5,143 research outputs found

    A complexity dichotomy for poset constraint satisfaction

    Get PDF
    In this paper we determine the complexity of a broad class of problems that extends the temporal constraint satisfaction problems. To be more precise we study the problems Poset-SAT(Φ\Phi), where Φ\Phi is a given set of quantifier-free ≤\leq-formulas. An instance of Poset-SAT(Φ\Phi) consists of finitely many variables x1,…,xnx_1,\ldots,x_n and formulas ϕi(xi1,…,xik)\phi_i(x_{i_1},\ldots,x_{i_k}) with ϕi∈Φ\phi_i \in \Phi; the question is whether this input is satisfied by any partial order on x1,…,xnx_1,\ldots,x_n or not. We show that every such problem is NP-complete or can be solved in polynomial time, depending on Φ\Phi. All Poset-SAT problems can be formalized as constraint satisfaction problems on reducts of the random partial order. We use model-theoretic concepts and techniques from universal algebra to study these reducts. In the course of this analysis we establish a dichotomy that we believe is of independent interest in universal algebra and model theory.Comment: 29 page

    The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems

    Full text link
    We prove that an ω\omega-categorical core structure primitively positively interprets all finite structures with parameters if and only if some stabilizer of its polymorphism clone has a homomorphism to the clone of projections, and that this happens if and only if its polymorphism clone does not contain operations α\alpha, β\beta, ss satisfying the identity αs(x,y,x,z,y,z)≈βs(y,x,z,x,z,y)\alpha s(x,y,x,z,y,z) \approx \beta s(y,x,z,x,z,y). This establishes an algebraic criterion equivalent to the conjectured borderline between P and NP-complete CSPs over reducts of finitely bounded homogenous structures, and accomplishes one of the steps of a proposed strategy for reducing the infinite domain CSP dichotomy conjecture to the finite case. Our theorem is also of independent mathematical interest, characterizing a topological property of any ω\omega-categorical core structure (the existence of a continuous homomorphism of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the failure of an identity as above).Comment: 15 page

    On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

    Full text link
    The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). This version will appear in the LMCS special issue associated with LICS 201

    Relational Width of First-Order Expansions of Homogeneous Graphs with Bounded Strict Width

    Get PDF
    Solving the algebraic dichotomy conjecture for constraint satisfaction problems over structures first-order definable in countably infinite finitely bounded homogeneous structures requires understanding the applicability of local-consistency methods in this setting. We study the amount of consistency (measured by relational width) needed to solve CSP(?) for first-order expansions ? of countably infinite homogeneous graphs ? := (A; E), which happen all to be finitely bounded. We study our problem for structures ? that additionally have bounded strict width, i.e., for which establishing local consistency of an instance of CSP(?) not only decides if there is a solution but also ensures that every solution may be obtained from a locally consistent instance by greedily assigning values to variables, without backtracking. Our main result is that the structures ? under consideration have relational width exactly (2, ?_?) where ?_? is the maximal size of a forbidden subgraph of ?, but not smaller than 3. It beats the upper bound: (2 m, 3 m) where m = max(arity(?)+1, ?, 3) and arity(?) is the largest arity of a relation in ?, which follows from a sufficient condition implying bounded relational width given in [Manuel Bodirsky and Antoine Mottet, 2018]. Since ?_? may be arbitrarily large, our result contrasts the collapse of the relational bounded width hierarchy for finite structures ?, whose relational width, if finite, is always at most (2,3)

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up
    • …
    corecore