2,393 research outputs found

    Non-deterministic algebraization of logics by swap structures1

    Get PDF
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff’s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics. This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI, suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics

    On formal aspects of the epistemic approach to paraconsistency

    Get PDF
    This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for both BLE and LET J . The meanings of the connectives of BLE and LET J , from the point of view of preservation of evidence, is explained with the aid of an inferential semantics. A formalization of the notion of evidence for BLE as proposed by M. Fitting is also reviewed here. As a novel result, the paper shows that LET J is semantically characterized through the so-called Fidel structures. Some opportunities for further research are also discussed

    ‎Gautama and Almost Gautama Algebras and their associated logics

    Get PDF
    Recently, Gautama algebras were defined and investigated as a common generalization of the variety RDBLSt\mathbb{RDBLS}\rm t of regular double Stone algebras and the variety RKLSt\mathbb{RKLS}\rm t of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras (AG\mathbb{AG}, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of AG\mathbb{AG} and the equational bases for all its subvarieties are given. It is also shown that the variety AG\mathbb{AG} is a discriminator variety. Next, we consider logicizing AG\mathbb{AG}; but the variety AG\mathbb{AG} lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' (AGH\mathbb{AGH}, for short) and show that the variety AGH\mathbb{AGH} %of Almost Heyting algebras is term-equivalent to that of AG\mathbb{AG}. Next, a propositional logic, called AG\mathcal{AG} (or AGH\mathcal{AGH}), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety AG\mathbb{AG}, via AGH,\mathbb{AGH}, as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic AG\mathcal{AG}, corresponding to all the subvarieties of AG\mathbb{AG} are given. They include the axiomatic extensions RDBLSt\mathcal{RDBLS}t, RKLSt\mathcal{RKLS}t and G\mathcal{G} of the logic AG\mathcal{AG} corresponding to the varieties RDBLSt\mathbb{RDBLS}\rm t, RKLSt\mathbb{RKLS}\rm t, and G\mathbb{G} (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of AG\mathcal{AG} has the Disjunction Property. Finally, We revisit the classical logic with strong negation CN\mathcal{CN} and classical Nelson algebras CN\mathbb{CN} introduced by Vakarelov in 1977 and improve his results by showing that CN\mathcal{CN} is algebraizable with CN\mathbb{CN} as its algebraic semantics and that the logics RKLSt\mathcal{RKLS}\rm t, RKLStH\mathcal{RKLS}\rm t\mathcal{H}, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de MatemĂĄtica BahĂ­a Blanca. Universidad Nacional del Sur. Departamento de MatemĂĄtica. Instituto de MatemĂĄtica BahĂ­a Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unido

    Paraconsistent Modal Logics

    Get PDF
    AbstractWe introduce a modal expansion of paraconsistent Nelson logic that is also as a generalization of the Belnapian modal logic recently introduced by Odintsov and Wansing. We prove algebraic completeness theorems for both logics, defining and axiomatizing the corresponding algebraic semantics. We provide a representation for these algebras in terms of twist-structures, generalizing a known result on the representation of the algebraic counterpart of paraconsistent Nelson logic

    Monoids with tests and the algebra of possibly non-halting programs

    Get PDF
    We study the algebraic theory of computable functions, which can be viewed as arising from possibly non-halting computer programs or algorithms, acting on some state space, equipped with operations of composition, if-then-else and while-do defined in terms of a Boolean algebra of conditions. It has previously been shown that there is no finite axiomatisation of algebras of partial functions under these operations alone, and this holds even if one restricts attention to transformations (representing halting programs) rather than partial functions, and omits while-do from the signature. In the halting case, there is a natural “fix”, which is to allow composition of halting programs with conditions, and then the resulting algebras admit a finite axiomatisation. In the current setting such compositions are not possible, but by extending the notion of if-then-else, we are able to give finite axiomatisations of the resulting algebras of (partial) functions, with while-do in the signature if the state space is assumed finite. The axiomatisations are extended to consider the partial predicate of equality. All algebras considered turn out to be enrichments of the notion of a (one-sided) restriction semigrou

    Constructive Logic with Strong Negation is a Substructural Logic. II

    Get PDF
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . The main result of Part I of this series [41] shows that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the setting of deductive systems to establish the definitional equivalence of the logics N and NFL ew . It follows from the definitional equivalence of these systems that constructive logic with strong negation is a substructural logi
    • …
    corecore