5,284 research outputs found

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong

    Full text link
    Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they're getting, LLMs should not only provide but also help users fact-check information. In this paper, we conduct experiments with 80 crowdworkers in total to compare language models with search engines (information retrieval systems) at facilitating fact-checking by human users. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than using search engines with similar accuracy. However, they tend to over-rely the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. However, showing both search engine results and LLM explanations offers no complementary benefits as compared to search engines alone. Taken together, natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages yet, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences.Comment: preprin

    A proposed psychological model of driving automation

    Get PDF
    This paper considers psychological variables pertinent to driver automation. It is anticipated that driving with automated systems is likely to have a major impact on the drivers and a multiplicity of factors needs to be taken into account. A systems analysis of the driver, vehicle and automation served as the basis for eliciting psychological factors. The main variables to be considered were: feed-back, locus of control, mental workload, driver stress, situational awareness and mental representations. It is expected that anticipating the effects on the driver brought about by vehicle automation could lead to improved design strategies. Based on research evidence in the literature, the psychological factors were assembled into a model for further investigation

    Should I Follow AI-based Advice? Measuring Appropriate Reliance in Human-AI Decision-Making

    Get PDF
    Many important decisions in daily life are made with the help of advisors, e.g., decisions about medical treatments or financial investments. Whereas in the past, advice has often been received from human experts, friends, or family, advisors based on artificial intelligence (AI) have become more and more present nowadays. Typically, the advice generated by AI is judged by a human and either deemed reliable or rejected. However, recent work has shown that AI advice is not always beneficial, as humans have shown to be unable to ignore incorrect AI advice, essentially representing an over-reliance on AI. Therefore, the aspired goal should be to enable humans not to rely on AI advice blindly but rather to distinguish its quality and act upon it to make better decisions. Specifically, that means that humans should rely on the AI in the presence of correct advice and self-rely when confronted with incorrect advice, i.e., establish appropriate reliance (AR) on AI advice on a case-by-case basis. Current research lacks a metric for AR. This prevents a rigorous evaluation of factors impacting AR and hinders further development of human-AI decision-making. Therefore, based on the literature, we derive a measurement concept of AR. We propose to view AR as a two-dimensional construct that measures the ability to discriminate advice quality and behave accordingly. In this article, we derive the measurement concept, illustrate its application and outline potential future research

    Transparency in Complex Computational Systems

    Get PDF
    Scientists depend on complex computational systems that are often ineliminably opaque, to the detriment of our ability to give scientific explanations and detect artifacts. Some philosophers have s..

    Trusted Autonomy and Cognitive Cyber Symbiosis: Open Challenges

    Get PDF
    This paper considers two emerging interdisciplinary, but related topics that are likely to create tipping points in advancing the engineering and science areas. Trusted Autonomy (TA) is a field of research that focuses on understanding and designing the interaction space between two entities each of which exhibits a level of autonomy. These entities can be humans, machines, or a mix of the two. Cognitive Cyber Symbiosis (CoCyS) is a cloud that uses humans and machines for decision-making. In CoCyS, human–machine teams are viewed as a network with each node comprising humans (as computational machines) or computers. CoCyS focuses on the architecture and interface of a Trusted Autonomous System. This paper examines these two concepts and seeks to remove ambiguity by introducing formal definitions for these concepts. It then discusses open challenges for TA and CoCyS, that is, whether a team made of humans and machines can work in fluid, seamless harmony

    What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on QA Systems

    Full text link
    NLP systems have shown impressive performance at answering questions by retrieving relevant context. However, with the increasingly large models, it is impossible and often undesirable to constrain models' knowledge or reasoning to only the retrieved context. This leads to a mismatch between the information that the models access to derive the answer and the information that is available to the user to assess the model predicted answer. In this work, we study how users interact with QA systems in the absence of sufficient information to assess their predictions. Further, we ask whether adding the requisite background helps mitigate users' over-reliance on predictions. Our study reveals that users rely on model predictions even in the absence of sufficient information needed to assess the model's correctness. Providing the relevant background, however, helps users better catch model errors, reducing over-reliance on incorrect predictions. On the flip side, background information also increases users' confidence in their accurate as well as inaccurate judgments. Our work highlights that supporting users' verification of QA predictions is an important, yet challenging, problem
    • …
    corecore