10,336 research outputs found

    Algebraic Notions of Termination

    Full text link
    Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, L\"ob's formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence semirings, divergence Kleene algebras and omega algebras. The resulting notions and techniques are used in calculational proofs of classical theorems of rewriting theory. These applications show that modal semirings are powerful tools for reasoning algebraically about the finite and infinite dynamics of programs and transition systems.Comment: 29 page

    Strong, Weak and Branching Bisimulation for Transition Systems and Markov Reward Chains: A Unifying Matrix Approach

    Full text link
    We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are standardly presented in real matrix theory. By interpreting the obtained matrix conditions for bisimulations in this setting, we automatically obtain the definitions of strong, weak, and branching bisimulation for Markov reward chains. The obtained strong and weak bisimulations are shown to coincide with some existing notions, while the obtained branching bisimulation is new, but its usefulness is questionable

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Dependency pairs for proving termination properties of conditional term rewriting systems

    Full text link
    [EN] The notion of operational termination provides a logic-based definition of termination of computational systems as the absence of infinite inferences in the computational logic describing the operational semantics of the system. For Conditional Term Rewriting Systems we show that operational termination is characterized as the conjunction of two termination properties. One of them is traditionally called termination and corresponds to the absence of infinite sequences of rewriting steps (a horizontal dimension). The other property, that we call V-termination, concerns the absence of infinitely many attempts to launch the subsidiary processes that are required to perform a single rewriting step (a vertical dimension). We introduce appropriate notions of dependency pairs to characterize termination, V-termination, and operational termination of Conditional Term Rewriting Systems. This can be used to obtain a powerful and more expressive framework for proving termination properties of Conditional Term Rewriting Systems.Partially supported by the EU (FEDER), Spanish MINECO projects TIN 2013-45732-C4-1-P and TIN2015-69175-C4-1-R, GV project PROMETEOII/2015/013, and NSF grant CNS 13-19109. Salvador Lucas' research was partly developed during a sabbatical year at UIUCLucas Alba, S.; Meseguer, J. (2017). Dependency pairs for proving termination properties of conditional term rewriting systems. Journal of Logical and Algebraic Methods in Programming. 86(1):236-268. https://doi.org/10.1016/j.jlamp.2016.03.003S23626886

    A general conservative extension theorem in process algebras with inequalities

    Get PDF
    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to ensure conservativity, that is, provable transitions from an original term in the extension are the same as in the original system. As a simple corollary of the conservative extension theorem we prove a completeness theorem. We also prove a general theorem giving sufficient conditions to reduce the question of ground confluence modulo some equations for a large term rewriting system associated with an equational process theory to a small term rewriting system under the condition that the large system is a conservative extension of the small one. We provide many applications to show that our results are useful. The applications include (but are not limited to) various real and discrete time settings in ACP, ATP, and CCS and the notions projection, renaming, stage operator, priority, recursion, the silent step, autonomous actions, the empty process, divergence, etc

    Turing Impossibility Properties for Stack Machine Programming

    Full text link
    The strong, intermediate, and weak Turing impossibility properties are introduced. Some facts concerning Turing impossibility for stack machine programming are trivially adapted from previous work. Several intriguing questions are raised about the Turing impossibility properties concerning different method interfaces for stack machine programming.Comment: arXiv admin note: substantial text overlap with arXiv:0910.556

    On Termination of Integer Linear Loops

    Full text link
    A fundamental problem in program verification concerns the termination of simple linear loops of the form x := u ; while Bx >= b do {x := Ax + a} where x is a vector of variables, u, a, and c are integer vectors, and A and B are integer matrices. Assuming the matrix A is diagonalisable, we give a decision procedure for the problem of whether, for all initial integer vectors u, such a loop terminates. The correctness of our algorithm relies on sophisticated tools from algebraic and analytic number theory, Diophantine geometry, and real algebraic geometry. To the best of our knowledge, this is the first substantial advance on a 10-year-old open problem of Tiwari (2004) and Braverman (2006).Comment: Accepted to SODA1
    • …
    corecore