1,002 research outputs found

    An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement

    Get PDF
    This paper presents an open, multi-vendor, multi-field strength magnetic resonance (MR) T1-weighted volumetric brain imaging dataset, named Calgary-Campinas-359 (CC-359). The dataset is composed of images of older healthy adults (29-80 years) acquired on scanners from three vendors (Siemens, Philips and General Electric) at both 1.5 T and 3 T. CC-359 is comprised of 359 datasets, approximately 60 subjects per vendor and magnetic field strength. The dataset is approximately age and gender balanced, subject to the constraints of the available images. It provides consensus brain extraction masks for all volumes generated using supervised classification. Manual segmentation results for twelve randomly selected subjects performed by an expert are also provided. The CC-359 dataset allows investigation of 1) the influences of both vendor and magnetic field strength on quantitative analysis of brain MR; 2) parameter optimization for automatic segmentation methods; and potentially 3) machine learning classifiers with big data, specifically those based on deep learning methods, as these approaches require a large amount of data. To illustrate the utility of this dataset, we compared to the results of a supervised classifier, the results of eight publicly available skull stripping methods and one publicly available consensus algorithm. A linear mixed effects model analysis indicated that vendor (p - value < 0.001) and magnetic field strength (p - value < 0.001) have statistically significant impacts on skull stripping results170482494CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP311228/2014-3; 157534/2015-488881.062158/2014-012013/07559-3; 2013/23514-0; 2016/18332-

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods

    Convolutional neural networks for the segmentation of small rodent brain MRI

    Get PDF
    Image segmentation is a common step in the analysis of preclinical brain MRI, often performed manually. This is a time-consuming procedure subject to inter- and intra- rater variability. A possible alternative is the use of automated, registration-based segmentation, which suffers from a bias owed to the limited capacity of registration to adapt to pathological conditions such as Traumatic Brain Injury (TBI). In this work a novel method is developed for the segmentation of small rodent brain MRI based on Convolutional Neural Networks (CNNs). The experiments here presented show how CNNs provide a fast, robust and accurate alternative to both manual and registration-based methods. This is demonstrated by accurately segmenting three large datasets of MRI scans of healthy and Huntington disease model mice, as well as TBI rats. MU-Net and MU-Net-R, the CCNs here presented, achieve human-level accuracy while eliminating intra-rater variability, alleviating the biases of registration-based segmentation, and with an inference time of less than one second per scan. Using these segmentation masks I designed a geometric construction to extract 39 parameters describing the position and orientation of the hippocampus, and later used them to classify epileptic vs. non-epileptic rats with a balanced accuracy of 0.80, five months after TBI. This clinically transferable geometric approach detects subjects at high-risk of post-traumatic epilepsy, paving the way towards subject stratification for antiepileptogenesis studies

    Towards an efficient segmentation of small rodents brain: a short critical review

    Get PDF
    One of the most common tasks in small rodents MRI pipelines is the voxel-wise segmentation of the volume in multiple classes. While many segmentation schemes have been developed for the human brain, fewer are available for rodent MRI, often by adaptation from human neuroimaging. Common methods include atlas-based and clustering schemes. The former labels the target volume by registering one or more pre-labeled atlases using a deformable registration method, in which case the result depends on the quality of the reference volumes, the registration algorithm and the label fusion approach, if more than one atlas is employed. The latter is based on an expectation maximization procedure to maximize the variance between voxel categories, and is often combined with Markov Random Fields and the atlas based approach to include spatial information, priors, and improve the classification accuracy. Our primary goal is to critically review the state of the art of rat and mouse segmentation of neuro MRI volumes and compare the available literature on popular, readily and freely available MRI toolsets, including SPM, FSL and ANTs, when applied to this task in the context of common pre-processing steps. Furthermore, we will briefly address the emerging Deep Learning methods for the segmentation of medical imaging, and the perspectives for applications to small rodents

    Automatic cerebral hemisphere segmentation in rat MRI with lesions via attention-based convolutional neural networks

    Full text link
    We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connections that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In conclusion, our method, publicly available at https://github.com/jmlipman/MedicDeepLabv3Plus, yielded excellent results in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.Comment: Published in NeuroInformatic

    One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data

    Full text link
    Brain extraction, registration and segmentation are indispensable preprocessing steps in neuroimaging studies. The aim is to extract the brain from raw imaging scans (i.e., extraction step), align it with a target brain image (i.e., registration step) and label the anatomical brain regions (i.e., segmentation step). Conventional studies typically focus on developing separate methods for the extraction, registration and segmentation tasks in a supervised setting. The performance of these methods is largely contingent on the quantity of training samples and the extent of visual inspections carried out by experts for error correction. Nevertheless, collecting voxel-level labels and performing manual quality control on high-dimensional neuroimages (e.g., 3D MRI) are expensive and time-consuming in many medical studies. In this paper, we study the problem of one-shot joint extraction, registration and segmentation in neuroimaging data, which exploits only one labeled template image (a.k.a. atlas) and a few unlabeled raw images for training. We propose a unified end-to-end framework, called JERS, to jointly optimize the extraction, registration and segmentation tasks, allowing feedback among them. Specifically, we use a group of extraction, registration and segmentation modules to learn the extraction mask, transformation and segmentation mask, where modules are interconnected and mutually reinforced by self-supervision. Empirical results on real-world datasets demonstrate that our proposed method performs exceptionally in the extraction, registration and segmentation tasks. Our code and data can be found at https://github.com/Anonymous4545/JERSComment: Published as a research track paper at KDD 2023. Code: https://github.com/Anonymous4545/JER

    Medical Image Segmentation: Thresholding and Minimum Spanning Trees

    Get PDF
    I bildesegmentering deles et bilde i separate objekter eller regioner. Det er et essensielt skritt i bildebehandling for å definere interesseområder for videre behandling eller analyse. Oppdelingsprosessen reduserer kompleksiteten til et bilde for å forenkle analysen av attributtene oppnådd etter segmentering. Det forandrer representasjonen av informasjonen i det opprinnelige bildet og presenterer pikslene på en måte som er mer meningsfull og lettere å forstå. Bildesegmentering har forskjellige anvendelser. For medisinske bilder tar segmenteringsprosessen sikte på å trekke ut bildedatasettet for å identifisere områder av anatomien som er relevante for en bestemt studie eller diagnose av pasienten. For eksempel kan man lokalisere berørte eller anormale deler av kroppen. Segmentering av oppfølgingsdata og baseline lesjonssegmentering er også svært viktig for å vurdere behandlingsresponsen. Det er forskjellige metoder som blir brukt for bildesegmentering. De kan klassifiseres basert på hvordan de er formulert og hvordan segmenteringsprosessen utføres. Metodene inkluderer de som er baserte på terskelverdier, graf-baserte, kant-baserte, klynge-baserte, modell-baserte og hybride metoder, og metoder basert på maskinlæring og dyp læring. Andre metoder er baserte på å utvide, splitte og legge sammen regioner, å finne diskontinuiteter i randen, vannskille segmentering, aktive kontuter og graf-baserte metoder. I denne avhandlingen har vi utviklet metoder for å segmentere forskjellige typer medisinske bilder. Vi testet metodene på datasett for hvite blodceller (WBCs) og magnetiske resonansbilder (MRI). De utviklede metodene og analysen som er utført på bildedatasettet er presentert i tre artikler. I artikkel A (Paper A) foreslo vi en metode for segmentering av nukleuser og cytoplasma fra hvite blodceller. Metodene estimerer terskelen for segmentering av nukleuser automatisk basert på lokale minima. Metoden segmenterer WBC-ene før segmentering av cytoplasma avhengig av kompleksiteten til objektene i bildet. For bilder der WBC-ene er godt skilt fra røde blodlegemer (RBC), er WBC-ene segmentert ved å ta gjennomsnittet av nn bilder som allerede var filtrert med en terskelverdi. For bilder der RBC-er overlapper WBC-ene, er hele WBC-ene segmentert ved hjelp av enkle lineære iterative klynger (SLIC) og vannskillemetoder. Cytoplasmaet oppnås ved å trekke den segmenterte nukleusen fra den segmenterte WBC-en. Metoden testes på to forskjellige offentlig tilgjengelige datasett, og resultatene sammenlignes med toppmoderne metoder. I artikkel B (Paper B) foreslo vi en metode for segmentering av hjernesvulster basert på minste dekkende tre-konsepter (minimum spanning tree, MST). Metoden utfører interaktiv segmentering basert på MST. I denne artikkelen er bildet lastet inn i et interaktivt vindu for segmentering av svulsten. Fokusregion og bakgrunn skilles ved å klikke for å dele MST i to trær. Ett av disse trærne representerer fokusregionen og det andre representerer bakgrunnen. Den foreslåtte metoden ble testet ved å segmentere to forskjellige 2D-hjerne T1 vektede magnetisk resonans bildedatasett. Metoden er enkel å implementere og resultatene indikerer at den er nøyaktig og effektiv. I artikkel C (Paper C) foreslår vi en metode som behandler et 3D MRI-volum og deler det i hjernen, ikke-hjernevev og bakgrunnsegmenter. Det er en grafbasert metode som bruker MST til å skille 3D MRI inn i de tre regiontypene. Grafen lages av et forhåndsbehandlet 3D MRI-volum etterfulgt av konstrueringen av MST-en. Segmenteringsprosessen gir tre merkede, sammenkoblende komponenter som omformes tilbake til 3D MRI-form. Etikettene brukes til å segmentere hjernen, ikke-hjernevev og bakgrunn. Metoden ble testet på tre forskjellige offentlig tilgjengelige datasett og resultatene ble sammenlignet med ulike toppmoderne metoder.In image segmentation, an image is divided into separate objects or regions. It is an essential step in image processing to define areas of interest for further processing or analysis. The segmentation process reduces the complexity of an image to simplify the analysis of the attributes obtained after segmentation. It changes the representation of the information in the original image and presents the pixels in a way that is more meaningful and easier to understand. Image segmentation has various applications. For medical images, the segmentation process aims to extract the image data set to identify areas of the anatomy relevant to a particular study or diagnosis of the patient. For example, one can locate affected or abnormal parts of the body. Segmentation of follow-up data and baseline lesion segmentation is also very important to assess the treatment response. There are different methods used for image segmentation. They can be classified based on how they are formulated and how the segmentation process is performed. The methods include those based on threshold values, edge-based, cluster-based, model-based and hybrid methods, and methods based on machine learning and deep learning. Other methods are based on growing, splitting and merging regions, finding discontinuities in the edge, watershed segmentation, active contours and graph-based methods. In this thesis, we have developed methods for segmenting different types of medical images. We tested the methods on datasets for white blood cells (WBCs) and magnetic resonance images (MRI). The developed methods and the analysis performed on the image data set are presented in three articles. In Paper A we proposed a method for segmenting nuclei and cytoplasm from white blood cells. The method estimates the threshold for segmentation of nuclei automatically based on local minima. The method segments the WBCs before segmenting the cytoplasm depending on the complexity of the objects in the image. For images where the WBCs are well separated from red blood cells (RBCs), the WBCs are segmented by taking the average of nn images that were already filtered with a threshold value. For images where RBCs overlap the WBCs, the entire WBCs are segmented using simple linear iterative clustering (SLIC) and watershed methods. The cytoplasm is obtained by subtracting the segmented nucleus from the segmented WBC. The method is tested on two different publicly available datasets, and the results are compared with state of the art methods. In Paper B, we proposed a method for segmenting brain tumors based on minimum spanning tree (MST) concepts. The method performs interactive segmentation based on the MST. In this paper, the image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the MST into two trees. One of these trees represents the region of interest and the other represents the background. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The method is simple to implement and the results indicate that it is accurate and efficient. In Paper C, we propose a method that processes a 3D MRI volume and partitions it into brain, non-brain tissues, and background segments. It is a graph-based method that uses MST to separate the 3D MRI into the brain, non-brain, and background regions. The graph is made from a preprocessed 3D MRI volume followed by constructing the MST. The segmentation process produces three labeled connected components which are reshaped back to the shape of the 3D MRI. The labels are used to segment the brain, non-brain tissues, and the background. The method was tested on three different publicly available data sets and the results were compared to different state of the art methods.Doktorgradsavhandlin
    corecore