2,669 research outputs found

    Aiding Human Discovery of Out-of-the-Moment Handwriting Recognition Errors

    Get PDF
    Handwriting recognizers frequently misinterpret digital ink input, requiring human verification of recognizer output to identify and correct errors, before the output of the recognizer can be used with any confidence int its correctness. Technologies like Anoto pens can make this error discovery and correction task more difficult, because verification of recognizer output may occur many hours after data input, creating an ``out-of-the-moment'' verification scenario. This difficulty can increase the number of recognition errors missed by users in verification. To increase the accuracy of human verified recognizer output, methods of aiding users in the discovery of handwriting recognition errors need to be created. While this need has been recognized by the research community, no published work exists examining this problem. This thesis explores the problem of creating error discovery aids for handwriting recognition. Design possibilities for the creation of error discovery aids are explored, and concrete designs for error discovery aids are presented. Evaluations are performed on a set of these proposed discovery aids, showing that the visual proximity aid improves user performance in error discovery. Following the evaluation of the discovery aids proposed in this thesis, the one discovery aid that has been proposed in the literature, confidence highlighting, is explored in detail and its potential as a discovery aid is highlighted. A technique is then presented, complimentary to error discovery aids, to allow a system to monitor and respond to user performance in errors discovery. Finally, a set of implications are derived from the presented work for the design of verification interfaces for handwriting recognition

    Image and interpretation using artificial intelligence to read ancient Roman texts

    Get PDF
    The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a unique resource for scholars of ancient history. However, the stylus tablets have proved particularly difficult to read. This paper describes a system that assists expert papyrologists in the interpretation of the Vindolanda writing tablets. A model-based approach is taken that relies on models of the written form of characters, and statistical modelling of language, to produce plausible interpretations of the documents. Fusion of the contributions from the language, character, and image feature models is achieved by utilizing the GRAVA agent architecture that uses Minimum Description Length as the basis for information fusion across semantic levels. A system is developed that reads in image data and outputs plausible interpretations of the Vindolanda tablets

    Handwritten Digit Recognition Using Machine Learning Algorithms

    Get PDF
    Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, NaFDA5; Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA. The result of this paper shows that highest 90.37% accuracy has been obtained for Multilayer Perceptron

    Comprehensive Overview of Named Entity Recognition: Models, Domain-Specific Applications and Challenges

    Full text link
    In the domain of Natural Language Processing (NLP), Named Entity Recognition (NER) stands out as a pivotal mechanism for extracting structured insights from unstructured text. This manuscript offers an exhaustive exploration into the evolving landscape of NER methodologies, blending foundational principles with contemporary AI advancements. Beginning with the rudimentary concepts of NER, the study spans a spectrum of techniques from traditional rule-based strategies to the contemporary marvels of transformer architectures, particularly highlighting integrations such as BERT with LSTM and CNN. The narrative accentuates domain-specific NER models, tailored for intricate areas like finance, legal, and healthcare, emphasizing their specialized adaptability. Additionally, the research delves into cutting-edge paradigms including reinforcement learning, innovative constructs like E-NER, and the interplay of Optical Character Recognition (OCR) in augmenting NER capabilities. Grounding its insights in practical realms, the paper sheds light on the indispensable role of NER in sectors like finance and biomedicine, addressing the unique challenges they present. The conclusion outlines open challenges and avenues, marking this work as a comprehensive guide for those delving into NER research and applications

    Mining Spatio-Temporal Datasets: Relevance, Challenges and Current Research Directions

    Get PDF
    Spatio-temporal data usually records the states over time of an object, an event or a position in space. Spatio-temporal data can be found in several application fields, such as traffic management, environment monitoring, weather forerast, etc. In the past, huge effort was devoted to spatial data representation and manipulation with particular focus on its visualisation. More recently, the interest of many users has shifted from static views of geospatial phenomena, which capture its “spatiality” only, to more advanced means of discovering dynamic relationships among the patterns and events contained in the data as well as understanding the changes occurring in spatial data over time

    Knowledge Elicitation in Deep Learning Models

    Get PDF
    Embora o aprendizado profundo (mais conhecido como deep learning) tenha se tornado uma ferramenta popular na solução de problemas modernos em vários domínios, ele apresenta um desafio significativo - a interpretabilidade. Esta tese percorre um cenário de elicitação de conhecimento em modelos de deep learning, lançando luz sobre a visualização de características, mapas de saliência e técnicas de destilação. Estas técnicas foram aplicadas a duas arquiteturas: redes neurais convolucionais (CNNs) e um modelo de pacote (Google Vision). A nossa investigação forneceu informações valiosas sobre a sua eficácia na elicitação e interpretação do conhecimento codificado. Embora tenham demonstrado potencial, também foram observadas limitações, sugerindo espaço para mais desenvolvimento neste campo. Este trabalho não só realça a necessidade de modelos de deep learning mais transparentes e explicáveis, como também impulsiona o desenvolvimento de técnicas para extrair conhecimento. Trata-se de garantir uma implementação responsável e enfatizar a importância da transparência e compreensão no aprendizado de máquina. Além de avaliar os métodos existentes, esta tese explora também o potencial de combinar múltiplas técnicas para melhorar a interpretabilidade dos modelos de deep learning. Uma mistura de visualização de características, mapas de saliência e técnicas de destilação de modelos foi usada de uma maneira complementar para extrair e interpretar o conhecimento das arquiteturas escolhidas. Os resultados experimentais destacam a utilidade desta abordagem combinada, revelando uma compreensão mais abrangente dos processos de tomada de decisão dos modelos. Além disso, propomos um novo modelo para a elicitação sistemática de conhecimento em deep learning, que integra de forma coesa estes métodos. Este quadro demonstra o valor de uma abordagem holística para a interpretabilidade do modelo, em vez de se basear num único método. Por fim, discutimos as implicações éticas do nosso trabalho. À medida que os modelos de deep learning continuam a permear vários setores, desde a saúde até às finanças, garantir que as suas decisões são explicáveis e justificadas torna-se cada vez mais crucial. A nossa investigação sublinha esta importância, preparando o terreno para a criação de sistemas de inteligência artificial mais transparentes e responsáveis no futuro.Though a buzzword in modern problem-solving across various domains, deep learning presents a significant challenge - interpretability. This thesis journeys through a landscape of knowledge elicitation in deep learning models, shedding light on feature visualization, saliency maps, and model distillation techniques. These techniques were applied to two deep learning architectures: convolutional neural networks (CNNs) and a black box package model (Google Vision). Our investigation provided valuable insights into their effectiveness in eliciting and interpreting the encoded knowledge. While they demonstrated potential, limitations were also observed, suggesting room for further development in this field. This work does not just highlight the need for more transparent, more explainable deep learning models, it gives a gentle nudge to developing innovative techniques to extract knowledge. It is all about ensuring responsible deployment and emphasizing the importance of transparency and comprehension in machine learning. In addition to evaluating existing methods, this thesis also explores the potential for combining multiple techniques to enhance the interpretability of deep learning models. A blend of feature visualization, saliency maps, and model distillation techniques was used in a complementary manner to extract and interpret the knowledge from our chosen architectures. Experimental results highlight the utility of this combined approach, revealing a more comprehensive understanding of the models' decision-making processes. Furthermore, we propose a novel framework for systematic knowledge elicitation in deep learning, which cohesively integrates these methods. This framework showcases the value of a holistic approach toward model interpretability rather than relying on a single method. Lastly, we discuss the ethical implications of our work. As deep learning models continue to permeate various sectors, from healthcare to finance, ensuring their decisions are explainable and justified becomes increasingly crucial. Our research underscores this importance, laying the groundwork for creating more transparent, accountable AI systems in the future

    Difficulties in Proving Forgery

    Get PDF

    The Effect of Speech-to-Text Software on Learning a New Writing Strategy

    Get PDF
    Handwriting and spelling present elementary students with significant sources of load on working memory as the various writing processes compete for cognitive resources (Kellogg, Whiteford, Turner, Cahill & Mertens, 2013). Several studies have shown that speech-to-text (STT) software can improve students\u27 writing on a specific text (Higgins & Raskind, 1997; MacArthur & Cavalier, 2004; Quinlan, 2004); however, the question of whether STT can be used to teach writing strategies has been neglected. This pretest-post-test between groups study experimentally tested the effects of composition modality on learning a persuasive writing strategy. First, all students (N=45) completed a pretest of persuasive writing. They then, received instruction in Dragon NaturallySpeaking (version 11). Next, students were randomly assigned to participate in four lessons that emphasized dialectical elements of persuasive writing, in one of two modalities: STT or handwriting. Finally, all students completed post-tests of persuasive writing in both modalities (STT and handwriting). Writing samples were evaluated for word count, number of types of rhetorical moves, surface errors, and word errors. Students also completed measures of cognitive load for the pretest, each writing activity, and post-test. Both training conditions resulted in large, statistically significant, pre-to-post-test gains on word count, holistic quality and rhetorical moves. Students in the STT condition reported more effort compared to students in the handwriting condition for both post-tests. Students in both instructional conditions showed a high level of transfer from the trained modality to the untrained modality. Students who learned through handwriting, compared to students who learned through STT, showed more surface errors on the STT post-test. The results suggest that STT could be an equally effective alternative for teaching composition strategies

    The WOZ Recognizer: A Tool For Understanding User Perceptions of Sketch-Based Interfaces

    Get PDF
    Sketch recognition has the potential to be an important input method for computers in the coming years; however, designing and building an accurate and sophisticated sketch recognition system is a time consuming and daunting task. Since sketch recognition is still at a level where mistakes are common, it is important to understand how users perceive and tolerate recognition errors and other user interface elements with these imperfect systems. A problem in performing this type of research is that we cannot easily control aspects of recognition in order to rigorously study the systems. We performed a study examining user perceptions of three pen-based systems for creating logic gate diagrams: a sketch-based interface, a WIMP-based interface, and a hybrid interface that combined elements of sketching and WIMP. We found that users preferred the sketch-based interface and we identified important criteria for pen-based application design. This work exposed the issue of studying recognition systems without fine-grained control over accuracy, recognition mode, and other recognizer properties. In order to solve this problem, we developed a Wizard of Oz sketch recognition tool, the WOZ Recognizer, that supports controlled symbol and position accuracy and batch and streaming recognition modes for a variety of sketching domains. We present the design of the WOZ Recognizer, modeling recognition domains using graphs, symbol alphabets, and grammars; and discuss the types of recognition errors we included in its design. Further, we discuss how the WOZ Recognizer simulates sketch recognition, controlling the WOZ Recognizer, and how users interact with it. In addition, we present an evaluative user study of the WOZ Recognizer and the lessons we learned. We have used the WOZ Recognizer to perform two user studies examining user perceptions of sketch recognition; both studies focused on mathematical sketching. In the first study, we examined whether users prefer recognition feedback now (real-time recognition) or later (batch recognition) in relation to different recognition accuracies and sketch complexities. We found that participants displayed a preference for real-time recognition in some situations (multiple expressions, low accuracy), but no statistical preference in others. In our second study, we examined whether users displayed a greater tolerance for recognition errors when they used mathematical sketching applications they found interesting or useful compared to applications they found less interesting. Participants felt they had a greater tolerance for the applications they preferred, although our statistical analysis did not positively support this. In addition to the research already performed, we propose several avenues for future research into user perceptions of sketch recognition that we believe will be of value to sketch recognizer researchers and application designers
    corecore