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Abstract 
The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a unique resource for scholars of 

ancient history.  However, the stylus tablets have proved particularly difficult to read.  This paper describes 

a system that assists expert papyrologists in the interpretation of the Vindolanda writing tablets.  A model-

based approach is taken that relies on models of the written form of characters, and statistical modelling of 

language, to produce plausible interpretations of the documents.  Fusion of the contributions from the 

language, character, and image feature models is achieved by utilizing the GRAVA agent architecture that 

uses Minimum Description Length as the basis for information fusion across semantic levels. A system is 

developed that reads in image data and outputs plausible interpretations of the Vindolanda tablets.  

 

1. Introduction 

The ink and stylus texts from Vindolanda are an unparalleled source of information regarding the 

Roman Army and Roman occupation of Britain for historians, linguists, palaeographers, and 

archaeologists.  The visibility and legibility of the handwriting on the ink texts can be improved 

through the use of infrared photography.  However, due to their physical state, the stylus tablets 

(one of the forms of official documentation of the Roman Army) have proved almost impossible to 

read.   

 

This paper describes a system designed to aid historians in reading the stylus texts: in the process 

developing what appears to be the first system developed to aid experts in reading an ancient 

document.  This system brings together years of research in image analysis, AI architectures, 

papyrology, and palaeography undertaken in the Department of Engineering Science
2
, and the 

Centre for the Study of Ancient Documents
3
, University of Oxford, to construct a complete AI 

system that goes from signal to symbol. We describe knowledge elicited from experts working on 

                                                 
1
 This paper is a version of Robertson, Terras et al (forthcoming 2004) which has been written with Humanities based 

computing scholars in mind, as opposed to the original paper which is much more mathematical in nature and serves to 

explain in depth the technical aspects of the system to the Artificial Intelligence and Image Processing community.  

Given the two different audiences of the respective journals, it was felt appropriate to submit papers regarding the 

research project to both, as the focus, scope, and interest of readers are diverse, and are unlikely to have much  

intersection.  
2
 http://www.eng.ox.ac.uk/ 

3
 http://www.csad.ox.ac.uk/ 
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the texts, and the stochastic Minimum Description Length (MDL) agent architecture used to fuse 

knowledge of image features, knowledge of Latin texts including character models, and statistical 

linguistic models of word and character frequency, to arrive at plausible interpretations of the 

Vindolanda texts.  The system described in this paper can read in image data and output textual 

interpretations of the writing that appears on the documents.  

 

The GRAVA architecture (Robertson 2001) was developed to solve interpretation problems. An 

interpretation problem is one in which an input, for example an image or signal, must be interpreted 

in the context of domain knowledge to produce a symbolic representation. Such problems usually 

have multiple plausible interpretations, and the task involves finding the most likely interpretation.  

The GRAVA architecture has previously been applied successfully to the interpretation of satellite 

aerial images, and is adapted here to provide plausible solutions to the interpretation problem of 

constructing a reading of the Vindolanda texts.   

 

The system is not an “expert system” that automatically “reads” and provides a transcription of the 

texts; rather it is a papyrologist‟s assistant that mobilizes disparate knowledge, such as linguistic 

and visual clues, and uses these to speed up the process by which an expert can arrive at the most 

likely interpretation of a text.   

 

This paper is divided into sections.  Section 2 describes the background of the project, providing 

information about the Vindolanda texts, and discusses the knowledge elicitation exercises 

undertaken to make the process the papyrologists use to read ancient texts explicit.  Section 3 

sketches the parts of the GRAVA architecture used in this system and illustrates the approach with 

an illustrative example.  In Section 4 we discuss how the linguistic and character shape knowledge 

is modelled within the GRAVA framework: the success of the system is achieved by mobilizing 

knowledge of the characters and words along with the stroke data from image analysis routines. In 

Section 5 we present results of the running system applied to ink and stylus tablets, and section 6 

provides a conclusion, sketching out the successes and possible applications of this research.  

 

2. The Vindolanda Texts 

The discovery of the tablets in Vindolanda
4
, a Roman Fort built in the late 80s AD near Hadrian‟s 

Wall at modern day Chesterholm, has provided an unparalleled resource regarding the Roman 

occupation of northern Britain and the use and development of Latin around the turn of the first 

century AD. Textual sources for the period in British history from AD 90 to AD 120 are rare, and 

the ink and stylus tablets are a unique and extensive group of documents providing a personal, 

immediate, detailed record of the Roman Fort at Vindolanda from around AD 92 onwards 

(Bowman and Thomas 1983, 1994, 2003; Bowman 1997).  

 

The ink tablets, carbon ink written on thin leaves of wood cut from the sapwood of young trees, 

have proved the easiest to decipher. In most cases, the faded ink can be seen clearly against the 

wood surface by the use of infrared photography, a technique used frequently in deciphering 

ancient documents (Bearman and Spiro 1996). The majority of the six hundred writing tablets that 

                                                 
4
 Further examples of the tablets, and contextual information regarding Vindolanda, can be found at the Vindolanda 

Tablets Online site:  http://vindolanda.csad.ox.ac.uk/.  

http://vindolanda.csad.ox.ac.uk/
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have been transcribed so far contain personal correspondence, accounts and lists, and military 

documents (Bowman and Thomas 1983, 1994, 2003). 

 

The two hundred stylus tablets found at Vindolanda appear to follow the form of official 

documentation of the Roman Army found throughout the Empire (Turner 1968; Fink 1971; Renner 

1992). It is suspected that the subject and textual form of the stylus tablets will differ from the 

writing tablets as similar finds indicate that stylus tablets tended to be used for documentation of a 

more permanent nature, such as legal papers, records of loans, marriages, contracts of work, sales 

of slaves, etc (Renner 1992), although the linguistic aspects of the tablets will be similar as they are 

contemporaneous documents from the same source, probably written by the same scribes.  

 

 

 

 

 
Figure 1: Stylus tablet 836, one of the most complete stylus tablets unearthed at Vindolanda. The incisions on the 

surface can be seen to be complex, whilst the wood grain, surface discoloration, warping, and cracking of the physical 

object demonstrate the difficulty papyrologists have in reading such texts. 

 

Manufactured from softwood with a recessed central surface, the hollow panel of the stylus tablets 

was filled with coloured beeswax. Text was recorded by incising this wax with a metal stylus, and 

tablets could be re-used by melting the wax to form a smooth surface. Unfortunately, in nearly all 

surviving stylus tablets
5
 the wax has perished, leaving a recessed surface showing the scratches 

                                                 
5
 It is suspected that around 2000 of such tablets exist outside Egypt (Renner 1992). 
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made by the stylus as it penetrated the wax
6
. In general, the small incisions are extremely difficult 

to decipher. Worse, the pronounced wood grain of the fir wood used to make the stylus tablets, 

staining and damage over the past two thousand years, and the palimpsestic nature of the re-used 

tablets further complicate the problem; a skilled reader can take several weeks to transcribe one of 

the more legible tablets, whilst some of the texts defy reading altogether. Prior to the current 

project, the only way for the papyrologists to detect incisions in the texts was to move the text 

around in a bright, low raking light in the hope that indentations would be highlighted and 

candidate writing strokes become apparent through the movement of shadows, although this proved 

frustrating, time consuming, and insufficient in the transcription of the texts. 

 

In 1998 the Department of Engineering Science and the Centre for the Study of Ancient Documents 

at the University of Oxford were jointly awarded a research grant by the Engineering and Physical 

Sciences Research Council (EPSRC) to develop techniques for the detection, enhancement and 

measurement of narrow, variable depth features inscribed on low contrast, textured surfaces (such 

as the Vindolanda stylus tablets).  To date, the project has developed a wavelet filtering technique 

that enables the removal of woodgrain from images of the tablets to aid in their transcription 

(Bowman, Brady et al. 1997).  In addition, a technique called “Shadow Stereo” or “Phase 

Congruency” has been developed, in which the camera position and the tablet are kept fixed; but a 

number of images are taken where the tablet is illuminated by a strongly orientated light source
7
.  If 

the azimuthal direction of the light sources (that is, the direction to the light source if the light were 

projected directly down on to the table) is held fixed, but the light is alternated between two 

elevations, the shadows cast by incisions will move but stains on the surface of the tablet remain 

fixed.  This strongly resembles the technique used by some papyrologists who use low raking light 

to help them read the incisions on the tablet (Terras 2000, Molton, Pan, et al, 2003).  Edge 

detection is accomplished by noting the movement of shadow to highlight transitions in two images 

of the same tablet, and so candidate incised strokes can be identified by finding shadows adjacent 

to highlights which move in the way that incised strokes would be expected (Schenk 2001, Schenk 

and Brady 2003).  Although this is not a standard technique in image processing, encouraging 

results have been achieved so far, and a mathematical model has been developed to investigate 

which are the best angles to position the light sources (Molton, Pan et al, 2003).  Work currently 

being undertaken is extending the performance and scope of the algorithms (Pan, Brady et al 2004), 

and the papyrologists are beginning to trust the results and suggestions which are being made about 

possible incisions on the tablets (Bowman and Tomlin  2004).  Future work will be done in relating 

the parameters of analysis to the depth profile of the incisions to try to identify different 

overlapping writing on the more complex texts.  

 

Whilst these have had some success in analysing the surfaces of the tablets, it was essential to 

develop a way of aiding the papyrologists in utilising generated results.  Although the developed 

algorithms could be easily added to readily available image manipulation software
8
 , allowing 

others to apply the algorithms themselves, it would do little to actually provide a tool that would 

                                                 
6
 Only one stylus tablet, 836, has been found so far with its wax intact.  Unfortunately this deteriorated during 

conservation, but a photographic record of the waxed tablet remains to compare the visible text with that on the re-used 

tablet. 
7
 These techniques were developed with the permission and guidance of the British Museum – where the tablets are 

now housed.  As the documents are fragmentary and fragile, it was important to use non-invasive techniques which 

would not cause them to deteriorate any further.    
8
 For example using the Visual C++ plugin with PhotoShop. 
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actively help the papyrologists in the transcription of texts; a complex process which has been 

described as “teasing information out of material which is all too often barely legible, fragmentary, 

or obscure (or all three at once)," (Bowman 1994, p.10).  The focus of this paper is to present the 

possibility of developing an intelligent system that can aid the papyrologists in their task, which 

will, in the future, dovetail with the image processing work to provide a complete “signal to 

symbol” program which can produce realistic interpretations of the Vindolanda stylus texts within a 

reasonable timeframe.   

 

 

 

2.1 The Process of Reading an Ancient Document  

 

In order to identify the tools that could be built to aid the papyrologists in their transcription of the 

Vindolanda tablets, it was first necessary to try and gain an understanding of what the papyrology 

process actually entails. Little investigation has been done so far to ascertain how experts read such 

damaged and debraded documents (Terras 2002)
9
.  Techniques borrowed from the field of 

Knowledge Elicitation (McGraw and Harbison-Briggs 1989, Waterman 1986) were used to gather 

quantitative and qualitative information about how papyrologists work, resulting in an in-depth 

understanding of the ways different experts approach and reason about damaged and abraded texts.  

Firstly, as with all knowledge acquisition tasks, the domain literature was researched, and any 

associated literature was collated.  Three experts were then identified who were working on the ink 

and stylus texts, and who were willing to take part in this investigation.  The experts were observed 

whilst going about their tasks, and unstructured interviews were undertaken, where the experts 

described their domain, and the individual processes and techniques that they preferred.  More 

structured interviews were then undertaken, when the experts were asked to describe particular 

facets of their task, such as the identification of letter forms and the role of grammar, word lists, 

and external historical and archaeological resources in the reading of the documents. A series of 

Think Aloud Protocols (TAPs) were then undertaken (a technique adopted from experimental 

psychology, where the expert is urged to utter every thought that comes to mind whilst undertaking 

a specified task) and the experts were given structured tasks to complete.  These sessions were 

recorded, transcribed, and analyzed using Content Analysis techniques (Terras 2002).  These 

exercises demonstrated that the experts use a recursive reading mechanism which oscillates 

between different levels, or modules, of reading, and the process was rationalized into defined 

units, to develop a connectionist model of how papyrologists approach and start to understand 

ancient texts. 

 

 

 

 

                                                 
9
 Aalto (1945), Youtie (1963), Youtie (1968), and Bowman and Tomlin (2004) are the only discussions found (as yet) 

which try to describe what the papyrology process actually entails, with some higher level discussion available in 

Turner (1968). 
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Figure 2: The proposed model of how experts read an ancient text. Public papyrology (Youtie 1963) refers to the 

published reading of texts in a common format, after the reading has taken place. Private papyrology is the implicit 

process the experts undertake when reading a text.   

 

An expert reads an ancient document by identifying visual features, and then incrementally builds 

up knowledge about the document‟s characters, combinations of characters, words, grammar, 

phrases, and meaning, continually proposing hypotheses, and checking those against other 

information, until s/he finds that this process is exhausted.  At this point a representation of the text 

is prepared in the standard publication format. At each level, external resources may be consulted, 

or be unconsciously compared to the characteristics of the document.   

 

2.1.1 Replicating the Process Using Artificial Intelligence 

 

The field of automated handwriting recognition is expansive and complex (see Impedovo (1993) 

for an introduction), but although there has been a great deal of work on pattern recognition 

algorithms aimed at recognising text, the vast majority is irrelevant to this research.  Most 

techniques are aimed at recognising printed text, making them incompatible with the hand-written, 
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cursive text found on the Vindolanda tablets.  Work done on hand-written non-cursive text 

primarily approaches the problem with pattern class or neural network learning: where the system 

learns individual characters from thousands of examples.  There are simply insufficient examples to 

be able to train such a neural net, even from the corpus of Vindolanda ink texts.  Other work, 

largely from the late 1960s and early 1970s, emphasised “syntactic pattern classification”: the idea 

that a character is composed of strokes that have a certain relationships to each other (see Connell 

and Brady‟s approach to shape representation (1987), and Fu and Swain‟s introduction to Syntactic 

Pattern Recognition (1969)).  The attempts to teach a machine to “read” text in this manner were 

hampered by the problem of stroke detection: image processing techniques were not developed 

enough to provide the necessary data.   

 

There have been previous attempts to use connectionist inspired models of human reading (see 

Figure 3) as the basis on which to build systems to “read” cursive handwriting (Dodel and Shinghal 

1995; Parisse 1996; Côté, Lecolinet et al. 1998).  These systems have had limited success: they are 

dependent on over simplification of word shape and contour, the models rely on strong contextual 

constraints, and they are only successful with small lexicons of 25-35 words.  Appropriating these 

systems in an attempt to build a tool to aid the stylus tablets would be unsuccessful for the same 

reason that existing image processing techniques could not be used to analyse the surface data: the 

data is too fragmentary, too noisy, and too complex.  It had been suggested that using Minimum 

Description Length may provide a way to successfully model systems when only sparse data exists 

(Robertson, 2001), and this is the technique adopted here.   

 

AI has repeatedly shown that interpreting our world requires bringing to bear a great deal of world 

knowledge. The process of reading an ancient document, especially documents that are in a very 

bad state of disrepair such as the Vindolanda stylus tablets, is an especially good example of the 

need to mobilize a great deal of a-priori knowledge.  It is clear that the remnants of writing on the 

tablets themselves contain insufficient information to recover the original written text, but by 

applying sufficient linguistic knowledge of character shapes, word and letter frequency, and 

grammatical information, the tablets can sometimes be read.  Implementing a system that can 

automate the process requires an architecture that can fuse the many different kinds of knowledge 

in order to arrive at an estimate of the most probable interpretation. Numerous architectures have 

been proposed to solve interpretation problems: the HEARSAY system (Erman, Hayes-Roth et al. 

1980) was developed for speech recognition and more recently Hidden Markov models (HMM) 

have been used in natural language processing (NLP) (Charniak 1993) but these approaches have 

drawbacks. Blackboard systems can be hard to control, and HMMs can be too restrictive to 

incorporate complex and diverse kinds of knowledge (Robertson 2001, Robertson and Laddaga 

2003). We developed GRAVA to address these concerns and provide a flexible backbone upon 

which image interpretations problems can be solved. In Section 3 we describe the features of 

GRAVA used in this project. 
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Section 3: Solving Interpretation problems with GRAVA 

 

GRAVA (Grounded Reflective Adaptive Vision Architecture), developed by Robertson (2001) 

provides a way to implement different modules, or agents, of computer programs which can 

compare and pass different types of information to each other. This agent based system attempts to 

find interpretations of input data (usually image data) by fitting models to the data.  The best 

interpretation is sought by trying to find the simplest explanation of the input data.  The motivating 

concept behind GRAVA is the idea that the input data can be thought of as a message that has been 

encoded by some process and communicated through a noisy channel. 

 

GRAVA utilises an architecture where the atomic elements are implemented as agents (in 

Yolambda, a dialect of LISP), using familiar programming practices.  The primary purpose of an 

agent “is to fit a model to its input and produce a description element that captures the model and 

any parameterisation of the model” (Robertson, 2001 p.59).  The GRAVA system manipulates 

agents, and builds programs from them.  Agent co-operation can span semantic levels, allowing 

hierarchical stacking.  This enables the building of systems that exhibit semantic interaction, a well 

understood hierarchical concept (McClelland and Rumelhart 1986) that allows the behaviour and 

performance of systems to be closely monitored and understood (using techniques such as 

convergence analysis).  Such an architecture is well suited to interpretation problems, which can be 

solved by fitting an input to a series of models and computing the likelihood of these matching.  

Many interpretation problems have more than one possible solution, and by using such a system 

many solutions can be propagated; the best solution being the ultimate target.  Of most relevance to 

this paper, Robertson shows how his architecture is an effective way of rendering hierarchical 

systems by demonstrating how his software can “read” a hand-written phrase.  The text in this case 

was a nursery rhyme.  Given that the GRAVA system was shown to be a robust and easily 

adaptable architecture, it was chosen as the basis on which to develop a system to read the 

Vindolanda ink, and eventually, stylus tablets. 

 

This section has two main subsections.  In the first section we give an overview of the GRAVA 

architecture by introducing the concepts behind the GRAVA architecture, the objects that make up 

the architecture, and an overview of their protocols. In the final section, we develop an illustrative 

example of how GRAVA agents compete using Minimum Description Length (MDL), showing 

how GRAVA was used to “read” a handwritten text, and thus provides the basis for the system 

developed to propagate interpretations of the Vindolanda texts..  

 

3.1 Agent Selection Paradigms 

 

Autonomous agents are expected to operate without the intervention of a central control mechanism 

(such as a focus of control database). One approach to the agent selection problem that has been the 

focus of considerable attention is the notion of a market based approach.  The idea is that an agent 

wishes to farm out a subtask to another agent capable of performing the subtask.  Agents that are 

candidates to perform the subtask compete by bidding a price.  This often works well, producing 

efficient solutions.  However, two problems arise in such systems: 
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1. Selecting an appropriate basis for cost computations so that the bidding is fair (so that 

different types of information can be compared across different semantic levels). 

 

2. Because the bidding is piecewise local, such systems are prone to find local minima and 

miss the global minima (i.e. the best match on one semantic level may not be the correct 

match overall). 

 

Our approach addresses these two problems as follows: the basis for cost computation used is 

description length, and the use of a Monte Carlo sampling technique avoids the problem of being 

restricted to the best local solution. These concepts are described more fully here, before discussing 

the MDL GRAVA architecture in detail.  

 

3.1.1 Minimum Description Length 

 

A major puzzle in perceptual psychology has been how the brain reconciles different sorts of 

information, for example colour, motion, boundaries of regions, or textures, to yield a percept 

(Eysenck and Keane 1997).  For example, in image segmentation, by changing the texture model it 

is possible to increase or decrease the number of regions that are identified.  Similarly, the number 

of boundary shapes that are found can be increased or decreased by changing the search 

parameters.  The reading of ancient documents is just one (complex) example of an interpretation 

problem, where the individual is faced with visual ambiguity and competing information, which 

has to be reconciled and resolved with other types of information (in this case linguistic data) to 

generate a plausible solution.  There has been substantial consideration, by psychologists and image 

processing experts, of how these different processes are combined.  One suggestion is that there is a 

common value that can be used to calculate the “least cost” solution when comparing different 

types of information.  This has been adopted by the field of Artificial Intelligence, in the concept of 

Minimum Description Length: (MDL).  

 

First introduced in the late 1960s, and developed in the 1970s, (Wallace and Boulton 1968; 

Rissanen 1978), MDL applies the intuition that the simplest theory which explains the data is the 

best theory
10

.  MDL can be used as a means of comparing data in coding theory, in which the goal 

is to communicate a given message through a given communication channel in the least time or 

with the least power.  MDL is a very powerful and general approach which can be applied to any 

inductive learning task, and can be used as a criterion for comparing competing theories about, or 

inductive inferences from, a given body of data.  It is well suited to interpretation problems: where 

solutions can be generated by comparing unknown data to a series of models, when the most likely 

fit can generate plausible solutions to the problem. 

 

                                                 
10

 The basic concept behind MDL is an operational form of Occam's razor, "Pluralitas non est ponenda sine necessitate" 

or "plurality should not be posited without necessity."  Formulated by the medieval English philosopher and Franciscan 

monk William of Ockham (ca. 1285-1349), the phrase has been adopted by Communication Theorists to suggest that 

one should not increase, beyond what is necessary, the number of entities required to explain anything (Forster 1999). 

The shorter an explanation, the better.  



Terras, M. and Robertson, P. (2005). "Image and Interpretation: Using Artificial Intelligence to Read Ancient Roman 

Texts". HumanIT, Volume 7, Issue 3. http://www.hb.se/bhs/ith/3-7/mtpr.pdf  

 10 

Description length is the correct measurement in an interpretation problem because it captures the 

notion of likelihood directly. Description length is calculated from the probability of an input, such 

as the data describing the shape of an unknown character, matching a known model.  By adding the 

description lengths of the outputs of different agents, it is possible to generate a global description 

length for the output of the whole system.  The smallest global description length generated from 

many runs of a system is most likely to be the correct solution to the problem: the Minimum 

Description Length, or MDL.  This is the approach adopted in the GRAVA system.  

 

3.1.2 Monte Carlo Select Methods 

 

 

The MDL Agent architecture described in this paper addresses the need to integrate knowledge at 

different semantic levels.  To understand an image that consists of high-level components such as 

words, intermediate level features such as characters, and of low-level features such as strokes and 

endpoints, we need to integrate different levels of processing.   

 

Single thread of control solutions, such as the blackboard and forward chaining approaches, depend 

upon taking a path towards a solution and backtracking past failures until a solution is found 

(Erman, Hayes-Roth et al 1980).  The same is true of subsumption (Brooks, 1986).  These are 

essentially depth first searches for a solution - not searches for the best solution. In a robot 

navigation problem, we may be happy if the robot negotiates the obstacles in the environment and 

finally ends up at the destination.  In interpretation problems, just finding a solution is not good 

enough.  A Latin sentence can have many plausible parses.  Most of them do not make sense.  

Markov Chain/Monte Carlo methods (MCMC) have become popular recently in computer vision 

(Geman and Geman 1984, Hammersley and Handscomb 1964, Lau 1997) but have been limited to 

modelling low-level phenomenon such as textures (Karssemeijer 1992).  In natural language 

understanding, use of hidden Markov models has been successful as an optimisation technique with 

certain restricted kinds of grammar.  Problems that can be described as Hidden Markov Models 

(HMM) (Baum 1972) can yield efficient algorithms. For example, in natural language 

understanding, some grammars permit efficient algorithms for finding the most probable parse.  

Stochastic Context Free Grammars (SCFGs) can be parsed so as to find the most probable parse in 

cubic time using the Viterbi algorithm (Viterbi 1967).  Only the simplest grammars and problems 

can be solved efficiently in this way, however, and for the more interesting grammars and for more 

complex problems in general, other techniques must be used.  Certainly something as loosely 

defined as an agent system incorporating semantics from multiple levels would rarely fit into the 

HMM straitjacket.   

Even for natural language processing, finding the best solution can be prohibitively expensive when 

the Viterbi algorithm cannot be employed.  In visual processing, with images whose complexity 

greatly exceeds that of sentences, and which are three dimensional (as opposed to the linear 

arrangement of words in a sentence), finding the best solution is infeasible.  Approximate methods 

are therefore necessary: Monte-Carlo techniques are very attractive in these situations.   

 

In an ambiguous situation, such as parsing a sentence, in which many (perhaps thousands) of legal 

parses exist; the problem is to find the parse that is the most probable.  If the problem can be 
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defined in such a way that parses are produced at random and the probability of producing a given 

parse is proportional to the probability that the parse would result from a correct interpretation, the 

problem of finding the most probable parse can be solved by sampling. If P  is a random variable 

for a parse, the probability distribution function (PDF) for P  can be estimated by sampling many 

parses drawn at random.  If sufficiently many samples are taken, the most probable parse emerges 

as the parse that occurs the most frequently.  Monte Carlo techniques use sampling to estimate 

PDF's.   

 

Monte Carlo methods are attractive for a number of reasons: 

1. They provide an approximate solution to the search of combinatorially prohibitive search 

spaces. 

2. By adjusting the number of samples, the solution can be computed to an arbitrary accuracy.  

3. Whereas the best solution cannot be guaranteed by sampling methods, measuring standard 

error during the sampling phase allows the number of samples to be adjusted to yield a 

desired level of accuracy. 

 

GRAVA employs a Monte Carlo method; a means of providing approximate solutions by 

performing statistical sampling, to randomly choose which data is passed upwards between levels.  

This is a “weighted random” selection process which picks likely data much more frequently than 

less likely examples (see Robertson (2001, p.48)).  If only the data with the lowest Description 

Length was passed up between levels, the correct answer may never be found: the data with the 

locally Minimum Description Length may not be the correct selection on the global level.  The 

stochastic nature of this method of sampling ensures the generation of different results, and also 

means that the system rapidly generates possible solutions without relying on exhaustive search 

(cutting search time).  The system generates possible solutions on each iteration; the more 

iterations, the better the chance that a match to the solution is generated.  Convergence on an ideal 

solution is then asymptotic: the system finds approximate solutions, and the more iterations that 

occur, the better the approximation that is reached.  In practice, the system tends to find the exact 

solution in a short number of iterations, meaning that performance times are acceptable (this is 

demonstrated in Section 5).  

 

3.2 MDL Agent Architecture 

 

Interpretation problems represent an interesting and important class of problems.  Many important 

problems in AI can be characterized in this way.  Our architecture is designed to allow complex 

programs to be structured around the notion of finding the most likely interpretation.  Frequently 

our interpretations at one level affect interpretations at other levels of processing. Sound and image 

fragments taken in isolation are often unintelligible because without context there is not enough 

information to construct a reasonably likely interpretation of the fragment.  This is particularly 

evident in the problem of interpreting Vindolanda writing tablets. 

 

A recurring issue in multi-agent systems is the basis for cooperation among the agents.  Some 

systems assume benevolent agents where an agent will always help if it can.  Some systems 

implement selfish agents that only help if there is something in it for them.  As a direct result of the 
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use of Monte Carlo sampling, agents in GRAVA appear to cooperate in order to achieve a global 

MDL.  Agent cooperation is an emergent property of the architecture since the agents do not 

directly engage in cooperative behaviour.  Rather agents are selected by Monte Carlo sampling that 

happen to cooperate to produce the global MDL. 

 

Our approach to agent cooperation involves having agents compete to assert their interpretation.  If 

one agent produces a description that allows another agent to further reduce the description length 

so that the global description length is minimized, the agents appear to have cooperated. Locally, 

the agents compete to reduce the description length of the image description. The algorithm used to 

resolve agent conflicts guarantees convergence towards a global MDL thus ensuring that agent 

cooperation “emerges” from agent competition.  The MDL approach guarantees convergence 

towards the most probable interpretation. 

 

In the following sub-section, we describe the architectural objects that implement these concepts in 

the GRAVA architecture.   

 

3.3 Objects in the GRAVA Architecture 

 

The architecture is built from a small number of objects: Models; Agents; Interpreters; and 

Descriptions. 

 

All of these terms are commonly used in AI literature to mean a wide range of things.  In the 

GRAVA architecture they have very specific meanings.  Below, we describe what these objects are 

and how they cooperate to solve an interpretation problem.   

 

The architecture takes an input description in and produces an output description out as its result. 

A description consists of a collection of description elements <1, 2,..., n>.  The output description 

is an interpretation (IQ(in)) of the input where Q(x) is the set of all possible interpretations of 

x. 

)( inout I   

The goal of the architecture is to find the best interpretation Ibest that is defined as the 

interpretation that minimizes the global description length. 

))((minarg inbest
I

IDL
best

  

3.3.1 Descriptions and Description Elements 

 

A description  consists of a set of description elements . 

 n ,...,, 21  

Agents produce descriptions that consist of a number of descriptive elements.  The descriptive 

elements provide access to the model, parameters, and the description length of the descriptive 

element. For example, a description element for a character might include a representation of the 

strokes that make up the character.  A description element is a pair consisting of a model and its 

parameters. 
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Description elements are produced by agents that fit models to the input. Description elements may 

be implemented in any way that is convenient or natural for the problem domain.  

3.3.2 Models 

 

Fitting a model to the input can involve a direct match but usually involves a set of parameters. 

Consider as input, the string “t h r e e   b l i n d   m i c e”. We can interpret the string as words. In 

order to do so, the interpreter must apply word models to the input in order to produce the 

description.  If we have word models for “three”, “blind”, and “mice” the interpreter can use those 

models to produce the output description:  
               ((three) (blind) (mice)) 

The models are parameterless in this example.  Alternatively we could have had a model called 

“word” that is parameterized by the word in question: 
               ((word three) (word blind) (word mice)) 

In the first case there is one model for each word.  In the case of “three” there is an agent that 

contains code that looks for “t”, “h”, “r”, “e”, and “e” and returns the description element “(three)”. 

In the second case there is one model for words that is parameterized by the actual word. The agent 

may have a database of words and try to match the input to words in its database.   

 

3.3.3 Agents 

 

The primary purpose of an agent is to fit a model to its input and produce a description element that 

captures the model and any parameterization of the model.  An agent is a computational unit that 

has the following properties: 

 

1. It contains code that is the implementation of an algorithm that fits its model to the input in 

order to produce its output description. 

2. It contains one or more models (explicitly or implicitly) that it attempts to fit to the input. 

3. It contains support for a variety of services required of agents such as the ability to estimate 

description lengths for the descriptions that it produces. 

 

The “fit” method returns a (possibly null) list of description elements that the agent has managed to 

fit to the data.  The interpreter may apply many agents to the same data.  The list of possible model 

fits from all applicable agents is concatenated to produce the candidate list from which a Monte 

Carlo selection is performed. 
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3.4 An Illustrative Example of MDL Agents 

 

A key idea of this paper is that of agent cooperation that spans semantic levels.  The idea of 

semantics affecting lower level processes is not new.  In the late 1970's there was much interest 

within AI concerning heterarchical-programming approaches (Fahlman 1973, McDermott 1973}.  

These systems suffered from behaviour that defied understanding and, equally importantly, 

analysis. Marr noted that in the human visual system that there was no evidence that higher level 

processes had any control over lower level vision and that we could profitably study low-level 

vision without addressing such issues.  Computer vision has largely followed that path for the past 

20 years.  The issue has not gone away, however, and the notion of how differing levels of 

semantic interpretation are made to interact is at the very heart of the AI problem. One particularly 

interesting approach is the parallel distributed processing (PDP) work of Rumelhart and 

McClelland (McClelland and Rumelhart 1986).  The PDP approach is to develop neural network 

architectures that implement useful processes such as associative memory.  Of particular relevance 

to the MDL agents described in this paper is an Interactive activation model for word perception 

developed by Rumelhart (McClelland and Rumelhart 1986b). 

 

 

 
Figure 3: Interactive activation model for word perception 

 

Figure 3 shows the multi-level word recognition architecture. Each plane contains mutually 

exclusive possibilities for an interpretation.  So for example the word “Time” is exclusive of the 

word “Trim'” and the letter “T” is exclusive of the letter “J”.  If the word is "trim" it is not "time" so 

the more we believe the word to be "trim" the less we believe it is "time".  This is modelled in the 

McClelland and Rumelhart architecture by forming inhibitory links between words on the same 

level.  Similarly on the character level the more that we believe a character is "T" the less we 

believe that it is "J" (or any character other than "T") and this, too, they implement by building bi-

directional inhibitory links between all characters.  Between levels the connections are excitory 

because believing that the First character is "T" improves the likelihood that the word is "Time" or 

"Trim" so there is an excitory link between the letter "T" and all words that start with "T".  The 
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excitory links are also bidirectional since believing that the word is "Trim" increases the likelihood 

that the character is "T".  

 

The PDP approach depicted in Figure 3 has a number of problems, including how neural systems of 

this form can be mapped over an input string.  Even if these issues were to be successfully 

addressed, however, the approach throws out the programming model completely and leaves us to 

develop a completely new computation model based on neuronal systems.   

 

A goal of the GRAVA architecture is to enable systems to be built that exhibit the kind of semantic 

interaction sought by these earlier systems that: 

1. is based on a well understood concept that permits the  to be reasoned about (unlike the 

heterarchical approaches); and 

2. retains a more conventional programming model (than the PDP approach). 

 

The former is achieved by appealing to well-understood ideas from communication theory and 

Monte-Carlo methods (Shannon 1949, Hammersley and Handscomb 1964), and the latter is 

achieved by providing an architecture in which the modules of competence are implemented as 

agents using familiar programming practices.   

 

In this sub-section we demonstrate this by solving the problem that Rummelhart et. al. solved using 

PDP but within the GRAVA architecture.  This serves to clearly illustrate the power of the 

architecture on a simple problem and provides a sketch of an approach to interpreting Vindolanda 

tablets. 

 

3.4.1 Recognizing a Hand Written Phrase 

 

 

Figure 4: Nursery Rhyme Test Data 

 

The experiment described here was trained on a very small corpus and tested on the hand-written 

phrase “MARY HAD A LITTLE LAMB” which is shown in figure 4.  Although the test data is 

simple the system illustrates well the approach described in this paper and its robustness.  In this 

example, illustrated in figure 5,  there are three levels of agents.  The lowest level agents detect 

low-level features of the written text.  There are four feature detectors at this level.  Each agent 

reports on features discovered within a character position. 

 

1. Top stroke endpoints.  This agent reports on the number of stroke endpoints at the top of the 

character.  For example the letter “N” has one stroke endpoint on the top and “W” has two. 
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2. Bottom stroke endpoints.  This agent reports on the number of stroke endpoints at the 

bottom of the character.  For example the letter “A” has two endpoints at the bottom of the 

character and the letter “I” has one. 

3. Stroke Junctions.  This agent reports on the number of line junctions formed from three or 

more lines.  For example the letter “A” has two such junctions.  The letter “N” has none. 

4. Character present.  This agent detects whether the character position contains anything at 

all.  Everything but the space character contains something. 

 

The character boxes are divided into “top” and “bottom” so that the top stroke and bottom stroke 

features can be determined from a simple line endpoint filter.  The system contains two very simple 

filters that detect line endpoints and complex junctions.   

 

In order to simulate the dearth of low-level cues typical of vision problems, we designed this 

experiment to utilize feature detectors that are by themselves incapable of uniquely identifying the 

characters in the handwritten text. Even if there is no noise and the feature detectors detect their 

features with 100% accuracy there is insufficient information using only the features described 

above to unambiguously identify a character.  For example 'S', 'C', 'I', 'L' and 'N' all have one 

endpoint at the top, one at the bottom, and no junctions.  

 

The next level of agents attempts to build character descriptions from the evidence collected by the 

feature detectors.  The character agent contains a database that has information in the form of a set 

of models. The models represent evidence from low-level sensors and the frequency of the letters in 

the nursery rhyme.  In this case the nursery rhyme acts as a corpus from which statistical evidence 

is collected and from which the models are constructed.   

 

The word agent attempts to find evidence for words in the input by looking at evidence from the 

character finding agents.  The universe of possible words is derived from the words found in the 

corpus. In this case, the full corpus of words is restricted to that found in the nursery rhyme.  The 

correct interpretation of any test data will be expected to match words found in the corpus.  
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Figure 5: Hand Written Phrase Recognizer Program 

 

All together the following full corpus of symbols can be used to build a description of the input: 

 

 Low level features: t=0, t=1, t=2, b=0, b=1, b=2, j=0, j=1, j=2, p=0, p=1. 

 Character level symbols: A, B, C, D, E, F, G, H, I, L, M, N, O, R, S, T, U, V, W, Y, Space, 

and 

 Word level symbols:  A, And, As, Everywhere, Fleece, Go, Had, Its, Lamb, Little, Mary, 

Snow, Sure, That, The, To, Was, Went, White. 

 

3.4.2 Performance of the Illustrative Example 

 

The following run shows the result of running this simple example with the six agents described 

above (as shown in Figure 5).  

 
=> (runCycles #t) 

 

Description Length=306.979919  

Description=(t=0 b=0 j=0 p=0 t=0 b=2 j=0 p=1 t=0 b=2 j=2 p=1  

             t=0 b=2 j=2 p=1 t=2 b=1 j=1 p=1 t=0 b=0 j=0 p=0  

             t=2 b=2 j=2 p=1 t=0 b=2 j=2 p=1 t=0 b=0 j=0 p=1  

             t=0 b=0 j=0 p=0 t=0 b=2 j=2 p=1 t=0 b=0 j=0 p=0  

             t=1 b=1 j=0 p=1 t=1 b=1 j=0 p=1 t=2 b=1 j=1 p=1  

             t=2 b=1 j=1 p=1 t=1 b=1 j=0 p=1 t=2 b=1 j=1 p=1  

             t=0 b=0 j=0 p=0 t=1 b=1 j=0 p=1 t=0 b=2 j=2 p=1  

             t=0 b=2 j=0 p=1 t=0 b=0 j=2 p=1)  

 

Description Length=116.690002  

Description=(M A A E HAD A   I L T E S T   I R M B) 

 

Description Length=65.699996  

Description=(M R A Y HAD   R LITTLE LAMB) 

 

Description Length=61.749996  

Description=(M R A E HAD A LITTLE LAMB) 

 

Description Length=41.649997  

Description=(MARY HAD A LITTLE LAMB) 
 

The agents start out with a description based on the identifications of the low level agents that 

detect tops, bottoms, junctions, and non-space.  The description length is calculated as the sum of 

the description lengths of each of the symbols in the description and in this case comes to 

306.979919. By the second result the description length has improved to 116.690002.  This has 

involved identifying characters from the low level cues.  As can be seen from the description there 

are a number of errors in the interpretation due to ambiguity. The word 'HAD' is correctly identified 

but in the remaining description there are 9 character identification errors out of 18. By the third 

result matters have improved so that the description length is 65.699996, three words are correctly 

identified and 3 character identification errors remain. The next improvement brings the number of 
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correct words to four and still has three character errors. Finally the sentence is correctly interpreted 

with a description length of 41.649997 and no errors. 

 

This example, while simple, illustrates two important properties of the architecture: 

 

1. MDL formulation leads to the most probable interpretation. The final interpretation was 

indeed the correct one. 

2. Global MDL mobilizes knowledge to address ambiguities. In the second result of this 

example fully half of the characters were 'guessed' wrongly by the system.  By the fifth 

result all of the ambiguous choices had been made correctly because the correct choices 

were what lead to the globally minimum description length.   

 

While the input data is inadequate for the correct and unambiguous identification of the characters, 

the semantic constraints allow correct identifications to be made. The semantic constraints are 

propagated by letting competing agents 'win' in proportion to the reduction in global description 

length.  The Monte Carlo sampling used in this algorithm prevents the system from getting wedged 

in local minima and ensures that the globally minimum description length (i.e. the most probable 

interpretation) is converged upon. 

 

Section 4:  Applying the GRAVA System to the Vindolanda Writing 
Tablets 

 

In order to be able to utilize the GRAVA system to aid in the reading of the Vindolanda Texts, 

information regarding the character forms and language used at Vindolanda had to be collated, and 

a more sophisticated character agent had to be developed.  This section details the development of 

the character and word agents that were applied to images of the Vindolanda tablets.  

 

 

4.1 Collating Corpus Data from Vindolanda 

 
Palaeographic and linguistic data regarding the characters and language used at Vindolanda was 

collated.  A markup scheme was developed to annotate a corpus of images of the ink and stylus 

texts (using the GRAVA annotation tool), resulting in an XML representation of each character on 

a stroke by stroke basis (Terras and Robertson 2004). In total, 1506 individual characters from the 

ink tablets were annotated, and 180 characters from the stylus tablets. Word lists were compiled, 

and lexicostatistics regarding the frequency of words, characters, and combinations of characters 

used at Vindolanda were generated (Terras 2002). This data provided the necessary corpus data to 

build the character and word models for use in this application of the GRAVA system.  
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4.2  System Development and Architecture  

 

The character database formed by annotating images of the ink tablets is the main source of 

information regarding the character forms on the Vindolanda Texts available.  The models derived 

from this data are used to compare the unknown characters in the test set (which may be annotated 

by hand, or generated automatically by image processing algorithms that allow feature extraction 

(see section 5.5, and Robertson, Terras, et al. forthcoming (2004)).  The difference between the 

original system (3.4.1) and the new system lies in the way that character models are developed, and 

how the test data is compared to this set of character models.  Whereas the original system relied on 

endpoints, this final version relies on data regarding the strokes themselves.  A stroke detection 

agent replaced the endpoint agents in the feature level of the original system.  This results in 

models of characters that are less sensitive to the feature detection process (i.e. the generation of 

end points, which is problematic when dealing with noisy images such as those of the stylus 

tablets).  It also means that the feature level agents depend on information that is much more easily 

propagated from automatic feature detection, allowing for easier amalgamation with the stroke 

detection system.  Most importantly, stroke information is much more stable than endpoint data.  

Small changes in image quality cause only small changes in the stroke features detected.  A 

schematic of the final system that was developed is shown below (figure 6), incorporating all 

elements of the resulting process. 

Figure 6: Schematic of final system.  GRAVA architecture is highlighted to indicate the processes which are carried 

out as part of the final run of the system.  The “Annotated image” can be generated manually by an “Annotation tool”, 

or automatically by “Image feature extraction”.  

 
Before being used by the character agent, both the test set of data and the annotated corpus must be 

prepared in order to analyze their stroke data.  This is done by extracting the strokes, drawing a 
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bounding box around each of the characters to preserve groupings of strokes, and transforming 

these strokes onto a canonical sized grid to allow easy comparison. 

 

Character models are built from the annotated set of images from the corpus by applying a 

Gaussian blur operator, and summing every instance of each individual character to build up a 

character model.  The character agent then compares the unknown characters from the test data 

with those in the character models, also utilizing frequency information about each character to 

generate a description length for each model.  One of these likely characters is then selected using 

the Monte Carlo sampling method and passed up to the Word agent.  This ensures that, over 

successive iterations, a fair, representative amount of each candidate character is selected and 

passed onto the next level. 

 

The Word level takes in the data from the Character agent, combines them to form words, and 

compares them with the words from the corpus – the word “models” in this case being the words 

found in the corpus.  A description length for this comparison is noted.  A selection is made from 

the possible words utilizing Monte Carlo sampling methods, and the final word output is generated.   

 

The system then adds the description lengths for all the words in the phrase (or string of words) 

together, giving a global description length for that combination of characters and words.  

 

The system repeats this process as often as the user dictates, and keeps track of the lowest global 

description length generated by each successive run.  The Minimum Description Length produced 

corresponds with the most likely answer: or the best fit answer available.   

 

The preparation of the character models, and the way that both the character and word agents work, 

is discussed in detail below, before demonstrating results from this system. 

 

4.3 The Construction of Character Models  

 
A character model is defined as a probability field that indicates the likely placing of one or more 

strokes of a two-dimensional character, producing a general representation of a character type.  

Unknown characters can then be compared to a series of these models, and the probability that they 

are an instance of each one calculated, the highest probability indicating a match.  Whilst the first 

implementation of the system relied on an end point agent, this was replaced by a stroke detection 

agent that builds up character models based on the actual strokes of the character, in order for this 

system to work with data generated from image processing techniques, which would allow the 

system to become automated in the future.  
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On a conceptual level, the (stroke-based) character model is constructed by taking an image of an 

individual character, finding its bounding box (identifying the rightmost x co-ordinate, and the 

leftmost x co-ordinate, and the highest and lowest y co-ordinates), and transforming this into a 

standardized (21 by 21 pixel) grid.  The stroke data is convolved with a Gaussian Blur operator to 

reduce over-fitting.  Each standardized representation is accumulated onto a generalized matrix for 

each character type: resulting in a generalized representation of each type of character.  These are 

subsequently used as the models to which unknown characters are compared.  

 

 

4.3.1 Calculating the Final Model 

 
The first character is drawn onto a “blank” grid.  A second instance of the character (if there is one 

available) is drawn over this, the values of this being added to the first instance.  Additional 

instances of the character are laid over the grid, and the values summed as they go.  This results in a 

composite model of all available character instances from the corpus, showing the path the strokes 

are most likely to make.  

 

An example of how these steps combine to generate a character model is given below, where a 

small corpus which contains three „S‟ characters is used to generate a character model of an S.  
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Figure 7:  The generation of a character model from a small corpus.  Three letter S‟s are identified, and bounding 

boxes drawn around them (A).  The stroke data is then transformed into a 21 by 21 pixel grid (B).  A Gaussian Blur is 

applied (C).  The composite images generate a character model (D).  The darker the area, the higher the probability of 

the stroke passing through that pixel.  In this way, the probabilities of the stroke data occurring are preserved implicitly 

in the character models.  

 

 

 

4.4 Learning Models from the Corpus 

 

The corpus of annotated images was randomly divided into a test set and two training sets: that of 

the ink and the stylus tablets. Keeping the test and training data separate allows fair results to be 

generated.  Two sets (ink and stylus) of character models were generated from the training set; the 

ink text character models are shown below.  
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The character models generated from the ink data show that some of the letter forms, such as A, C, 

I, M, N, and T are fairly standardized throughout the test data.  Other characters are more 

problematic. H, L, and V have a more confused appearance, indicating greater variability in the 

appearances of instances of the characters.  D and Q are problematic, as the long strokes can either 

slope diagonally left to right, or right to left.  A bi-product of this research is that the letterforms 

generated from this data can be compared to the letter forms generated from the stylus tablet data, 

generating new information regarding the palaeography of the Vindolanda texts, which is of great 

interest to papyrologists and palaeographers (Terras 2002). 

 
Figure 8: Character models generated from the training set of the ink text corpus. The darker the area, the higher the 

certainty that a stroke will pass through that box. 

 

Not all of the letterforms are present in stylus text character models, as the data set of the stylus 

tablets was much smaller than that of the ink tablets and some characters are missing from the 

sample set.  Nevertheless, both sets of models provide adequate representations for comparison 

with unknown characters: missing characters from the stylus set can be replaced with those from 

the ink set.  
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4.5 The Character Agent: Comparing Unknown Characters to the Character 
Models 

The character agent‟s function is to compare unknown characters to the character models composed 

from the training set.  This is achieved by extracting the strokes from the test data, transforming 

them to the standard size, then calculating the description length for matching the unknown 

character to each model in the data set.  The character agent also utilizes statistical information 

about the likelihood of a character being present, derived from the letter frequency analysis of the 

corpus.  After the description length has been calculated (from a combination of the MDL 

frequency and MDL comparison of stroke evidence), one of the likely characters identified is 

selected, using the Monte Carlo sampling methods, and passed up to the word level.  

4.6 Comparing Unknown Words to the Word Corpus 

The Word agent‟s function is to compare strings of possible characters to the word models in the 

corpus, in much the same way as the character agent compares stroke data to models generated 

from the corpus.  However, the word agent‟s task is considerably simpler than that of the character 

agent, as there is no need to represent stroke data.  The word “models” are the words in the corpus 

themselves, and the probability of them occurring is known from the word frequency data.  

 

This is best understood by considering a possible message representing the fit of a word model to a 

character sequence.  Consider fitting the word “foo” to the word model “for”.  The message begins 

with a representation of the model for the word “for”, then for each character there is either a “1” 

bit, indicating that the character in that position matched the model, or a “0” bit indicating that the 

character didn‟t match, followed by a representation of the character that failed to match.  For this 

example the message stream will look like this: 

 

 

 

 

The description length of the match is therefore the code length for the model used, one bit for each 

matching character, and one bit plus the code length for each non-matching character.  

The system compares the string of characters to each individual word model in the corpus.  The 

comparison with the lowest DL generates the most likely word identification.   

 

However, what if the string of letters represents a word that is not in the corpus? The system 

compares the string to all available models, and also generates the total description length from the 

sum of all of the characters‟ description lengths.  If there is no match between the sequence and the 

existing models, this DL will be the lowest, and the solution is presented as a string of characters. 

However, due to the fact that bi-graph information is included in the word agent, the string with the 

minimum DL will be statistically the most likely combination of characters, even though a word 

has not been matched to the input.  This can be seen in the results section, 5.2.  

 

“FOR” model     1  1  0    “O” 

      -log2P(“FOR”)                             -log2P(“O”) 
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4.6.1  Performance of the Word Agent 

The string of characters “U S S I B U S” was fitted to all 342 of the word models that had a string 

length of 7 characters.  Only the results with a description length less than 36 bits are presented 

here (these being the lowest 8 description lengths computed.)   It is clear that the string USSIBUS, 

present in the corpus, is the closest match, as this produces the lowest description length.  Four 

other words (or word fragments present in the corpus) are identified as being as probable as the 

string of characters itself, SCRIBUS, SCRIBAS, VEHIMUS, UIDEDUN.   This indicates how the 

system propagates best-fit solutions, which are approximate to the correct solution.  

 

 
Figure 9: Result of fitting word models to the characters USSIBUS, most likely fit.  The word USSIBUS is by far the 

most likely contender.   

 

Again, the system chooses which word to select as a solution using a Monte Carlo selection 

algorithm.  The system does not incorporate any other data regarding word sequencing or grammar, 

at this stage.  The MDL for a string of words is calculated by simply summing the description 

length for each word.  Subsequent iterations produce different sequences of characters and words.  

The most probable solution is that with the lowest MDL after a number of successive runs.   

 

5. Results 

 

The adapted version of the GRAVA system was used to analyze various sets of test data, to see 

how effective it could be in producing the correct “reading” of a text.  Firstly, a section of tablet 

255 was analyzed, using the character models ascertained from the ink tablet corpus as the basis of 

comparison.  This gave encouraging results, and also shows the asymptotic nature of the system‟s 

convergence on a solution.  This experiment was then repeated with the same section of tablet, 



Terras, M. and Robertson, P. (2005). "Image and Interpretation: Using Artificial Intelligence to Read Ancient Roman 

Texts". HumanIT, Volume 7, Issue 3. http://www.hb.se/bhs/ith/3-7/mtpr.pdf  

 26 

which in this case had been annotated in a different (wrong) manner, to see how the system coped 

with more difficult data.  A section of stylus tablet was then analyzed, using firstly the set of 

character models derived from the ink corpus, and secondly the set of character models derived 

from the stylus corpus, to indicate how successfully the system operates on the stylus texts.  

Finally, a section of ink tablet which had been automatically annotated was analyzed, to indicate if 

this implementation of the system provided a possible solution to the problem of incorporating data 

generated from the image processing algorithms into a knowledge-based system.   

 

5.1 Using Ink Data for Ink Tablets 

 

The first complete run was done on a section of ink tablet 255. 

 
Figure 10: A section of ink tablet 255, annotated with “ussibus puerorum meorum”

11
.  

 

The set of character models used in this run was that derived from the ink tablet corpus.  The output 

of the system is shown below. 

 

Figure 11:  Output from first successful run on the section of 255, using the ink tablet character models.  

 

In this run of the system, 8 iterations took place before the correct answer was generated. (Although 

the system carried out 25 iterations on this data, the Minimum Description Length generated 

occurred in iteration 8, and so this is the last data shown. It should also be stressed that, with all of 

                                                 
11

 Meaning “for the use of my boys”, referring to some cloaks and tunics for Clodius Super‟s pueri (Bowman and 

Thomas 1994). 
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these results, the experiment was run a number of times, and the results presented are the best case, 

where the system generates the correct result in the fewest iterations.) Previous outputs from 

iteration 1, 2, 3, and 5, had been possible solutions, but that from iteration 8 proved the best, given 

the data provided.  This was also the correct solution. The GRAVA system successfully 

reconstructs the correct reading of the text in a short time, on this occasion.   

 

5.1.1 System Performance  

Although, above, the correct output was generated in merely 8 iterations, because of the stochastic 

nature of the process there is a possibility that the correct answer may never be found.  If it is 

generated (in practice the correct output is usually generated within a few iterations) the number of 

iterations taken to reach this answer will be different on each run.  This can be shown by 

determining the average description length that is generated over a variety of runs on the same data.  

The example, 225front7
12

, as used above, was run 200 times, with 25 iterations specified in each 

run.  By plotting the average description length generated from each of the 25 iterations over the 

200 runs, it becomes obvious that the system converges on a result.  The MDL of the “correct” 

result in this case was 36.863136, whilst after 25 iterations the system averaged 37.08221.  This is 

due to the fact that the average asymptotically approaches the perfect value because of the Monte 

Carlo sampling methods utilized (see above 3.1.2).  

                                                 
12

 The example 225front7 is the seventh line from the image of the front of tablet 255.  Some tablets have writing on 

both sides, and are routinely labelled “front” and “back”.  Because of the size of image files used to capture the data, 

and the demands on computer memory presented by manipulation of these, the files were split into individual lines of 

text for annotation.  This also gave easily usable small test sets of data.   



Terras, M. and Robertson, P. (2005). "Image and Interpretation: Using Artificial Intelligence to Read Ancient Roman 

Texts". HumanIT, Volume 7, Issue 3. http://www.hb.se/bhs/ith/3-7/mtpr.pdf  

 28 

  

Figure 12: Description Length Convergence Over Iterations 

 

Of course, this example only pertains to the section of 255 used as the test set.  The more complex 

the input data, the longer the system will take to converge on a solution (which will have a different 

MDL).  This example, however, demonstrates that the system is effective at generating likely 

solutions within a relatively short time frame: an important consideration when building systems to 

aid human experts as they cannot be expected to wait for hours until exhaustive searches complete.   

 

5.2 Using Ink Models for an Unknown Phrase 

A second section of ink tablet was analyzed, this time to see how the system coped with a more 

confusing section of strokes, and also how it could identify a word that was not in the corpus.  The 

image was annotated USSIBUSS, whilst the eventual, correct, annotation is USSIBUS.   
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Figure 13: On the left, the section of 255 correctly annotated as US.  On the right, the same section annotated 

incorrectly as USS. 

 

Steps were taken to ensure that the word fragment USSIBUSS did not occur in the word corpus for 

this iteration, to see how the GRAVA system coped with this difficult input.   

Figure 14: Output from the system, analysis of awkwardly annotated segment of 255, using the ink tablet character 

models.  

 

These results are interesting on a number of levels.  Firstly, the system is confused by the last few 

characters in USSIBUSS, indicating that it is having problems identifying them.  The first problem 

character is identified (not unreasonably) as an L, the second as either an N or a T.  This shows how 

an unclear character can be assigned a number of possible solutions.  Secondly, although the 

sequence of characters (USSIBUSS) is not in the word corpus, the system does a good job at 

reconstructing a possible string of characters, resulting in USSIB**S.  This is partly due to the use 

of the character models, and also the use of letter frequencies and bi-graph frequencies. This 

approximate solution should be enough to give some indication to a human user of what the correct 

word may be (the system will eventually have to interact with experts in this manner).  Finally,  the 

MDL generated from this solution to the problem is 56.903217.   The MDL generated from the 

alternative (correct) annotation of the characters in 5.1 was 36.863143.  This shows that the most 

likely solution to identifying the letters will have the lowest MDL, and also that there is some need, 

in the future, to encapsulate the opportunity to re-annotate difficult characters in a way that will 

eventually produce the lowest MDL to generate possible solutions.   
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5.3 Using Ink Models for Stylus Tablets 

It was suggested in Terras (2002) that the letter forms from the ink tablets should correspond to 

those from the stylus tablets closely enough to allow models from the ink tablets to aid in readings 

of the letters of the stylus tablets.  In this experiment, a section of stylus tablet 797 was analyzed, 

firstly using models derived from the ink tablets, and in the subsequent section, using the small set 

of models derived from the stylus tablet corpus.  This section of tablet contained fairly common 

words, NUNC QUID (although it had taken the experts a substantial length of time to come up with 

this reading.)  

 

Figure 15: Section of stylus tablet 797, annotations showing NUNC QUID. 

 

Although a fairly small sample of text, it contains a few difficult characters (the curvy letter D, for 

example, and the large C): the results demonstrating how the system will cope with the difference 

in character forms between the ink and the stylus texts. 

 

Figure 16: Output of GRAVA system, section of 797 utilizing ink character models.  

 

The system took 82 iterations to reach the correct interpretation, quite a high number of run cycles, 

probably due to the differences in forms between the character sets.  The first few iterations, as 

suspected, show that the system had problems with the letter D, interpreting it as an M, and the 

large letter C, interpreting it as an I.  However, the correct reading was eventually generated when 

enough run cycles were allowed to sort through the various hypotheses thrown up by the data.  
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5.4 Using Stylus Models for the Stylus Tablets 

 
 The same section of tablet 797 was analyzed, this time using the small selection of character 

models generated from the annotated stylus tablets.  

Figure 17: Output from section of 797, utilizing the stylus character models set. 

 

This run of the system identified the correct response in only 18 iterations, making it much more 

successful than the run, above, where data from the ink character models were used. There are a 

number of reasons why this is the case.  Firstly, the character models generated from the ink and 

stylus tablets are slightly different, and this small difference must have a large effect on the 

comparisons.  Secondly, although the stylus models character set is impoverished due to the lack of 

available data, it contains almost all of the characters based in this sample (save for the letter U.  

The model for the character U was borrowed from the ink tablet models in order to be able to try 

this test.  The letter U seems to be preferred by the recognizer over other characters in this run.  

This is probably because the model for U borrowed from the ink tablet models was based on a large 

number of samples whereas the models for the stylus characters were based on a small sample of 

characters).  However, the stylus character model set does not contain all the available characters, 

which would make it difficult to identify further examples where less common letters 

predominantly feature.  Although comparisons with the stylus character models appear better than 

the ink character models, there is still a place for the ink character models.  Future implementations 

of the system could have more than one model for each type of letter.  

 

 

5.5  Analyzing Automated Data 

It has been shown, above, that the system can correctly interpret annotated images from the corpus 

which were generated by hand.  This is all well and good, but in essence the system needs to work 

effectively alongside image processing algorithms that have been developed in tandem to this 

research which can automatically detect possible strokes on the stylus tablets (Bowman et al 

(1997), Terras (2000), Schenk (2001), Molton, Pan, et al (2003), Pan, Brady et al (2004), Brady, 

Pan et al (2004)).  The section of 255 used as test data was analyzed and annotated automatically.  
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Figure 18: Section of 255 analyzed using the automatic feature extraction algorithms.   

 

 This was then used in the system as test data.  Due to the image data of the third word being 

incomprehensibly faint, this was elided from this test.  The results are presented below.  

Figure 19: Output from an analysis of 255, using automatically annotated images and the character models from the 

ink tablets.  

 

Although the system initially finds the correct result, it goes onto find a “better” result that was 

wrong.  This is because in the second word it identifies **ER*RUM, where * is an error.  

Eventually, the Monte Carlo search finds characters that match SOLEARUM well enough to get a 

lower description length than PUERORUM.  However, the system did get the first word 100% 

correct at the character level, and the second word was almost recovered despite a rather poor 

interpretation at the character level.   This shows promise towards generating possible 

interpretations of images through utilizing this architecture.  Further work needs to be done on the 

stroke extraction algorithms used in the automated annotation process, to encapsulate stroke data 

more fluidly, to enable this to be utilized by the character agent.  The current algorithms have 

problems with the grouping of strokes, and identifying the continuation of strokes where the traces 

of them are faint.  When these problems are overcome, and the automated output is in a clearer 

format, it will be easier to generate possible interpretations of the images using the GRAVA 

system.  Nevertheless, these results show promise towards a possible solution to the problem of 

how to segue the image processing algorithms into an information based system to aid the 

papyrologists in the reading of the texts.   

 

6. Conclusion 

This paper has shown how an MDL agent architecture such as GRAVA provides the infrastructure 

to model the reasoning process the papyrologists go through when reading an ancient document.  

The system described has an emergent behaviour similar to that of human experts and generates 
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possible, reasonable, interpretations.  We have shown that when stroke knowledge is fused with 

other constraining linguistic knowledge that plausible readings of tablets can be generated.  

 

Because the foundations upon which the architecture is built (MDL and Monte Carlo sampling) are 

well understood, the behaviour and performance of the architecture can be estimated by means such 

as convergence analysis.  While this application has no time critical aspect, in other applications 

where time may be an issue, such as real-time vision applications, we can adjust the number of 

samples to fit the computational budged.  We can in essence trade off interpretation accuracy 

against time. 

 

The agents in the architecture appear to cooperate, but this cooperation is an emergent property of 

the architecture.  The agents are explicitly competitive but the effects of Monte Carlo sampling 

makes their aggregate behaviour appear to be cooperative.  This emergent cooperative behaviour is 

perhaps the most important aspect of the architecture because it provides an implicit information 

fusion model that depends upon the effect that local decisions have upon the global interpretation. 

In the case of reading the Vindolanda tablets, information from character strokes is fused with 

statistical language information including character frequency, character bi-graph frequency, and 

word frequency knowledge.   Additional knowledge such as grammatical knowledge or even 

subject context knowledge could easily be added, incrementally, to the described system. 

 

It can be objected that our approach is computationally expensive but upon closer examination we 

find that the comparison with competing techniques is encouraging. Most AI architectures, as we 

discussed above, search for the first solution that could be found in a depth first manner.  Our goal 

is to find approximations to the best solution so comparison with those architectures is not 

appropriate. Speech Recognition and statistical NLP often use variants of hidden Markov models to 

find the best solution. These methods are comparable and are faster than the Monte Carlo approach 

advocated in this paper but they cannot easily be adapted to work with the disparate kinds of 

knowledge that GRAVA can handle.  The extra price we pay for the Monte Carlo implementation 

more than pays for itself by providing a flexible knowledge fusion model.  

 

Although this research did not deliver a stand-alone application for the papyrologists to use to aid 

in reading the stylus tablets, this was not the primary aim of the project.  It has provided an 

understanding of the type of tools required by the experts, as well as implementing a system that 

can analyse image data and propagate useful interpretations.  Further testing and development is 

necessary before a completed application can be made available, at present the system requires 

manual input from the engineering scientists to output results, but the findings presented here 

provide the basis for the construction of a standalone system: a fruitful culmination of varied, 

interdisciplinary research.  Research continues in the Department of Engineering Science and the 

Centre for the Study of Ancient Documents at the University of Oxford, to see how the system can 

be developed to aid in the propagation of readings of not only the stylus tablets, but other types of 

ancient document, such as Greek inscriptions.   

  

The research presented here presents many opportunities for future work.  From a humanities angle, 

this type of computer tool could prove to be instrumental in reading various types of documents 

that were illegible to the human eye: the joining of image processing and linguistic information 

allowing many possible interpretations of data to be generated to aid experts in their task.  It would 
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not be difficult to adapt this system to other linguistic systems given that the necessary statistics 

were available, and the primary sources made available for digitization.  Just how useful such a tool 

actually is to those who read such primary sources remains to be seen, but papyrology as a field has 

so far embraced computer based tools and resources rapidly.    

 

MDL based architectures could be used on any number of image processing tasks, where complex 

information from other semantic levels needs to be used to interpret images.  It has been shown 

here that MDL provides the common currency to relate different types of information, and this 

could be investigated further.  An architecture such as the one described in this paper could be used 

to read other types of handwriting, but the architecture could be expanded much further, to 

incorporate other semantic levels, such as grammar and contextual information.  MDL architectures 

could also be used for entirely different image interpretation problems, such as facial recognition, 

sign language interpretation, or medical image analysis, as long as procedural information from 

different semantic levels was available or obtainable, to allow complex hierarchical systems to be 

implemented. So far as to say,  MDL architectures could provide the basis for the development of 

any type of computer based interpretation system, for example: speech recognition (or production), 

the analysis and interpretation of physical processes (the monitoring of weather, water flow and 

direction, and the many indicative signs of volcanic activity), predicting the outcome in war gaming 

systems, etc.  The scope for the appropriation and development of this type of architecture is almost 

limitless: the important point being it provides a way of comparing and contrasting semantically 

different types of information fairly and efficiently to generate the best probable outcome from 

available data. It is an interesting aside that this research, aimed at solving a Humanities based 

problem, has aided in the development of novel techniques in computing and engineering science: a 

relatively rare occurrence.    

 

This paper has presented a novel approach to a complex problem, delivering a system that can 

generate plausible interpretations from images, in the same way that human experts appear to do, to 

aid them in their task.  It effectively draws together disparate research in image processing, ancient 

history, and artificial intelligence to demonstrate a complete signal to symbol system.  In doing so, 

this research offers further opportunities to develop intelligent systems that can interpret image data 

effectively, to aid human beings in complex perceptual tasks.  
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