) in Fq[x]. So g1(x) ∈ C1 + C2. Since C1 + C2
is cyclic, ⟨g(x)⟩ ⊆ C1 + C2. On other hand g(x)|g1(x), which shows that C1 ⊆ ⟨g(x)⟩ by

corollary 1.4.2, similarly C2 ⊆ ⟨g(x)⟩ implying that C1 + C2 ⊆ ⟨g(x)⟩. So C1 + C2 = ⟨g(x)⟩.

Since g(x)|xn − 1 as g(x)|g1(x) and g(x) is monic, g(x) is the generator polynomial for

C1 + C2bycorollary1.4.2. If c(x) = c1(x) + c2(x) where ci(x) ∈ Ci for i = 1 and 2, then

c(x)(e1(x) + e2(x)− e1(x)e2(x)) = c1(x) + c1(x)e2(x)− c1(x)e2(x) + c2(x)e1(x) + c2(x)−

c2(x)e1(x) = c(x).

Thus (ii) follows, since e1(x) + e2(x) − e1(x)e2(x) ∈ C1 + C2 and (e1 + e2 − e1e2)
2 =

e1 + e2 − e1e2.

⋆ Duadic codes: [23] to define duadic codes we need some preliminary notation and

result before. Let Zp be the ring of integers modulo n, and let ξn denote the sub-code of

even like vector in Rn = Fq[x]/(x
n− 1). The code ξn is an [n, n-1] cyclic code whose dual

code ξ⊥n is the repetition code of length n which has generating idempotent

j(x) =
1

n
(1 + x+ x2 + · · ·+ xn−1)

so ξn has generating idempotent 1− j(x)µ−1 = 1− j(x). Where µa is called a multiplier

denote a permutation which maps idempotents of Rn to idempotents of Rn, so µa is a

function defined on {0, 1, · · · , n − 1} by iµa = ia (mod n ), where gcd(a, n) = 1 and a

is some integer. In defining the duadic code, we will obtain two pairs of codes; one pair

will be two even-like codes, which are thus sub-codes of ξn, and the other pair will be

odd-like codes. It will be important to be able to tell when either a vector or a cyclic

code in Rn is even-like or odd-like.

Lemma 1.4.5. [23] Let a(x) =
∑n−1

i=1 aix
i ∈ Rn. Also let C be a cyclic code in Rn with

generating polynomial g(x). Then:

(i) a(x) is even-like if and only if a(1) = 0 if and only if a(x)j(x) = 0,

25



(ii) a(x) is odd-like if and only if a(1) ̸= 0 if and only if a(x)j(x) = αj(x) for some

nonzero α ∈ Fq,

(iii) C is even-like if and only if g(1) = 0 if and only if j(x) /∈ C, and

(iv) C is odd-like if and only if g(1) ̸= 0 if and only if j(x) ∈ C

Proof. See [23]

Duadic codes come in two pairs, one even-like pair, which usually denoted by C1 and

C2, and one odd-like pair, which usually denoted by D1 and D2. Let e1(x) and e2(x) be

two even-like idempotents with C1 = ⟨e1(x)⟩ and C2 = ⟨e2(x)⟩. The codes C1 and C2 form

a pair of even-like duadic codes provided the following:

e1(x) + e2(x) = 1− j(x)

, and there is a multiplier µa such that

C1µa = C2 and C2µa = C1

Note that we can replace C1 by e1(x) and C2 by e2(x), associate to C1 and C2 is the

pair of odd-like duadic codes D1 = ⟨1− e2(x)⟩ and D2 = ⟨1− e1(x)⟩, where 1− ei(x) = 1

for i = 1, 2. See [23].

Definition 1.4.1. [23] square modulo n: Let p be an odd prime and let a be in ZP

with a1 ≡ 0 (mod p). then a is a square if and only if a
p−1
2 ≡ 1 (mod p).

Definition 1.4.2. [23]Quadratic residue codes (QR codes): Quadratic residue codes

are duadic codes over Fq of odd prime length n = p, which must be a square modulo n

not dividing q, where q is a prime power that is a square modulo p.

Let Qp denote the set of nonzero squares modulo p, and letNp be the set of nonsquares

modulo p. The sets Qp and Np are called the nonzero quadratic residues and quadratic

residues modulo p, respectively.

26



Lemma 1.4.6. [23] let p be an odd prime. The following holds:

(i) | Qp |=| Np |= p−1
2
.

(ii) Modulo p, we have Qpa = Qp, Npa = Np, Qpb = Np, and Npb = Qp when a ∈ Qp

and b ∈ Np .

Proof. See [23]

Theorem 1.4.7. [23] Quadratic residue codes of odd prime length p exist over Fq if and

only if q ∈ Qp.

Theorem 1.4.8. [23] Let C be a cyclic code of odd prime length p over Fq, where q is a

square modulo p. Let e(x) be the generating idempotent of C. The following hold:

(i) C is a quadratic residue code or one of the trivial codes if and only if e(x)µc = e(x)

for all c ∈ Qp.

(ii) If C is a quadratic residue code with generating idempotent e(x), then

e(x) = a0 + a1
∑
i∈Qp

xi + a2
∑
i∈Np

xi

, for some a0, a1, a2 in Fq.

(iii) If c ∈ Qp and C is a quadratic residue code, then µc ∈ PAut(C).

Proof. See [23]

Theorem 1.4.9. [23] Let C be an even-like quadratic residue code of prime length p over

Fq with idempotent e(x). The following hold:

(i) The four quadratic residue codes over Fq or any extension field of Fq have generating

idempotents e(x), e(x)µb, e(x) + j(x), and e(x)µb + j(x) for any b ∈ Np.

(ii) e(x) + e(x)µb = 1− j(x) for b ∈ Np.
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(iii) The four quadratic residue codes over Fq have the same minimum weight and the

same minimum weight codewords, up to scalar multiplication, as they do over an

extension field of Fq.

Proof. See [23]

As in previous theorems we can find the generating idempotents of all QR codes over

any field of characteristic 2 and 3 , see [23] page 238 - 244.
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Chapter 2

Decoding of cyclic codes

This chapter is divided into four sections. In section one, we study generator and parity

check matrices of cyclic codes. In section two we introduce many procedures for encoding

and decoding cyclic codes. In section three, we give a method to Compute the generating

idempotent e(x) for a cyclic code. Finally The first version of Meggitt decoding algorithm

for cyclic codes is studied in section 4.

2.1 Generator and parity check matrices of cyclic

codes

In this section we need some definitions and remarks to get a generator and parity check

matrices of cyclic codes

Definition 2.1.1. [23] The order of q modulo n denoted by ordn(q): is the smallest

positive integer a such that qa ≡ 1(mod n). That is if qa ≡ 1(mod n) =⇒ ordn(q) = a.

If t = ordn(q), then Fqt contains a primitive nth root of unity α, but no smaller exten-

sion field of Fq contains such a primitive root.

As αi are distinct for 0 ≤ i < n and (αi)n = 1,Fqt contains all the roots of x
n − 1. So Fqt

is called a splitting field of xn − 1 over Fq. So the irreducible factors of xn − 1 over Fq

must be the product of the distinct minimal polynomials of the nth roots of unity in Fq.
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Suppose γ is a primitive element of Fqt . Then α = γd is a primitive nth root of unity where

d = qt−1
n

. The roots ofMα(x) are {γds, γdsq, γdsq2 , · · · , γdsqr−1} = {αs, αsq, αsq2 , · · · , αsqr−1},

where r is the smallest positive integer such that dsqr ≡ ds(mod qt − 1). But dsqr ≡

ds(mod qt − 1) if and only if sqr ≡ s(mod n), because (dsqr ≡ ds(mod dn) =⇒ sqr ≡

s(mod n)).

This leads us to extend the notion of q-cyclotomic cosets.

Definition 2.1.2. [23] Let s be an integer with 0 ≤ s < n. The q-cyclotomic cosets

of s modulo n is the set Cs = {s, sq, · · · , sqr−1} (mod n), where r is the smallest positive

integer such that sqr ≡ s (mod n).

Definition 2.1.3. Monic Polynomial: A polynomial xn + an−1x
n−1 + · · · + a1x + a0

in which the coefficient of the highest order term is 1.

Definition 2.1.4. [23] If E is the extension field Fq, then E is a vector space over Fq,

and E = Fqt for some positive t. Each element α ∈ E is a root of the polynomial xqt − x.

Thus there is a monic polynomial Mα(x) in Fq[x] of smallest degree which has α as a

root, this polynomial is called the minimal polynomial of α over Fq.

Note that Cs is the orbit of the permutation i 7−→ iq (mod n) that contains s. The

distinct q− cyclotomic cosets modulo n partition the set of integers {0, 1, 2, · · · , n − 1}

into disjoint sets.

Theorem 2.1.1. [23] Let n be a positive integer relatively prime to q. Let t = ordn(q).

Let α be a primitive nth root of unity in Fqt.

(i) For each integer s with 0 ≤ s < n, the minimal polynomial of αs over Fq is

Mαs(x) =
∏

i∈Cs
(x− αi), where Cs is the q-cyclotomic cosets of s modulo n.

(ii) The conjugates of αs are the elements αi with i ∈ Cs.

(iii) Furthermore xn − 1 =
∏

s Mαs(x) in the factorization of xn − 1 into irreducible

factors over Fq, where s runs through a set of representation of the q-cyclotomic

cosets modulo n.
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Example 2.1.1. [23] Consider the polynomial x9 − 1 over F2. Since q = 2 and n = 9,

then the 2− cyclotomic cosets over 9 are C0 = {0}, C1 = {1, 2, 4, 8, 7, 5}, C3 = {3, 6}.

So ordn(2) = 6 and the primitive ninth root of unity lie in F64 but no smaller extension

field of F2. Hence x9 − 1 factors into an irreducible factors as

x9 − 1 = (x3)3 − 1 = (x3 + 1)(x6 + x3 + 1) = (x− 1)(x2 + x+ 1)(x6 + x3 + 1).

The polynomial mα0(x) = M1(x) = x + 1, Mα(x) = x6 + x3 + 1, Mα3(x) = x2 + x + 1,

where α is a primitive ninth root of unity in F64. The only irreducible polynomial of degree

2 over F2 is x2 + x+ 1 = Mα3(x) (α3 is a primitive third root of unity in F64.

Definition 2.1.5. [23] The order ordn(q) of q modulo n is the smallest positive integer a

such that qa ≡ 1(mod n). That is if qa ≡ 1(mod n) =⇒ ordn(q) = a.

Theorem 2.1.2. [23] The size of each q- cyclotomic coset is a divisor of ordn(q). Fur-

thermore the size of C1 is ordn(q).

Proof. Let t = ordn(q) and let m be the size of Cs. Then Mαs(x) has degree m where α is

a primitive nth root of unity, so m|t and hence there exists a subfield Fqm = Fpmr of Fqt =

Fpmt =⇒ mr|mt =⇒ m|t see [23] theorem 3.7.3. The fact that the size of C1 is ordn(q)

follows directly from the definitions of q− cyclotomic cosets and ordn(q) as mentioned

prior to definition 2.1.5 , because C1 = {1, q, q2, · · · , qr−1} (mod qt − 1), where r is the

smallest positive integer such that qr ≡ 1 (mod qt − 1) =⇒ r = t.

Notations 2.1.3. cite5The cyclic codes of length n over Fq are precisely the ideals of

Rn = Fq[x]/(x
n − 1), Fq[x] is principal ideal domain also the ring Rn is principal, hence

cyclic codes are the principal ideal of Rn, when writing a codeword of a cyclic code as

c(x), we technically mean the coset c(x) + (xn − 1) in Rn. We think the elements of

Rn as the polynomial in Fq[x] of degree less than n with multiplication being carried out

modulo xn − 1.

Theorem 2.1.4. [23] Let C be a nonzero cyclic code in Rn. There exists a polynomial

g(x) ∈ C with the following properties:
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(i) g(x) is the unique monic polynomial of minimum degree in C,

(ii) C = ⟨g(x)⟩, and

(iii) g(x)|(xn − 1).

Let k = n− deg g(x), and let g(x) =
∑n−k

i=0 gix
i, where gn−k = 1. Then:

(iv) The dimension of C is k and {g(x), xg(x), · · · , xk−1g(x)} is a basis for C,

(v) Every element of C is uniquely expressible as a product g(x)f(x), where f(x) = 0 or

deg f(x) < k,

(vi)

G =


g0 g1 g2 · · · gn−k 0

0 g0 g1 · · · gn−k−1 gn−k

· · · · · · · · · · · · · · ·

0 g0 · · · gn−k

↔


g(x)

xg(x)

· · ·

xk−1g(x)


is a generator matrix for C, and

(vii) If α is a primitive nth root of unity in some extension field of Fq, then

g(x) =
∏
s

Mαs(x).

where the product is over a subset of representatives of the q-cyclotomic cosets mod-

ulo n.

Proof. See [23].

Remark 2.1.1.

(i) Rn = Fq[x]/(x
n − 1) is a principal ideal ring.

(ii) Part (vii) requires that gcd(n, q) = 1 because xn − 1 has no repeated roots if and

only if gcd(n, q) = 1.
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Corollary 2.1.5. [23] Let C be nonzero cyclic code in Rn. The following are equivalent:

(i) g(x) is the monic polynomial of minimum degree in C.

(ii) C = ⟨g(x)⟩, g(x) is monic, and g(x)|xn − 1.

Proof. (i) =⇒ (ii) was shown in the proof of theorem 2.1.4.

Assume (ii). Let g1(x) be monic polynomial of minimum degree in C. By part (i) and (ii) of

theorem 2.1.4 g(x) = g1(x)h(x) + r(x), deg r(x) < deg g1(x) or r(x) = 0 =⇒ g1(x)|g(x)

in Fq[x] and C = ⟨g1(x)⟩. As g1(x) ∈ C = ⟨g(x)⟩, g1(x) = g(x)a(x)(mod xn − 1) =⇒

g1(x) = g(x)a(x) + (xn − 1)b(x) ∈ Fq[x]. Since g(x)|xn − 1 =⇒ g(x)|g(x)a(x) + (xn −

1)b(x) or g(x)|g1(x). As both g1(x) and g(x) are monic and divide one another in Fq[x] =⇒

g1(x) = g(x).

Corollary 2.1.6. [23] The number of cyclic codes in Rn equals 2m, where m is the number

of q− cyclotomic cosets modulo n. Moreover, the dimension of cyclic codes in Rn

are all possible sums of sizes of the q-cyclotomic cosets modulo n.

Example 2.1.2. [23] We showed that, over F2, x
9− 1 = (x+1)(1+x+x2)(1+x3+x6),

and so there are eight binary cyclic codes Ci of length 9 with generator polynomials gi(x)

are given in the following table

i dim gi(x)

0 0 1 + x9

1 1 (1 + x+ x2)(1 + x3 + x6) = 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8

2 2 (1 + x)(1 + x3 + x6) = 1 + x+ x3 + x4 + x6 + x7

3 3 1 + x3 + x6

4 6 (1 + x)(1 + x+ x2) = 1 + x3

5 7 1 + x+ x2

6 8 1 + x

7 9 1

Corollary 2.1.7. [23] Let C1 and C2 be cyclic codes over Fq with generator polynomials

g1(x) and g2(x) respectively. Then C1 ⊆ C2 if and only if g2(x)|g1(x).
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Proof. Let deg g1(x) = t1, deg g2(x) = t2. If g2(x)|g1(x) =⇒ deg g2 ≤ deg g1 =⇒

−deg g1 ≤ −deg g2 =⇒ n− deg g1 ≤ n− deg g2 =⇒ dimC1 ≤ dimC2, then C1 ⊆ C2.

⇐= if C1 ⊆ C2 =⇒ n− deg g1 ≤ n− deg g2 =⇒ deg g2 ≤ deg g1 =⇒ g2|g1.

Example 2.1.3. [23] Consider R3 = F2[x]/⟨x3 − 1⟩ and consider the cyclic code C =

⟨1 + x⟩, then dim C = 3 − 1 = 2 and C contains the codewords, 0, 1 + x, x(1 + x) =

x + x2, x2(1 + x) = x2 + x3 = x2 + 1 = (x + 1)(x + 1), because x3 = 1. Thus

C = {0, 1 + x, 1 + x2, x+ x2} = {000, 110, 101, 011}. Also we can verify that

⟨1 + x2⟩ = {f(x)(1 + x2)|f(x) ∈ R3} = C

and so C is generated by the polynomial 1 + x2 as well.

Example 2.1.4. [23] x9− 1 factors over F2 into irreducible factors x9− 1 = (x+1)(x2+

x+ 1)(x6 + x3 + 1).

Consider C = ⟨x6 + x3 + 1⟩, therefore dim C = 9− 6 = 3 and has generator matrix,

G =


x6 + x3 + 1

x(x6 + x3 + 1)

x2(x6 + x3 + 1)

 =


1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1


Theorem 2.1.8. [23] The dual code of a cyclic code is cyclic.

Proof. If a · b = 0, then π(a) ·π(b) = 0, where π is the cyclic shift. As a · b = a0b0+ a1b1+

· · ·+anbn then π(a)·π(b) = anbn+a1b1+· · ·+a0b0 = 0. Consider the cyclic code C which is

generated by the word v; so C = {v, π(v), π(v), · · · , πn−1(v)}. If u ∈ C⊥ =⇒ πi(v) · u = 0,

for i = 0, · · · , n− 1. However this means that πi+1(v).π(u) = 0 =⇒ π(u) is orthogonal to

C, because πn(v) = v. Since u ∈ C⊥ =⇒ π(u) ∈ C⊥ =⇒ C⊥ is cyclic.

Remark 2.1.2. [23] The generator matrix of the dual code of cyclic code C is the parity

check matrix of the original cyclic code.

Theorem 2.1.9. [23] Let C be an [n, k] cyclic code with generator polynomial g(x). Let

h(x) = (xn−1)/g(x) =
k∑

i=0

hix
i. Then the generator polynomial of C⊥ is g⊥(x) = xkh(x−1)

h(0)
.
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Furthermore, a generator matrix for C⊥, and hence a parity check matrix for C is

H =


hk hk−1 hk−2 · · · h0 0

0 hk hk−1 · · · h1 h0

· · · · · · · · · · · · · · ·

0 hk · · · h0


Example 2.1.5. [23] The code C = ⟨x6+x3+1⟩ has generator polynomial g(x) = x6+x3+1

and has dimension k = 9− 6 = 3.

∴ h(x) = x9−1
g(x)

= (1 + x)(1 + x+ x2) = 1 + x3.

The generator polynomial of C⊥ is g⊥(x) = xkh(x−1)
h(0)

= x3(1+x−3)
1

= x3 + 1,

∴ The generator matrix for C⊥ is

H =



1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1


Remark 2.1.3. [23]

(i) The polynomial h(x) is called the check polynomial for a cyclic code C. It is

not the generator polynomial for C⊥.

(ii) The polynomial g⊥(x) = xkh(x−1)
h(0)

is called the reverse polynomial of the check

polynomial h(x) and g⊥(x) is the generator polynomial for C⊥.

If h(x) = h0 + h1x+ · · ·+ hkx
k, then the generator polynomial of C⊥ is

g⊥(x) = xkh(x−1)
h(0)

= h−1(0)(xk)(h0 + h1x
−1 + · · ·+ hkx

−k)

= h−1(0)(h0x
k + h1x

k−1 + · · ·+ hk)= h−1(0)(hk + hk−1 + · · ·+ h0x
k)
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2.2 Encoding and decoding cyclic codes

In this section, we study three ways of encoding cyclic codes, one of there methods is called

non systematic, and the other two methods are called systematic.

⋆ Encoding cyclic codes by non systematic method

Let C be a cyclic code of length n over Fq with generator polynomial g(x) of degree n−k,

so C has dimension k, Let G be the generator matrix as describe in Previous section

G =


g(x)

xg(x)

· · ·

xk−2g(x)

 =


g0 · · · gn−k 0

0 g0 · · · gn−k

· · · · · ·

0 g0 · · · gn−k

 .

To encode the message m ∈ Fk
q as the codeword c = mG, let m(x) = a0 + a1x +

· · · + ak−1x
k ∈ Fq[x]. Then to encode m(x) as a codeword c(x) by forming the product

c(x) = m(x)g(x). Which called first encoding procedure, See [23].

Example 2.2.1. [23] Let C be a cyclic code of length 15 with generator polynomial g(x) =

(1+ x+ x4)(1+ x+ x2 + x3 + x4). Encode the message m(x) = 1+ x2 + x5 using the first

encoding procedure.

Solution: g(x) = (1 + x+ x4)(1 + x+ x2 + x3 + x4) = 1 + x4 + x6 + x7 + x8. Then

c(x) = m(x)g(x) = (1 + x2 + x5)(1 + x4 + x6 + x7 + x8) = 1 + x2 + x4 + x5 + x7 + x10 +

x11 + x12 + x13 as a vector in F15
2 = (101011010011110).

⋆ Encoding cyclic codes by systematic method

(i) The polynomial m(x) associated to the message is of degree at most k − 1, or it is

the zero polynomial. The polynomial xn−km(x) has degree at most n−1 and has its

first n− k coefficients equal to 0. Thus the message is contained in the coefficients

of xn−k, xn−k+1, · · · , xn−1. By the Division Algorithm, xn−km(x) = g(x)a(x)+ r(x),
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where deg r(x) < n− k or r(x) = 0.

Let c(x) = xn−km(x) − r(x), as c(x) is a multiple of g(x), c(x) ∈ C. Also c(x)

differes from xn−km(x) in the coefficients of 1, x, · · · , xn−k−1 as deg r(x) < n − k.

So c(x) contains the message m in the coefficients of the terms of degree at least

n− k.

Example 2.2.2. [23] Let C be as in example 2.2.1 Encode the message m(x) =

1 + x2 + x5 using the second encoding procedure.( The systematic encoding).

Solution:Since from previous example g(x) = 1 + x4 + x6 + x7 + x8, n = 15, k =

n− deg g(x) = 15− 8 = 7

∴ xn−k = x15−7 = x8 =⇒ xn−km(x) = x8(1 + x2 + x5) = x8 + x10 + x13.

By dividing x8 + x10 + x13 by g(x) = 1 + x4 + x6 + x7 + x8 we get

x13 + x10 + x8 = (x5 + x4 + x+ 1)g(x) + (x6 + x+ 1) where a(x) = x5 + x4 + x+ 1

and r(x) = x6 + x+ 1.

c(x) = x13 + x10 + x8 + x6 + x + 1. The message is contained in the coefficients

xn−k, xn−k+1, · · · , xn−1 (systematic).

(ii) Let C = ⟨g(x)⟩ be a cyclic code. Let g⊥(x) be the generator polynomial of C⊥ and

C is an [n, k]-code. If c = (c0c1 · · · cn−1) ∈ C once c0c1 · · · ck−1 are known, then the

remaining components ck, · · · , cn−1 are determined form Hc⊥ = 0, where H is the

parity check matrix. We can scale the rows of H so that its rows are shifts of the

monic polynomial g⊥(x) = h′
0 + h′

1x + · · · + h′
k−1x

k−1 + xk. To encode C, we chose

k information bits c0c1 · · · ck−1, then ci = −
k−1∑
j=0

h′
jci−k+j, where the computation ci

is performed in the order i = k, k + 1, · · · , n− 1.

Example 2.2.3. [23] Encode the message m(x) = 1+x2+x5 using the third encoding

procedure.

Solution: h(x) = x15−1
g(x)

, where g(x) = 1 + x4 + x6 + x7 + x8. Then h(x) =

x7 + x6 + x4 + 1.

n = 15, deg g(x) = 8 =⇒ k = 7.
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g⊥(x) = xkh(x−1)/h(0) = x7(x−7 + x−6 + x−4 + 1)/1 = 1 + x+ x3 + x7.

h′
0 = 1, h′

1 = 1, h′
2 = 0, h′

3 = 1, h′
4 = 0, h′

5 = 0, h′
6 = 0, h′

7 = 1.

H =


1 + x+ x3 + x7

xg⊥(x) = x(1 + x+ x3 + x7)
...

x7(1 + x+ x3 + x7)

 =



1 + x+ x3 + x7

x+ x2 + x4 + x8

x2 + x3 + x5 + x9

x3 + x4 + x6 + x10

x4 + x5 + x7 + x11

x5 + x6 + x8 + x12

x6 + x7 + x9 + x13

x7 + x8 + x10 + x14



=



1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 1 0 0 0 0 0 0

· · · · · · · · · · · · · · ·
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0


.

Let the information bits are (c0c1 · · · c6), since m(x) = 1 + x2 + x5 ←→ (1010010).

Then

c7 = −
6∑

j=0

h′
jc7−7+j = +(h′

0c0 + h′
1c1 + h′

2c2 + · · ·+ h′
6c6) = (c0 + c1 + 0 + c3 + 0 +

0 + 0) = (c0 + c1 + c3)

c8 =
6∑

j=0

h′
jc8−7+j = +(h′

0c1 + h′
1c2 + h′

2c3 + · · ·+ h′
6c7) = (c1 + c2 + c4)

similarly we do for all other bits.
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2.3 Computing the generating idempotent e(x) for a

cyclic code

In section 1.4 we define generating idempotent e(x) for a cyclic code and give some

properties for e(x), here want to get a method to find generating idempotent e(x) by solve

1 = a(x)g(x)+b(x)h(x) for a(x) using the Euclidean Algorithm, where h(x) = xn−1
g(x)

. Then

reducing a(x)g(x) modulo xn − 1 produces e(x).

Also we can compute g(x) by Theorem 1.4.3 if e(x) known.

Example 2.3.1. As the same way in Example 2.1.2 the following table gives all the cyclic

codes Ci of length 7 over F2 together with their generator polynomials gi(x) and their gen-

erating idempotents ei(x).

i dim gi(x) ei(x)

0 0 1 + x7 0

1 1 1 + x+ x2 + x3 + x4 + x5 + x6 1 + x+ x2 + x3 + x4 + x5 + x6

2 3 1 + x2 + x3 + x4 1 + x3 + x5 + x6

3 3 1 + x+ x2 + x4 1 + x+ x2 + x4

4 4 1 + x+ x3 x+ x2 + x4

5 4 1 + x2 + x3 x3 + x5 + x6

6 6 1 + x x+ x2 + x3 + x4 + x5 + x6

7 7 1 1

⋆ To find e1(x) if g(x) = 1+x+x2+x3+x4+x5+x6 we first find h(x) = x7+1
g(x)

= x+1.

Then we form the equation 1 = a(x)g(x) + b(x)h(x) by using Euclidean Algorithm, we

divide g(x) by h(x) we get

g(x) = (x + 1)(x5 + x3 + x) + 1, then 1 = 1 · g(x) + (x + 1)(x5 + x3 + x), where b(x) =

(x5 + x3 + x) and a(x) = 1

∴ e(x) = 1 · g(x) = 1 + x+ x2 + x3 + x4 + x5 + x6.

⋆ To find e2(x) if g(x) = 1 + x2 + x3 + x4 we first find h(x) = x7+1
g(x)

= x3 + x2 + 1.
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Divide g(x) by h(x) we get

1 + x2 + x3 + x4 = (x3 + x2 + 1) · x+ (x2 + x+ 1) using Euclidean algorithm

(x3 + x2 + 1) = (x2 + x+ 1) · x+ (x+ 1)

(x2 + x+ 1) = (x+ 1) · x+ 1

Now want to get a(x) and b(x) as follows:

1 = (x2 + x+ 1) + (x+ 1) · x

= (x2 + x+ 1) + x · [h(x) + x · (x2 + x+ 1)]

= (x2 + x+ 1) + x · h(x) + x · x · (x2 + x+ 1)

= (x2 + x+ 1) + x · h(x) + x2[g(x) + x · h(x)]

= (x2 + x+ 1) + x · h(x) + x2 · g(x) + x3 · h(x)

= g(x) + x · h(x) + x · h(x) + x2 · g(x) + x3 · h(x)

= (x2 + 1) · g(x) + x3 · h(x)

So e2(x) = (x2 + 1) · g(x)

= (x2 + 1) · (1 + x2 + x3 + x4)

= x6 + x5 + x3 + 1.

⋆ To find e3(x) if g(x) = 1 + x+ x2 + x4 we first find h(x) = x7+1
g(x)

= x3 + x+ 1.

Divide g(x) by h(x) we get

1 + x+ x2 + x4 = x · x3 + x+ 1 + 1

1 = 1 · g(x) + x · h(x)

So e3(x) = 1 · g(x) = 1 + x+ x2 + x4 .

Continue in the same way to get the generating idempotents for each gi(x)

Theorem 2.3.1. [23] Let C be an [n, k] cyclic code with generating idempotent e(x) =
n−1∑
i=0

eix
i. Then the k × n matrix


e0 e1 e2 · · · en−2 en−1

en−1 e0 e1 · · · en−3 en−2

. . . . . . . . . . . . . . . . . .

en−k+1 en−k+2 · · · · · · en−k−1 en−k


is a generator matrix for C.
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Definition 2.3.1. [23] If C1 and C2 are codes of length n over Fq, then C1 + C2 = {c1 +

c2|c1 ∈ C1 and c2 ∈ C2} is the sum of C1 and C2.

Notation 2.3.2. Both the sum of and intersection of two cyclic codes are cyclic.

2.4 Meggitt decoding of cyclic codes

In this section,we give a new decoding method of cyclic code,There are several versions of

Meggitt decoding; we will present one of them. We use a useful program called Maple 13

to factorize the polynomial xn− 1 mod 2, find the remainder when dividing polynomial by

another polynomial and we will look to the applications of Maple 13 more carefully in

the last two chapters.

Let C be an [n, k, d] cyclic code over Fq with generator polynomial g(x) of degree n− k; C

will correct t = ⌊ (d−1)
2
⌋ errors. Suppose that c(x) ∈ C is transmitted and y(x) = c(x)+e(x)

is received, where e(x) = e0 + e1x+ · · ·+ en−1x
n−1 is the error vector with wt(e(x)) ≤ t.

The Meggitt decoder stores syndromes of error patterns with coordinate n− 1 in error.

The first version of Meggitt decoding algorithm described by shifting y(x) at most n times,

the decoder finds the error vector e(x) from the list and corrects the errors.

In the second version, by shifting y(x) until an error appears in coordinate n − 1, the

decoder finds the error in that coordinate, correct only that error, and then corrects

errors in coordinates n− 2, n− 3, · · · , 1, 0 in that order by further shifting.

For any vector v(x) ∈ Fq[x], let Rg(x)(v(x) be the unique remainder when v(x) is divided

by g(x) according to the Division Algorithm, that is Rg(x))(v(x)) = r(x) where v(x) =

g(x)f(x) + r(x), where r(x) = 0 or deg r(x) < n − k. The function Rg(x)(v(x))

satisfies the following properties,

Theorem 2.4.1. [23] With the preceding notation the following hold:

(i) Rg(x)(av(x) + bv′(x)) = aRg(x)(v(x)) + bRg(x)(v
′(x)) for all v(x), v′(x) ∈ Fq[x] and

all a, b ∈ Fq.

(ii) Rg(x)(v(x) + a(x)(xn − 1)) = Rg(x)(v(x))
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(iii) Rg(x)(v(x)) = 0 if and only if v(x) mod (xn − 1) ∈ C.

(iv) If c(x) ∈ C, then Rg(x)(c(x) + e(x)) = Rg(x)(e(x))

(v) If Rg(x)(e(x)) = Rg(x)(e
′(x)), where e(x) and e′(x) each have weight at most t, then

e(x) = e′(x)

(vi) Rg(x)(v(x)) = v(x) if deg v(x) < n− k.

Proof. (i) Let r(x) = Rg(x)(v(x)), r′(x) = Rg(x)(v
′(x)) where v(x) = g(x)f(x) + r(x),

v′(x) = g(x)f ′(x) + r′(x) with r(x) = 0 or deg r(x) < n − k, and r′(x) = 0 or

deg r′(x) < n− k.

r(x) = v(x)− g(x)f(x), r′(x) = v′(x)− g(x)f ′(x)..

ar(x) = av(x)− ag(x)f(x), br′(x) = bv′(x)− bg(x)f ′(x)

ar(x) + br′(x) = av(x)− ag(x)f(x) + bv′(x)− bg(x)f ′(x)

av(x) + bv′(x) = ag(x)f(x) + bg(x)f ′(x) + ar(x) + br′(x) = g(x)(af(x) + bf ′(x)) +

ar(x) + br′(x), where deg ar(x) + br′(x) < n − k or ar(x) + br′(x) = 0 =⇒

Rg(x)(av(x)+bv′(x)) = ar(x)+br′(x) = aRg(x)(v(x))+bRg(x)(v
′(x)) for all v(x), r′(x) ∈

Fq[x] and a, b ∈ Fq.

(ii) Let v(x) = g(x)f(x) + r(x) where r(x) = 0 or deg r(x) < n − k. Rg(x)(v(x)) =

r(x) = v(x) − g(x)f(x) since g(x) is a generator polynomial, then g(x)|xn − 1 =⇒

xn − 1 = k(x)g(x) =⇒ a(x)(xn − 1) = a(x)k(x)g(x) =⇒ v(x) + a(x)(xn − 1) =

g(x)f(x) + r(x) + a(x)k(x)g(x) = g(x)[f(x) + a(x)k(x)] + r(x).

r(x) = Rg(x)(v(x)) = Rg(x)(v(x) + a(x)(xn − 1)).

(iii) If r(x) = Rg(x)(v(x)) = 0 =⇒ v(x) = g(x)f(x) =⇒ v(x)+a(x)(xn−1) ≡ g(x)f(x)+

a(x)k(x)g(x) = g(x)(f(x) + a(x)k(x)) ∈ C =⇒ v(x) mod (xn − 1) ∈ C.

Conversely, if v(x)(mod xn−1) ∈ C =⇒ v(x)+a(x)(xn−1) ∈ C =⇒Rg(x)(v(x)) = 0.

(iv) If c(x) ∈ C, thenRg(x)(c(x)) = 0 and =⇒Rg(x)(c(x))+Rg(x)(e(x)) = 0+Rg(x)(e(x))

(v) If Rg(x)(e(x)) = Rg(x)(e
′(x)) then there exists c(x) ∈ C such that Rg(x)(c(x) +

e(x)) = Rg(x)(e(x)) and Rg(x)(c(x) + e′(x)) = Rg(x)(e
′(x)) =⇒ Rg(x)(c(x) + e′(x))−
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Rg(x)(e
′(x)) = Rg(x)(e(x) − e′(x)) = 0 =⇒ e(x) − e′(x) mod (xn − 1) ∈ C where

deg (e(x)− e′(x) < n− k but g(x) is a unique monic polynomial of minimal degree

n− k =⇒ e(x)− e′(x) = 0 =⇒ e(x)− e′(x).

(vi) Rg(x)(v(x)) = v(x) if deg v(x) < n− k.

If deg v(x) < n− k =⇒ v(x) = 0 · g(x) + v(x) =⇒Rg(x)(v(x)) = v(x).

Theorem 2.4.2. [23] Let g(x) be a monic divisor of xn−1 of degree n−k. If Rg(x)(v(x) =

S(x), then Rg(x)(xv(x))mod (xn−1)) = Rg(x)(xS(x)) = xS(x)−g(x)Sn−k−1, where Sn−k−1

is the coefficient of xn−k−1 in S(x).

Proof. By definition v(x) = g(x)f(x) + S(x) where S(x) =
n−k−1∑
i=0

Six
i. So xv(x) =

xg(x)f(x) + xS(x) = xg(x) · f(x) + g(x)f1(x) + S ′(x), where S ′(x) = Rg(x)(xS(x)).

Also xv(x) mod (xn−1) = xv(x)− (xn−1)vn−1. (Because xv(x) = v0x+ · · ·+vn−1x
n =⇒

xv(x) (mod xn − 1) = xv(x) − (xn − 1). Thus xv(x) mod (xn − 1) = xg(x)f(x) +

g(x)f(x)f1(x) + S ′(x) − (xn − 1)vn−1 = (xf(x) + f1(x) − h(x)vn−1)g(x) + S ′(x), where

g(x)h(x) = xn−1. Therefore Rg(x)(xv(x)) mod (xn−1) = S ′(x) = Rg(x)(xS(x)), because

deg S ′(x) < n − k = deg g(x). As g(x) is monic of degree n − k and xS(x)
n−k−1∑
i=0

Six
i+1,

the remainder when xS(x) is divided by g(x) is xS(x) − g(x)Sn−k−1, (because xS(x) =

S0x+S1x
2+ · · ·+Sn−k−1x

n−k) = g(x)Sn−k−1+Rg(x)(xS(x)) =⇒Rg(x)(xS(x)) = xS(x)−

g(x)Sn−k−1.

Definition 2.4.1. [23] The weight of a polynomial is the number of nonzero coefficients.

Definition 2.4.2. [23] The syndrome S(v(x)) of v(x) is defined by S(v(x)) = Rg(x)(x
n−kv(x)).

Remark 2.4.1. If v(x) ∈ Rn, then S(v(x)) = 0 if and only if v(x) ∈ C.

⋆ The first version of Meggitt decoding algorithm

Step I: We find all the syndrome polynomials S(e(x)) of error patterns e(x) =
n−1∑
i=0

eix
i

such that wt(e(x)) ≤ t and en−1 ̸= 0.
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Example 2.4.1. Let C be the [15, 7, 5] binary cyclic code . Let α be a 15th root of unity

in F16. We can factor x15 − 1 by Maple 13 as follows:

Factors(x15 − 1) mod 2

To get that

[1, [[x4 + x+ 1, 1], [x+ 1, 1], [x2 + x+ 1, 1], [x4 + x3 + x2 + x+ 1, 1], [x4 + x3 + 1, 1]]]

i.e

x15 − 1 = (x4 + x+ 1)(x+ 1)(x2 + x+ 1)(x4 + x3 + x2 + x+ 1)(x4 + x3 + 1).

Then g(x) = 1 + x4 + x6 + x7 + x8 is the generator polynomial of C and the syndrome of

e(x) is S(e(x)) = Rg(x)(x
8e(x)). Step I produces the following syndrome polynomials:

e(x) S(e(x))

x14 x7

x13 + x14 x6 + x7

x12 + x14 x5 + x7

x11 + x14 x4 + x7

x10 + x14 x3 + x7

x9 + x14 x2 + x7

x8 + x14 x+ x7

x7 + x14 1 + x7

x6 + x14 x3 + x5 + x6

x5 + x14 x2 + x4 + x5 + x6 + x7

x4 + x14 x+ x3 + x4 + x5 + x7

x3 + x14 1 + x2 + x3 + x4 + x7

x2 + x14 x+ x2 + x5 + x6

x+ x14 1 + x+ x4 + x5 + x6 + x7

1 + x14 1 + x4 + x6
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for example to compute S(x12 + x14) = Rg(x)(x
8(x12 + x14)) = Rg(x)(x

20 + x22) =

Rg(x)(x
5+x7) = x5+x7 because deg x7+x7 < 8 = deg g(x) also S(1+x14) = Rg(x)(x

8(1+

x14)) = Rg(x)(x
8 + x7) = Rg(x)(x

8) +Rg(x)(x
7) = (1 + x4 + x6 + x7) + x7 = 1 + x4 + x6.

For Rg(x)(x
9) = Rg(x)(xx

8)⇒Rg(x)(x
9) = Rg(x)(x(1+x4+x6+x7)) = Rg(x)(x+x5+x7+

x8) = Rg(x)(x+x5+x7+1+x4+x6+x7) = Rg(x)(1+x+x4+x5+x6) = 1+x+x4+x5+x6.

For S(x + x14) = Rg(x)(x
8(x + x14) = Rg(x)(x

9 + x7) = Rg(x)(x
9) +Rg(x)(x

7) = 1 + x +

x4 + x5 + x6 + x7. The others follow similarly.

Step II: Suppose that y(x) is the received vector, compute the syndrome S(y(x)) =

Rg(x)(x
n−ky(x)), since y(x) = c(x) + e(x), with c(x) ∈ C =⇒ S(y(x)) = S(c(x)) +

S(e(x)) = 0 + S(e(x)).

Step III: If S(y(x)) is in the list computed in step I, then you know the error polyno-

mial e(x) and this can be subtracted from y(x) to obtain the codeword c(x). If S(y(x))

is not in the list go on step (iv).

Step iv: Compute the syndrome polynomial of xy(x), x2y(x), · · · in succession until the

syndrome polynomial is in the list from step I. If S(xiy(x)) is in the list and is associated

with the error polynomial e′(x), then the received vector is decoded as y(x)− xn−ie′(x).

The computation in step (iv) is most easily carried out as

Rg(x)(x
n−ky(x)) = S(y(x)) =

n−k−1∑
i=0

Six
i,

S(xy(x)) = Rg(x)(x
n−kxy(x)) = Rg(x)(x(x

n−ky(x))) = Rg(x)(xS(y(x))) = xS(y(x)) −

Sn−k−1g(x)

Example 2.4.2. Let C be the [15, 7, 5] binary cyclic code with generator polynomil

g(x) = 1 + x4 + x6 + x7 + x8. Let y(x) = 1 + x + x6 + x9 + x11 + x12 + x13 is received.

Carry out steps (I-IV) in the first version of Miggitt decoding algorithm to decode y(x).

Solution: In previous example we found all the syndrome polynomials S(e(x)) of error

patterns e(x). Now want to compute S(y(x)) = Rg(x)(x
8y(x))

= Rg(x)(x
8(1 + x+ x6 + x9 + x11 + x12 + x13))

= Rg(x)(x
8 + x9 + x14 + x17 + x19 + x20 + x21))
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Divide x8 + x9 + x14 + x17 + x19 + x20 + x21 by g(x)

in Maple 13 as follows:

rem(x21 + x20 + x19 + x17 + x14 + x9 + x8, x8 + x7 + x6 + x4 + 1, x) mod 2

To get the result directly x5 + x4 + x3 + x2 + x

i.e S(y(x)) = x5 + x4 + x3 + x2 + x

S(xy(x)) = xS(y(x))− Sn−k−1g(x)

= x · (x5 + x4 + x3 + x2 + x)− S15−7−1 · (1 + x4 + x6 + x7 + x8)

= x6 + x5 + x4 + x3 + x2) + S7 · (1 + x4 + x6 + x7 + x8)

= x6 + x5 + x4 + x3 + x2. Which is not in the list.

S(x2 · y(x)) = xS(x · y(x))− S7 · g(x)

= x · (x6 + x5 + x4 + x3 + x2)− 0

= x7 + x6 + x5 + x4 + x3). Which is not in the list.

S(x3 · y(x)) = xS(x2 · y(x))− S7 · g(x)

= x8 + x7 + x6 + x5 + x4 − 1 · (1 + x4 + x6 + x7 + x8)

= x5 + 1. Which is not in the list.

S(x4 · y(x)) = xS(x3 · y(x))− S7 · g(x)

= x6 + x− 0

= x6 + x. Which is not in the list.

S(x5 · y(x)) = xS(x4 · y(x))− S7 · g(x)

= x7 + x2 − 0

= x7 + x2. Which is in the list and corresponds to the error x9 + x19

∴ y(x) is decode as:

y(x)− xn−ie′(x) = y(x)− (x15−5) · (x9 + x14)

= y(x)− (x10) · (x9 + x14)

= y(x)− (x19 + x24) mod15

= y(x)− (x4 + x9)

= 1 + x+ x4 + x6 + x11 + x12 + x13
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Chapter 3

Decoding binary quadratic residue

codes of prime length

A series of different algebraic decoding algorithm for the quadratic residue (QR) codes

which was introduced by Prange [13] in 1958, have been proposed in [14], [15], [16] and

[17]. In this chapter we will use Maple 13 more carefully to get the important result

to decode the binary quadratic residue code of odd prime like 41, 47, 73. This chapter is

divided into four sections. In section one, we set some definitions and theorems which

will be applied throughout the thesis. In section two, we study a new algebraic decoding

method for the binary (41, 21, 9) QR code. In section three and four we study a decoding

method for the binary (47, 24, 11) and (73, 37, 13) quadratic residue codes.

3.1 Background of the binary quadratic residue code

A binary QR code of length n is an (n, (n+1)/2) cyclic code over GF (2m) with generator

polynomial g(x) where m is some integer. The length of this code is a prime number of

the form n = 8l+ 1 where l is some integer. The generator polynomial g(x) is defined by

g(x) =
∏
i∈Qn

(x− βi). (1)
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where β is a primitive nth root of unity in the finite field GF (2m) with m being the

smallest positive integer such that n|2m − 1 and Qn is the collection of all nonzero

quadratic residues modulo n given by

Qn = {i|i ≡ j2 mod n for 1 ≤ j ≤ n− 1}. (2)

Let a codeword c(x) = m(x)g(x) be transmitted through a noisy channel to obtain a

received codeword of the form r(x) = c(x) + e(x) =
∑n−1

i=1 cix
i +

∑n−1
i=1 eix

i, where e(x) is

the polynomial of the received error pattern vector. The syndromes Si are defined by

Si = r(βi) = e(βi), for i ∈ Qn. (3)

Otherwise, the syndromes are called the unknown syndromes and are not obtained di-

rectly.

The aim of decoding is to find the ν unknown error locations from the known syndromes

Si for i ∈ Q. For this purpose the error-locator polynomial L(z) for every correctable

error pattern is defined by

L(z) =
ν∏

i=1

(z − Zi) = zν +
ν∑

j=1

σjz
ν−j. (4)

Here, Zj for 1 ≤ j ≤ ν are the locations of the ν errors, i.e. Zj = αrj , where rj locates

the position of the error to be corrected and ν < t.

⋆To decode a QR code it suffices to find the error-locator polynomial L(z). It is well

known that Si and σj are related by the following Newton identities [5]

Si +
i−1∑
j=1

σjSi−j + σj = 0 (1 ≤ i ≤ ν, i = odd)

Si +
i−1∑
j=1

σjSi−j = 0 (1 ≤ i ≤ ν, i = even)

Si +
ν∑

j=1

σjSi−j = 0 (i ≥ ν) (5)

Next, in order to simplify the decoding process, another set of identities related to S−i

and σj given in the following
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S−i +
i−1∑
j=1

σν−j

σν

S−(i−j) +
σν−i

σν

= 0 (1 ≤ i ≤ ν, i = odd)

S−i +
i−1∑
j=1

σν−j

σν

S−(i−j) = 0 (1 ≤ i ≤ ν, i = even)

S−i +
ν∑

j=1

σν−j

σν

S−(i−j) = 0 (i ≥ ν) (6)

For a t-error-correcting QR code that if there are ν ≤ t errors in the received codeword,

one must have σν+1 = σν+2 = σt = 0, and S0 ≡ ν mod 2.

If there is a sufficient number of consecutive known syndromes for a given number of

errors, one can directly solve from the Newtons identities for the σj, 1 ≤ j ≤ ν. However, if

there are not enough consecutive syndromes, one first tries to find the unknown syndromes

and then to find L(z) from the Newton identities. In either case, once L(z) is found, the

error pattern is found by a search of the roots of L(z) over the set of all the nth roots of

unity.

If not, Assume that ν errors occur in the received vector. Let I = {i1, i2, . . . , iν+1}

and J = {j1, j2, . . . , jν+1} denote two subsets of {1, 2, . . . , n− 1}. The matrices X(I) and

X(J) are defined to have the following forms:

X(I) =



Zi1
1 Zi1

2 . . . Z i1
ν

Zi2
1 Zi2

2 . . . Z i2
ν

...
...

. . .
...

Ziν
1 Ziν

2 . . . Z iν
ν

Z
iν+1

1 Z
iν+1

1 . . . Ziν+1
ν


and
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X(J) =



Zj1
1 Zj1

2 . . . Zj1
ν

Zj2
1 Zj2

2 . . . Zj2
ν

...
...

. . .
...

Zjν
1 Zjν

2 . . . Zjν
ν

Z
jν+1

1 Z
jν+1

1 . . . Zjν+1
ν


(7)

See [11, 12]. Next, consider the matrix S(I, J) of size (ν + 1)× (ν + 1) as follows:

S(I, J) = X(I)X(J)T (8)

where X(J)T denotes the transpose of the matrix X(J). Then

S(I, J) =



Si1+j1 Si1+j2 . . . Si1+jν+1

Si2+j1 Si2+j2 . . . Si2+jν+1

...
...

. . .
...

Siν+j1 Siν+j2 . . . Siν+jν+1

Siν+1+j1 Siν+1+j2 . . . Siν+1+jν+1


(9)

where the summation of the subindices of the Si’s is modulo n , and det(S(I, J)) = 0. If

there is only one unknown syndrome, say Sr among the entries of S(I, J), then Sr can be

expressed as a function in terms of some known syndromes. Hence, during the decoding

process, one is able to calculate the value of Sr with the information about those known

syndromes. The detailed procedures to determine the primary unknown syndromes.

Theorem 3.1.1. [2] If among the entries of S(I, J) , there is only one unknown syndrome,

say Sr, then Sr can be expressed as the ratio of two determinants of matrices obtained

from S(I, J). If Sr appears in the (i, j)th position of S(I, J), then

Sr =
det(∆0)

det(∆)

provided that det(∆) ̸= 0, where ∆0 is the (ν + 1) × (ν + 1) matrix that is identical

to S(I, J), except for the (i, j)th entrywhich equals 0 instead of Sr, and ∆ is the ν × ν

submatrix of S(I, J) obtained by deleting the ith row and jth column of S(I, J).
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For an arbitrary binary QR code the following theorem, proved in Reference[6], holds.

Theorem 3.1.2. [5] Let (n, k, d) be a binary QR code with Q, the set of quadratic residues

modulo n, and the base set S. Then the error pattern has a weight of at most one if and

only if the following two conditions hold:

(i) Si = Si
1 for all i ∈ S

(ii) Sn+1
1 = S1

A necessary and sufficient condition for exactly two errors to occur in the received

codeword for the subclass of the QR codes of length n = 8l + 1 is found in the next

theorem.

Theorem 3.1.3. [5] Let (n, k, d) be a binary QR code of length n = 8l + 1 and quadratic

residue set Q. Then, the error pattern has a weight of two if and only if the following

conditions are satisfied:

(i) Tr( 1
S1S−1

) = 0 where Tr(.) denote the trace

(ii) Si = Zi
1 + Zi

2, ∀ i ∈ S where Z1 and Z2 are the roots of the quadratic equation,

z2 + S1z +
S1

S−1
= 0

Note that: The trace of k in GF (2m) is defined by tr(k) =
∑m−1

i=0 k2i .See[6].

3.2 Decoding the (41, 21, 9) quadratic residue code

The algebraic decoding method for (41, 21, 9) QR code was given in [6], [13]. In this sec-

tion we will give a new algebraic decoding method for (41, 21, 9) QR code.
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The class of quadratic residue QR codes was introduced by Prange in 1958 [17]. It is

a nice family of cyclic codes and has approximately 1/2 code rates. In the past decades,

most of decoding methods for the QR codes are used to solve the Newton identities that

are nonlinear, multivariante equations of quite high degree. It becomes very difficult

when the weight of the occurred error becomes large. Moreover, different QR codes use

different sets of conditions to determine the error locations. As a result, it is not practical

for software implementation.

For the (41, 21, 9) QR code, the set of quadratic residue modulo 41, is

Q41 = {1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39, 40}.

The smallest extension field of F2 is F220 as 220 ≡ 1 mod 41. let α be a root of

the primitive polynomial f(x) = x20 + x3 + 1 which is irreducible over F2 and let

β = α(2m−1)/n = α(220−1)/41 = α25575 be a primitive 41st root of unity in GF (220). The

generator polynomial of binary (41,21, 9) QR code can be found by Maple 13 as follows

alias(α = RootOf(x20+x3+1));Expand((x−α255751)·(x−α255752) . . . (x−α2557539)·(x−α2557540))mod2.

to get

g(x) =
∏
i∈Q41

(x−βi) =
∏
i∈Q41

(x−α25575i) = x20+x19+x17+x16+x14+x11+x10+x9+x6+x4+x3+x+1.

Let a codeword c(x) = m(x)g(x) be transmitted through a noisy channel to obtain a

received codeword of the form r(x) = c(x) + e(x) =
∑40

i=1 cix
i +

∑40
i=1 eix

i, where e(x) is

the polynomial of the received error pattern vector.

⋆ New algebraic decoding:

The base set of the (41, 21, 9) QR code is S = {1}, a singleton set. Every known

syndromes (respectively, unknown syndromes) can be expressed as some power of S1
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(resp.,S3) as follows S2 = S2
1 , S4 = S4

1 , S5 = S128
1 , S8 = S8

1 , S9 = S32768
1 , S10 = S256

1 ,

S16 = S16
1 , S20 = S512

1 , S21 = S524288
1 , S23 = S64

1 , S25 = S16384
1 , S31 = S262144

1 , S32 = S32
1 ,

s33 = S8192
1 , S36 = S131072

1 , S37 = S4096
1 , S39 = S2048

1 , S−1 = S40 = S1024
1 and S38 = S1024

3

see[13]. Since t = (d−1)
2

= 4, this code allows for the correction of up to four errors. In

other words, there are five cases to be considered which are:

case 0: No error in the received codeword if and only if S1 = 0; otherwise go to Case 1.

case 1: One error in the received codeword if and only if the two conditions in Theorem

3.1.2 holds, i.e. S41
1 = 1; otherwise go to Case 2.

case 2: Two errors in the received codeword if and only if the two conditions in Theorem

3.1.3 holds. From Theorem 3.1.2 and Theorem 3.1.3 one has that,

S1 + σ1 = 0 (10)

S−1 +
σ1

σ2

= 0 (11)

which, when solved, yields

σ1 = S1

σ2 =
S1

S−1

=
S1

S40

The error-locator polynomial is obtained from these σks as follows L2(z) = z2 +

σ1z + σ2 = 0, if L2(z) has the roots Z1 and Z2 with Z41
i = 1 (i=1, 2), then two

errors have occurred ; otherwise go to Case 3.

case 3: For three errors, one has

S3 + σ1S2 + σ2S1 + σ3 = 0 (12)

S−1 +
σ2

σ3

= 0 (13)

S−3 +
σ2

σ3

S−2 +
σ1

σ2

S−1 +
1

σ3

= 0 (14)

53



The coefficients of the error-locator polynomial, found by solving equations 10, 12

and 13 are

σ1 = S1

σ2 =
S−1(S3 + S3

1)

S1S−1 + 1

σ3 =
S3 + S3

1

S1S−1 + 1
(15)

In this case the unknown syndrome S3 can be determined by choosing I3 = {0, 31, 39, 40}

and J3 = {0, 1, 2, 5} , yields the matrix S(I3, J3) of size 4× 4 as follows


S0 S1 S2 S5

S31 S32 S33 S36

S39 S40 S0 S3

S40 S0 S1 S4

 =


1 S1 S2

1 S128
1

S262144
1 S32

1 S8192
1 S131072

1

S2048
1 S1024

1 1 S3

S1024
1 1 S1 S4

1


See [13], which satisfied det(S(I3, J3)) = 0. when solved, yields

S3 =
S3
1(S

133086
1 +S250

1 +S373
1 +S263261

1 +S1148
1 +S9184

1 +S8409
1 +S8532

1 +S262113
1 +S10332

1 +S131036
1 +S262236

1 +S263138
1 +1)

S9184
1 +S8159

1 +S1025
1 +1

Next, it is necessary to find the condition for the case of exactly three errors with

the known σi(i = 1, 2, 3) in equation 15 . Given

S2
1S

2
−1 + 1 = (S−3 + S3

−1)(S3 + S3
1) (16)

If the conditions for case 0, case 1 and case 2 do not hold, equation 16 is also a

sufficient condition for the case of exactly three errors.

So we have

L3(z) = z3 + σ1z
2 + σ2z + σ3 = 0

L3(z) = z3 + S1z
2 + [

S−1(S3 + S3
1)

S1S−1 + 1
]z + (

S3 + S3
1

S1S−1 + 1
) = 0

Furthermore the error pattern is found by a search of the roots of L3(z) over the

nth which found by Maple 13 or Magma.
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case 4: For four errors, one has

S−1 +
σ3

σ4

= 0 (17)

S−3 +
σ3

σ4

S−2 +
σ2

σ4

S−1 +
σ1

σ4

= 0 (18)

and

S−5 +
σ3

σ5

S−3 +
σ2

σ5

S−2 +
σ1

σ5

S−1 = 0 (19)

which, when solved, yields

σ1 = S1

σ2 =
S3S38 + S3S39S40 + S3

1S38 + S3
1S39S40 + S40S1

S38S1 + S39S40S1 + S2
40

σ3 =
S40(S40S3 + S40S

3
1 + S2

1)

S38S1 + S39S40S1 + S2
40

σ4 =
S40S3 + S40S

3
1 + S2

1

S38S1 + S39S40S1 + S2
40

(20)

Here, let I4 = {0, 2, 8, 9, 20} and J4 = {0, 1, 23, 31, 37}, to have the matrix S(I4, J4)

of size 5× 5 as follows



S0 S1 S23 S31 S37

S2 S3 S25 S33 S39

S8 S9 S31 S39 S4

S9 S10 S32 S40 S5

S20 S21 S2 S10 S16


=



0 S1 S64
1 S262144

1 S4096
1

S2
1 S3 S16384

1 S8192
1 S2048

1

S8
1 S32768

1 S262144
1 S2048

1 S4
1

S32768
1 S256

1 S32
1 S1024

1 S128
1

S512
1 S524288

1 S2
1 S256

1 S16
1


.

determine S3 by solving det(S(I4, J4)) = 0, to have

S3 = (1+S2050
1 +S287

1 +S738
1 +S1804

1 +S1886
1 +S2091

1 +S2337
1 +S2788

1 +S4346
1 +S4633

1 +

S6109
1 + S7954

1 + S8036
1 + S8241

1 + S8446
1 + S8733

1 + S12259
1 + S16482

1 + S17138
1 + S17630

1 +

S18778
1 +S20705

1 +S23001
1 +S32923

1 +S33579
1 +S36121

1 +S36572
1 +S36859

1 +S37597
1 +S40672

1 +

S41369
1 +S45305

1 +S49118
1 +S50922

1 +S54489
1 +S67609

1 +S73513
1 +S77531

1 +S85977
1 +S262133

1 +

S262236
1 + S262892

1 + S264163
1 + S265434

1 + S266459
1 + S270682

1 + S274905
1 + S278513

1 + S279005
1 +
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S294667
1 + S294749

1 + S296922
1 + S297209

1 + S302826
1 + S311641

1 + S329435
1 + S343785

1 + S524267
1 +

S525087
1 + S526235

1 + S526809
1 + S527137

1 + S530171
1 + S532385

1 + S536321
1 + S545505

1 + S560921
1 +

S565021
1 +S579289

1 +S786175
1 +S788225

1 +S791259
1 +S802657

1 +S831193
1 +S835293

1 +S1048411
1 +

S1083097
1 )/S161

1 (1 + S656
1 + S1148

1 + S2296
1 + S3936

1 + S4674
1 + S6236

1 + S32636
1 + S34440

1 +

S38458
1 + S261744

1 + S261826
1 + S262236

1 + S267320
1 + S294462

1 + S298808
1 + S524472

1 + S556616
1 )

Next, it is necessary to find the condition for the case of exactly four errors with

the known σi (i = 1, 2, 3, 4) in equation 19. Gives

(S3+S3
1)(S37S40+S38S2

40)+S3S39(S38+S39S40)+S3
1S39(1+S39S40)+S1S39S40(1+S1S40)+S1(S2

40+S1S37)

S40(S3+S3
1)+S2

1
= 0 (21)

A full computer search shows that, in the case of exactly four errors, S40(S3+S3
1)+S2

1

is always nonzero. If the conditions for case 0, case 1, case 2 and case 3 do not hold,

equation 21 is also a sufficient condition for the case of exactly four errors.

So we have

L4(z) = z4 + σ1z
3 ++σ2z

2σ3z + σ4 = 0

L4(z) = z4 + S1z
3 +

S3S38+S3S39S40+S3
1S38+S3

1S39S40+S40S1

S38S1+S39S40S1+S2
40

z2 +
S40(S40S3+S40S3

1+S2
1)

S38S1+S39S40S1+S2
40
z +

S40S3+S40S3
1+S2

1

S38S1+S39S40S1+S2
40

= 0

Furthermore the error pattern is found by a search of the roots of L4(z) over the

nth which found by Maple 13 or Magma. The flowchart of the entire process for

decoding this code up to four errors is depicted in the flow diagram in Figure 1
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Figure 3.1: Flowchart of the algorithm for decoding the (41,21, 9) QR code
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3.3 Decoding the (73, 37, 13) quadratic residue code

Let n = p = 73 be odd prime where n = p = 73 ≡ 1 mod 73. Let p be odd prime and let

a be in Zp with a ≡ 0 mod p. Then a is a square if and only if a
p−1
2 ≡ 1 mod p, So For

the (73, 37, 13) QR code, the set of quadratic residue modulo 73, is

Q73 = { 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25, 27, 32, 35, 36, 37, 38, 41, 46, 48, 49,

50, 54, 55, 57, 61, 64 , 65, 67, 69, 70, 71, 72}.

Note that we found Q73 by Maple 13; For example 8 is nonzero quadratic residues mod

73 since (836 − 1) = zero mod 73, but 52 is not nonzero quadratic residues mod 73 since

(5236 − 1) ̸= zero mod 73 which written in Maple 13 as:

(836 − 1) mod 73 to get the result 0

.

Since 29 ≡ 1 mod 73, the smallest extension field of F2 is F29 = GF (29). Let f(x) =

x9+x5+x4+x+1 which is irreducible over F2 we can check this by Maple 13 as follows:

Factors(x9 + x5 + x4 + x+ 1) mod 2

To get the result [1, [[x9 + x5 + x4 + x+ 1, 1]]], i.e f(x) is irreducible polynomial over F2.

and let β = α(2m−1)/n = α(29−1)/73 = α7 be a primitive 73th root of unity in GF (29).

The generator polynomial of binary (73, 37, 13) QR code can be found by Maple 13 as

follows:

alias(α = RootOf(x9+x5+x4+x+1));Expand((x−α71)·(x−α72) . . . (x−α771)·(x−α772))

mod 2.

to get g(x) =
∏

i∈Q73
(x− βi) =

∏
i∈Q73

(x− α7i) = (1 + x+ x9)(1 + x+ x2 + x4 + x9)(1 +

x+ x3 + x6 + x9)(1 + x2 + x5 + x6 + x9).

The base set of the (73, 37, 13) QR code is S = {1, 3, 9, 25}. Since t = (d−1)
2

= 6, this

code allows for the correction of up to sex errors. We will study up to four error

case 0: No error in the received codeword if and only if S1 = 0; otherwise go to Case 1.
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case 1: One error in the received codeword if and only if the two conditions in Theorem

3.1.2 holds, i.e. S3 = S3
1 , S9 = S9

1 , S25 = S25
1 and S73

1 = 1; otherwise go to Case 2.

case 2: Two errors in the received codeword if and only if the two conditions in Theorem

3.1.3 holds. From Newton identities in equation (5) and (6) we have

S1 + σ1 = 0..............................................................(1)

S−1 +
σ1

σ2

= 0............................................................(2)

which, when solved, yields

σ1 = S1

σ2 =
S1

S−1

=
S1

S72

The error-locator polynomial is obtained from these σks as follows L2(z) = z2 +

σ1z + σ2 = 0, if L2(z) has the roots Z1 and Z2 with Z73
i = 1 (i=1, 2), then two

errors have occurred ; otherwise go to Case 3.

case 3: For three errors, from Newton identities in equation (5) and (6) we have

S1 + σ1 = 0

S3 + σ1S2 + σ2S1 + σ3 = 0...........................................(3)

S−1 +
σ2

σ3

= 0...............................................................(4)

S−3 +
σ2

σ3

S−2 +
σ1

σ2

S−1 +
1

σ3

= 0..................................(5)

Now we can find σ1, σ2, σ3 by the known syndromes

S1 = σ1

⋆ To find σ2: we have S−1 +
σ2

σ3
= 0=⇒ σ3 =

σ2

S−1

From equation (3) we have (S3+S3
1)+σ2S1+

σ2

S−1
= 0 =⇒ (S3+S3

1) ·S−1+σ2S1S−1+

σ2 = 0 =⇒ (S3 + S3
1)S−1 = σ2(S1S−1 + 1) =⇒ σ2 =

(S3+S3
1)·S−1

(S1S−1+1)
..........(6)
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⋆ To find σ3: From equation (3) we have σ2 = S−1σ3, So

S3 + S3
1 + S−1S1σ3 + σ3 = 0 =⇒ S3 + S3

1 + σ3(S−1S1 + 1) = 0 =⇒ σ3 =
S3+S3

1

S−1S1+1
.

Now the important condition for ν = 3 can be computed by substitute σ1, σ2, σ3 in

the equation (5)

S−3 +
(S3 + S3

1)S−1

S−1S1 + 1
× S−1S1 + 1

S3 + S3
1

S−2 +
S1

(S3+S3
1)

S−1S1+1

S−1 +
S−1S1 + 1

S3 + S3
1

= 0

S−3 + S−1S−2 +
S1S−1(S−1S1 + 1)

S3 + S3
1

+
S−1S1 + 1

S3 + S3
1

= 0

(S−3 + S3
−1)(S3 + S3

1) + S2
1S

2
−1 + S1S−1 + S1S−1 + 1 = 0

(S−3 + S3
−1)(S3 + S3

1) = S2
1S

2
−1 + 1.......................................(∗)

If the conditions for case 0, case 1 and case 2 do not hold, eqn. * is also a sufficient

condition for the case of exactly three errors.

Note that: the result in equations (5) can be found directly by Maple 13 as

follows:

solve(s1 + σ1 = 0, s(−1) + σ2 · σ3 = 0, s3 + s13 + σ2 · s1 + σ3 = 0, [σ1, σ2, σ3]) mod 2

To get the result :

[[σ1 = s1, σ2 = s(−1) ·(s3+s13)/(s(−1) · · · 1+1), σ3 = (s3+s13)/(s(−1) · · · 1+1)]]

case 4: For four errors, equation (1) and (3) still hold if ν = 4. From Newton identities

instead of equation (5) and (6), we have

S−1 +
σ3

σ4

= 0.................................................................................(7)

S−3 +
σ3

σ4

S−2 +
σ2

σ4

S−1 +
σ1

σ4

= 0....................................................(8)
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from equation (7) we have

S−3σ4 + σ3S−2 + σ2S−1 + S1 = 0

Substitute σ4 =
σ3

S−1
in equation (8) to get

S−3σ3

S−1

+ σ3S−2 + σ2S−1 + S1 = 0

⋆ To find σ2: σ3 = (S3 + S3
1) + σ2S1

S−3

S−1

[(S3 + S3
1) + σ2S1] + [(S3 + S3

1) + σ2S1]S−2 + σ2S−1 + S1 = 0

S−3

S−1

(S3 + S3
1) +

σ2S1S−3

S−1

+ (S3 + S3
1)S−2 + σ2S1S−2 + σ2S−1 + S1 = 0

σ2[
S1S−3

S−1

+ S1S−2 + S−1] = (S3 + S3
1)(

S−3

S−1

+ S−2) + S1

σ2[
S1S−3 + S1S−1S−2 + S2

−1

S−1

] = (S3 + S3
1)(

S−3 + S−1S−2

S−1

) + S1

σ2(S1S−3 + S1S−1S−2 + S2
−1) = (S3 + S3

1)(S−3 + S3
−1) + S1S−1

σ2[S1(S−3 + S3
−1) + S2

−1] = (S3 + S3
1)(S−3 + S3

−1) + S1S−1

σ2 =
(S3 + S3

1)(S−3 + S3
−1) + S1S−1

S1(S−3 + S3
−1) + S2

−1

.

⋆ To find σ3:We have σ2 =
(S3+S3

1)+σ3

S1

S−3σ3

S−1

+ σ3S−2 +
[(S3 + S3

1) + σ3]S−1

S1

+ S1 = 0

S−3σ3

S−1

+ σ3S−2 +
(S3 + S3

1)S−1 + σ3S−1

S1

+ S1 = 0

S1S−3σ3 + S1S−1S−2σ3 + (S3 + S3
1)S

2
−1 + σ3S

2
−1 + S2

1S−1 = 0

σ3(S1S−3 + S1S
3
−1 + S2

−1) = (S3 + S3
1)S

2
−1 + S2

1S−1

σ3[S1(S−3 + S3
−1) + S2

−1] = (S3 + S3
1)S

2
−1 + S2

1S−1

σ3 =
S2
1S−1 + S2

−1(S3 + S3
1)

S1(S−3 + S3
−1) + S2

−1

.
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Finally to find σ4:We have σ4 =
σ3

S−1

∴ σ4 =

S2
1S−1

S−1
+

S2
−1(S3+S3

1)

S−1

S1(S−3 + S3
−1) + S2

−1

=
S2
1 + S−1(S3 + S3

1)

S1(S−3 + S3
−1) + S2

−1

.

Now the important condition for ν = 4 can be computed by substitute σ1, σ2, σ3

and σ4 in the equation (8)

S−3 +
σ3

σ4

S−2 +
σ2

σ4

S−1 +
σ1

σ4

= 0

S−3+
[S2

1S−1 + S2
−1(S3 + S3

1)]S−2

S2
1 + S−1(S3 + S3

1)
+
[S1S−1 + (S3 + S3

1)(S−3 + S3
−1)]S−1

S2
1 + S−1(S3 + S3

1)
+

S1

S2
1 + S−1(S3 + S3

1)
= 0

S2
1S−3+S−1S−3(S3+S3

1)+S2
1S−1S−2+S2

−1S−2(S3+S3
1)+S1S

2
−1+(S3+S3

1)(S−3+S3
−1)S−1+S1 = 0

(S3 + S3
1)(S−1S−3 + S2

−1S−2 + S−1S−3 + S−1S
3
−1) + S2

1(S−3 + S3
−1) + S1(S

2
−1 +1) = 0

S2
1(S−3 + S3

−1) + S1(S
2
−1 + 1) = 0

S1(S1S−3 + S1S
3
−1 + S2

−1 + 1) = 0

S1S−3 + S1S
3
−1 + S2

−1 + 1 = 0................................................................(∗∗)

If the conditions for case 0, case 1, case 2 and case 3 do not hold, eqn. ** is also a

suficient condition for the case of exactly four errors.

3.4 Decoding the (47, 24, 11) quadratic residue

code

In this section we will give a different algebraic decoding which studied in previous

sections. This code correct up to five errors.

The length of this code is a prime number of the form n = 8m− 1, where m is some

integer. The set of quadratic residue modulo 47, is
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Q47 = { 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18,21, 24, 25, 27, 28, 32, 34, 36, 37, 42}.

Since t = d−1
2

= 5, the (47, 24, 11) QR code allows for the correction of up to five

errors. In other words, there are six cases to be considered as follows:

Case 0: No error in the received codeword if and only if S1 = 0; otherwise go to case 1.

Case 1: One error in the received codeword if and only if S47
1 = 1; otherwise go to case

2.

Case 2: For two errors in the received codeword we have

S1 + σ1 = 0..............................................................(1)

S3 + σ1S2 + σ2S1 = 0...............................................(2)

From equation (1) we have σ1 = S1

From equation (1) we have σ2 =
S3+S3

1

S1
.

Thus, the error-locator polynomial

L2(z) = z2 + σ1z + σ2 = 0

L2(z) = z2 + S1z +
S3 + S3

1

S1

= 0

• If this equation has two roots Z1 and Z2, and Z47
1 = Z47

2 = 1, then two errors

occur; otherwise more errors occur, and then go to case 3.

Case 3: For three errors, we have the equations

S1 + σ1 = 0

S3 + σ1S2 + σ2S1 + σ3 = 0.............................................(3)

S9 + σ1S8 + σ2S7 + σ3S6 = 0.........................................(4)
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⋆ To find σ2:From equation (3) we have σ3 = (S3 + S3
1) + σ2S1

Substitute in equation (4) with S8 = S1×23 = S8
1

(S9 + S9
1) + σ2S7 + [(S3 + S3

1) + σ2S1]S6 = 0

(S9 + S9
1) + σ2S7 + (S3 + S3

1)S6 + σ2S1S6 = 0

σ2 =
(S9 + S9

1) + (S3 + S3
1)S6

S1S6 + S7

.

⋆ To find σ3:

σ3 = (S3 + S3
1) +

(S9 + S9
1)S1 + (S3 + S3

1)S1S6

S1S6 + S7

.

• If S1S6 + S7 ̸= 0, then there are exactly three errors, otherwise go to case 4.

Case 4: Four error, in this case there are not enough consecutive syndromes, for this we

look to the first unknown syndrome which is S5. Choose I = {1, 3, 4, 14, 21}

and J = {0, 3, 4, 13, 33} to get the matrix

S(I, J) =



S1 S3 S4 S14 S21

S4 S6 S7 S17 S24

S5 S7 S8 S18 S25

S14 S16 S17 S27 S34

S34 S36 S37 S0 S7


,

Here, S0 = 0 since ν = 4, also we have that in this matrix all syndromes are

known except S5 and det(S(I, J)) = 0 since the rank(S(I, J)) ≤ ν By Theo-

rem 3.1.1 we have

S5 =
det(∆0)

det(∆)

where
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∆0 =



S1 S3 S4 S14 S21

S4 S6 S7 S17 S24

S5 S7 S8 S18 S25

S14 S16 S17 S27 S34

S34 S36 S37 S0 S7


,

∆ =


S3 S4 S14 S21

S6 S7 S17 S24

S16 S17 S27 S34

S36 S37 S0 S7

 .

• If det(∆) ̸= 0, then four error occur, otherwise go to case 5.

Case 5: For five errors, this is a hard case, since we cant contain matrix with one un-

known syndrome S5, for this choose I1 = {0, 1, 4, 8, 12, 32} and J1 = {0, 2, 4, 16, 20, 24}

to obtain the matrix

S(I, J) =



S0 S1 S4 S8 S12 S32

S2 S3 S6 S10 S14 S34

S4 S5 S8 S12 S16 S36

S16 S17 S20 S24 S28 S1

S20 S21 S24 S28 S32 S5

S24 S25 S28 S32 S36 S9


,

Since ν = 5, then S0 = 1 and in this matrix we have that the unknown syndromes

are S5, S10 and S20, but we have

S10 = S2×5 = S2
5 and S20 = S2×2×5 = S4×5 = S4

5

Substitute with S10 and S20 in the matrix and use Magma or Maple 13 to get a

polynomial f(S5) in single unknown syndrome as follows:

f(S5) =
11∑
i=0

ciS
i
5.
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The leading coefficient of f(S5) is c11 = S36S32 +S12S9 always not equal zero which

shown by a full computer search, so we have f(S5) is of degree 11.

Again choose I2 = {0, 1, 2, 4, 8, 12} and J2 = {0, 2, 4, 6, 8, 16} to obtain the matrix

S(I, J) =



S0 S1 S2 S4 S8 S12

S2 S3 S4 S6 S10 S14

S4 S5 S6 S8 S12 S16

S6 S7 S8 S10 S14 S18

S8 S9 S10 S12 S16 S20

S16 S17 S18 S20 S24 S28


,

substitute with S10 and S20 in the matrix and use Magma or Maple 13 to get a

polynomial g(S5) in single unknown syndrome as follows:

g(S5) =
11∑
i=0

diS
i
5.

The leading coefficient of g(S5) is d11 = S8 + S2S6 always not equal zero which

shown by a full computer search, so we have g(S5) is of degree 11.

Note that the coefficient of f(S5) and g(S5) are given in [5]

There are ν error if the following holds:

(i) f(Sr) and g(Sr) has the same degree

(ii) F (Sr) = gcd(f(Sr), g(Sr)) has the same unknown syndrome Sr as a root, which

of degree one.

After this we apply Euclidean Algorithm to find F (Sr), which means that we find

Sr and then as in previous cases to have σ1, . . . , σν For ν = 5 we show that condition

(i) hold, if condition (ii) holds, then we can find Sr and then find σ1, . . . , σ5
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Chapter 4

Decoding the binary Golay code

The binay Golay code G23 is an important example of a perfect code. It has length

23, dimension 12, and minimum distance 7. The binary Golay code G23 is obtained

from G23 simply by omitting the last coordinate position from all codewords.In fact,

we can omit any one of coordinate positions by the following theorem as in [12] and

[14]. There are many known decoding methods for G23 in [12]and [14], For example,

being a cyclic code or,a quadratic residue code. In section one we define G24, and

then obtain G23. In section two we give a decoding method for the binary Golay

code. In section three, we study the factorization of x23 − 1 and some theorem’s

which important to decode the golay code by using the generator matrix which is

studied in final section.

4.1 Construction of the binary (23, 12, 7) Golay

code G23

In this section we will define the (24, 12, 8)code, which is the binary Golay code

denoted by G24, and obtain (23, 12, 7) Golay code by puncturing G24 .

let G24 be the [24, 12] code with generator matrix G24 = [I12|A] in standard form
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were I12 is the identity matrix and A is a matrix of size 12× 12 defined by

A =



0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 0 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1



.

⋆ Construction of G24
Lable the columns of A by ∞, 0, 1, 2, · · · 10. The first row contains 0 in column ∞

and 1 elsewhere. To obtain the second row, a 1 is placed in column ∞ and a 1 is

placed in columns 0, 1, 3, 4, 5 and 9, these numbers are the squares of the integers

modulo 11. That is 02 = 0, 12 = 102 ≡ 1 (mod 11), 22 ≡ 92 ≡ 4 (mod 11) etc.

The first third row of A is obtained by putting a 1 in column ∞ and then shifting

the components in the second row one place to the left and wrapping the entry in

column 0 around to column 10, and so on all other rows.

Remark 4.1.1. [23]

(1) All rows has weight divisible by 4 and dim G24 = 12.

(2) G24 is self-dual binary code; i.e G24 = G⊥24

(3) The minimum weight of G24 is 8
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⋆ Puncturing codes

Definition 4.1.1. [23] Let C be an [n, k, d] code over Fq, we can puncture C by

deleting the same coordinate i in each codeword. The puncture code of C denoted

by C∗ has length n− 1.

Theorem 4.1.1. [23]Let C be an [n, k, d] code over Fq, and let C∗ be the code C

punctured on the ith coordinate.

(i) If d > 1, C∗ is an [n − 1, k, d∗] code where d∗ = d − 1 if C has a minimum

weight codeword with a non zero ith coordinate and d∗ = d otherwise.

(ii) When d = 1, C∗ is an [n− 1, k, 1] code, if C has no codeword of weight 1 whose

nonzero entry is in coordinate i; otherwise, if k > 1, C∗ is an [n− 1, k − 1, d∗]

code with d∗ ≥ 1.

Example 4.1.1. [23] Let C be the [5, 2, 2] binary code with generator matrix

G =

 1 1 0 0 0

0 0 1 1 1

 .

Let C∗1 and C∗5 be the code C punctured on coordinate 1 and 5, respectively, they have

generator matrices

G∗
1 =

 1 0 0 0

0 1 1 1

 , G∗
5 =

 1 1 0 0

0 0 1 1

 .

So C∗1 is a [4, 2, 1] code, while C∗5 is a [4, 2, 2] code.

Example 4.1.2. [23] Let D be the [4, 2, 1] binary code with generator matrix

G =

 1 0 0 0

0 1 1 1

 .

Let D∗
1 and D∗

4 be the code D punctured on coordinate 1 and 4, respectively, they

have generator matrices

D∗
1 =

[
1 1 1

]
, D∗

4 =

 1 0 0

0 1 1

 .

So D∗
1 is a [3, 1, 3] code, while D∗

4 is a [3, 2, 1] code.
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In general a code C can be punctured on the coordinate set T by deleting T compo-

nents in all codewords of C. If T has size t, the resulting code, which we will often

denote CT is an [n− t, k∗, d∗] where k − t ≥ k∗ ≥ k, d− t ≥ d∗ ≥ d

⋆ Construction of G23
If we puncture in any of the coordinates of G24 we obtain a [23, 12, 7] binary code

denoted by G23 called binary Golay code has minimum weight 7. Note that : The

extended code of G23 is G24 so G24 is called extended Golay code.

4.2 Decoding the (23, 12, 7) binary Golay code

There are more than one way to decode the binary Golay code, as example a decoding

method described in [14]. In this section we study a different decoding method for

(23, 12, 7) binary Golay code.

Let n = p = 23 be odd prime where n = p = 23 ≡ −1 mod 23. As described in

Section 3.2 and Section 3.3 by Maple 13 we have the following:

(1) The set of quadratic residue modulo 23, is

Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.

(2) The smallest extension field of F2 is F211 = GF (211).

(3) f(x) = x11 + x2 + 1 is irreducible polynomial over F2.

(4) β = α(2m−1)/n = α(211−1)/23 = α89 be a primitive 23th root of unity in GF (211).

(5) The generator polynomial of binary (23, 12, 7) Golay code is

g(x) =
∏
i∈Q23

(x− βi) =
∏
i∈Q23

(x− α89i) = x11 + x9 + x7 + x6 + x5 + x+ 1.
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The base set of the (23, 12, 7) QR code is S = {1, 5}, where

C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}

C5 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}

Since t = (d−1)
2

= 3, this code allows for the correction of up to three errors. i.e we

have four cases

Case 0: No error in the received codeword if and only if S1 = 0; otherwise go to case 1.

Case 1: One error in the received codeword if and only if the two conditions in Theorem

3.1.2 holds, i.e. S5 = S5
1 and S23

1 = 1; otherwise go to case 2.

Case 2: Two errors in the received codeword if and only if the two conditions in Theo-

rem 3.1.3 holds. i.e want to find S−1 = S22 for this choose two sets I2 = {0, 4, 6}

and J3 = {0, 2, 18} , yields the matrix S(I2, J2) of size 3× 3 as follows


S0 S2 S18

S4 S6 S22

S6 S8 S1


We have det(I2, J2) = 0, so

S4(S1S2 + S8S18) + S6(S0S1 + S6S18) + S22(S0S8 + S2S6) = 0

substitute S2 = S2
1 , S4 = S4

1 , S8 = S8
1 , S6 = S2

3 , S18 = S2
9 to get

S4
1(S

3
1 + S8

1S
2
9) + S2

3(S
2
3S

2
9) + S22(S

2
1S

2
3) = 0

S7
1 + S12

1 S2
9 + S4

3S
2
9 + S22S

2
1S

2
3 = 0

S22 =
S7
1 + S12

1 S2
9 + S4

3S
2
9

S2
1S

2
3

.

Now you can apply the two conditions in Theorem 3.1.3 holds, if they dont

holds, go to case 3.
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Case 3: For three errors, From Newton identities we have

S1 + σ1 = 0......................................................................................(1)

S3 + σ1S
2
1 + σ2S1 + σ3 = 0................................................................(2)

S5 + σ1S
4
1 + σ2S3 + σ3S

2
1 = 0.............................................................(3)

S7 + σ1S
2
3 + σ2S5 + σ3S

4
1 = 0..............................................................(4)

S9 + σ1S
8
1 + σ2S7 + σ3S

2
3 = 0..............................................................(5)

S9 + S9
1 + σ2(σ1S

2
3 + σ2S5 + σ3S

4
1) + σ3S

2
3 = 0

S9 + S9
1 + σ2σ1S

2
3 + σ2

2S5 + σ2σ3S
4
1) + σ3S

2
3 = 0

Substitute S5 = σ1S
4
1 + σ2S3 + σ3S

2
1 to get

S9 + S9
1 + σ2σ1S

2
3 + σ2

2(σ1S
4
1 + σ2S3 + σ3S

2
1) + σ2σ3S

4
1 + σ3S

2
3 = 0

S9 + S9
1 + σ2σ1S

2
3 + σ2

2S
5
1 + σ3

2S3 + σ2
2σ3S

2
1 + σ2σ3S

4
1 + σ3S

2
3 = 0

S9 + S9
1 + σ2σ1S

2
3 + σ2

2S
5
1 + σ3

2S3 + σ3(σ
2
2S

2
1 + σ2S

4
1 + S2

3) = 0

Substitute σ3 = (S3 + S3
1) + σ2S1 to get

S9+S9
1+σ2σ1S

2
3+σ2

2S
5
1+σ3

2S3+(S3+S3
1)(σ

2
2S

2
1+σ2S

4
1+S2

3)+σ3
2S

3
1+σ5

2S
5
1+σ2S1S

2
3 = 0

S9 + S9
1 + (S3 + S3

1)(σ
3
2 + σ2

2S
2
1 + σ2S

4
1 + S2

3) = 0

S9 + S9
1 = (S3 + S3

1)(σ
3
2 + σ2

2S
2
1 + σ2S

4
1 + S2

3)

S9 + S9
1 = (S3 + S3

1)[(σ2 + S2
1)

3 + S6
1 + S2

3 ]

So

σ2 = S2
1 +D

1
3 and σ3 = S3 + S1D

1
3

Where D = S6
1 + S2

3 +
(S9+S9

1)

(S3+S3
1)
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4.3 The group of a code

In this section, we give some theorems which is important to decode the binary Golay

code with generator polynomial.

Theorem 4.3.1. [12] A binary (23, 12, 7) code is unique (up to equivalence).

G23 can be constructed in a more natural way as a cyclic code as follows. Let

R = F2[x]/(x
23 − 1). The factorization of x23 − 1 into irreducible polynomials in

F2[x] is given by

x23 − 1 = (x− 1)g1(x)g2(x)

with

g1(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

g2(x) = x11 + x9 + x7 + x6 + x5 + x+ 1

The cyclic code C1 = ⟨g1(x)⟩ ⊂ R and C2 = ⟨g2(x)⟩ ⊂ R can be shown to be all

equivalent to G23. The idempotent generator for C1 and C2can be taken to be

n(x) = x5 + x7 + x10 + x11 + x14 + x15 + x17 + x19 + x20 + x21

q(x) = x+ x2 + x3 + x4 + x6 + x8 + x9 + x12 + x13 + x16 + x18

Since the order of 2 modulo 23 is 12, the quadratic residues Q and the non residues

N modulo 23 are

Q = ⟨2⟩ = {1, 2, 4, 8, 16, 9, 18, 3, 6, 12},

N = 5⟨2⟩ = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.
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Note that the exponents which appear in q(x) are exactly the quadratic residues

and those in n(x) are quadratic non residues. Thus G23 is also a quadratic residue

code.

The group of a code C is useful in determining the structure of the code, computing

weight distributions, classifying codes, and devising decoding algorithms.

If v= (v1, . . . , vn) is a vector and ϕ is a permutation on n objects, then ϕ send v

into vϕ=w= (w1, . . . , wn) with vi = wiϕ. Every permutation of the n coordinate

positions sends C onto an equivalent [n, k]-code or onto itself. It is easy to check

that the set of all permutations that send C onto itself is a group. This group is

called the group of C. It is denoted by G(C).

Clearly any element in G(C) applied to the coordinate positions of any generator

matrix of C yields another generator matrix of C. The group of C is a subgroup of

Sn.

We can now say that a length n code C is cyclic if the group of C contains the cyclic

group of order n generated by σ = (0, 1, . . . , n− 1).

However, G(C) might be, and usually is, larger than this as we see from the following

theorem

Theorem 4.3.2. [21] Let C be an odd length n binary cyclic code. Let σ ∈ Sn be the

cyclic shift, that is,(i)σ = (i + 1) ( mod n) and τ ∈ Sn be the permutation defined

by (i)τ = 2i ( mod n). Both σ and τ are considered to act on 0, 1, . . . , n − 1. Let

m be the order 2 mod n. Then τστ−1 = σ2m−1
and τ−1σiτ = σ2i for 0 ≤ i ≤ n− 1.

Furthermore, τ is in G(C), and hence the group P generated by σ and τ is a subgroup

of G(C). The order of P is mn.

Definition 4.3.1. [21] If G is a generator matrix of an [n, k]-code C, then any set

of k columns of G that are independent is called an information set of C.

Note that any permutation π in G(C) sends an information set into an information

set. We may take the information set for G23 to be {11, 12, . . . , 22} for an appropri-

ate generator matrix.
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Theorem 4.3.3. [21] Let σ : i→ i+ 1 (mod 23), and τ : i→ 2i (mod 23). Then

P = ⟨σ, τ⟩ is a subgroup of G23 such that for any error vector e of weight≤ 3, some

πi ∈ P moves all the 1′s in e out of the information places.

Proof. Let e = e0e1 . . . e22 be an error vector of weight ≤ 3. We need to show that

some π ∈ P moves all the 1’s in e out of the information places.

Applying cyclic shift σ, we may assume that E = i|ei = 1 = {0, l, k} , without loss

of generality. As before, the quadratic residues Q and nonresidues N modulo 23 are

Q = ⟨2⟩ = {1, 2, 4, 8, 16, 9, 18, 3, 6, 12},

N = 5⟨2⟩ = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}

Therefore, if l ∈ Q, then there is some i such that 2il = 1 and if l ∈ N , then there is

some i such that 2il = 5. Thus by applying τ i, we may assume that E = {0, 1, k} or

E = {0, 5, k}. Since σ ∈ P , it suffices to show that there is i such that Eτ i = {0, a, b}

a < b satisfying a > 11 or b− a > 11 or 22− b > 11.

1. Suppose E = {0, 1, k}. If k < 10 or k > 13, then we are done. If k = 10 or

k = 11, then apply τ to E to get Eτ = {0, 2, 22} or {0, 2, 1}

2. Suppose E = {0, 5, k}. If k < 10 or k > 17, then we are done, again. For other

cases, one more application of τ is enough as we can see in the table below

E Eτ

{0, 5, 11} {0, 10, 22}

{0, 5, 12} {0, 1, 10}

{0, 5, 13} {0, 3, 10}
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{0, 5, 14} {0, 5, 10}

{0, 5, 15} {0, 7, 10}

{0, 5, 16} {0, 9, 19}

4.4 A decoding method for G23 using the genera-

tor matrix

In this section, we refer to Theorem 2.1.4 to use the generator matrix to decode the

binary Golay code

Suppose a codeword x = x0x1 . . . x22 is transmitted, an error vector e = e0e1 . . . e22

occur with weight ≤ 3, and the vector y=x+e= y0y1 . . . y22 is received. Let G be

the generator matrix of G23 such that {11, 12, . . . , 22} is an information set. Hence

xL= x0x1 . . . x10 are the check symbols, and xR= x11x12 . . . x22 are the informa-

tion symbols. Write G = (GL|GR), where GL is a 12 × 11-matrix and GR is a

12× 12-matrix.Then GR is invertible.

Now there exists some πi ∈ P such that yi=yπi has no errors in the information

places. Since (yi)R is the information symbols, there exists a unique codeword w

such that wR=yiR. In fact w = xπi since xπi ∈ G23 and d(xπi, yπi)=d(x, y)≤ 3.

Recall that the encoding map u7→ uG from F12
2 to G23 is bijective. Thus there exists

a unique vector u ∈ F12
2 such that uG=w, and then we have

(uGL|uGR)=uG=w=(wL|wR)=(wL|(yi)R).

Hence u=(y)iR(GR)
−1 and wL=uGL=(yi)R(GR)

−1GL. Consequently,

x=wπi
−1=((yi)R(GR)

−1GL|(yi)R)πi
−1.

⋆ The decoding procedure

When y is received, each yi=yπi and
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wL=yi(GR)
−1GL

in turn is computed, until an i is found for which d(wL, (yi)L)≤ 3 Then the errors

are all in the first 11 places of yπi, and we decode y as

x=(wL|(yi)R)πi
−1

If d((wL −yi)L)> 3 for all i, we conclude that more than 3 errors have occurred.

Example 4.4.1. [21] In Theorem 4.3.1, we found that

g1(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

This polynomial determines the generator matrix G = [GL|GR] for G23 with

GL =



1 0 1 0 1 1 1 0 0 0 1

0 1 0 1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 1 1 0 0

0 0 0 1 0 1 0 1 1 1 0

0 0 0 0 1 0 1 0 1 1 1

0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0



,
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GR =



1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0

1 1 1 0 0 0 1 1 0 0 0 0

0 1 1 1 0 0 0 1 1 0 0 0

1 0 1 1 1 0 0 0 1 1 0 0

0 1 0 1 1 1 0 0 0 1 1 0

1 0 1 0 1 1 1 0 0 0 1 1



.

and so D=GR
−1GL

D =



1 0 1 0 1 1 1 0 0 0 1

1 1 1 1 1 0 0 1 0 0 1

1 1 0 1 0 0 1 0 1 0 1

1 1 0 0 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1 1 0 0

0 1 1 0 0 1 1 0 1 1 0

0 0 1 1 0 0 1 1 0 1 1

1 0 1 1 0 1 1 1 1 0 0

0 1 0 1 1 0 1 1 1 1 0

0 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 0 0 0 1 1 0

0 1 0 1 1 1 0 0 0 1 1



.

Suppose that x= (01000010110|111100000000) was sent and the vector
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y= (01010010110|111001000000) is received. Since yRD= 11100011011 and d(yL,yRD)=

6, y has some errors. We compute yπi for πi ∈ P = ⟨σ, τ⟩ and wL=(yi)RD until

an i is found for which d(wL, (yi)L)≤ 3. The existence of such πi is guaranteed by

Theorem 4.3.3. Note that E = {3, 14, 16} and

Eσ9τ = {12, 0, 2}τ = {1, 0, 4}

At some stage, with πi = σ9τ , we will compute yi=yπi=yσ9τ= (01001001000|101000101110)

and wL=(yi)D= 10000001000 and find that d(wL, (yi)L)= 3. Thus we decode y as

x=(wL, (yi)R))π
−1
i =(10000001000|101000101110)τ−1σ−9

= (10000000001|0000101101011)σ−9

= (01000010110|111100000000).
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Conclusion

In this thesis, we have studied a new algebraic decoding for (41, 21, 9)

quadratic residue code of odd length in the form n = 8l + 1, where l is

integer. Some new more general properties are found for the syndromes

of the subclass of binary QR codes, where every known syndromes (re-

spectively , unknown syndromes) can be expressed as some power of S1

(respectively.,S3).

A new technique is found to have the unknown syndrome S3 which is a

necessary condition for decoding the (41, 21, 9) QR code.
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