4,343 research outputs found

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    Optimal trajectory planning meets network-level routing: Integrated control framework for emerging mobility systems

    Full text link
    In this paper, we introduce a hierarchical decision-making framework for emerging mobility systems. Despite numerous studies focusing on optimizing vehicle flow, practical feasibility has often been overlooked. To address this gap, we present a route-recovery method and energy-optimal trajectory planning tailored for connected and automated vehicles (CAVs) to ensure the realization of optimal flow. Our approach identifies the optimal vehicle flow to minimize total travel time while considering consistent mobility demands in urban settings. We deploy a heuristic route-recovery algorithm that assigns routes to CAVs and departure/arrival time at each road segment. Furthermore, we propose an efficient coordination method that rapidly solves constrained optimization problems by flexibly piecing together unconstrained energy-optimal trajectories. The proposed method has the potential to effectively generate optimal vehicle flow, contributing to the reduction of travel time and energy consumption in urban areas.Comment: 17 pages, 11 figure

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    • …
    corecore