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ARTICLE INFO ABSTRACT

One of the most common tasks in small rodents MRI pipelines is the voxel-wise segmentation of the volume in
multiple classes. While many segmentation schemes have been developed for the human brain, fewer are
Rat available for rodent MRI, often by adaptation from human neuroimaging. Common methods include atlas-based
Mot}se and clustering schemes. The former labels the target volume by registering one or more pre-labeled atlases using
Brain a deformable registration method, in which case the result depends on the quality of the reference volumes, the
registration algorithm and the label fusion approach, if more than one atlas is employed. The latter is based on
an expectation maximization procedure to maximize the variance between voxel categories, and is often com-
bined with Markov Random Fields and the atlas based approach to include spatial information, priors, and
improve the classification accuracy.

Our primary goal is to critically review the state of the art of rat and mouse segmentation of neuro MRI
volumes and compare the available literature on popular, readily and freely available MRI toolsets, including
SPM, FSL and ANTs, when applied to this task in the context of common pre-processing steps. Furthermore, we
will briefly address the emerging Deep Learning methods for the segmentation of medical imaging, and the
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perspectives for applications to small rodents.

1. Introduction

A growing number of preclinical studies are based on mouse and rat
MRI, both ex vivo and in vivo, thanks to the non-invasive nature of NMR
and the availability of different contrasts and quantitative techniques.
Common techniques involving small rodents include functional
Magnetic Resonance Imaging (Jonckers et al., 2011, 2015), Diffusion
Tensor Imaging (Zhang et al., 2012; Harsan et al., 2010), relaxometry
(McIntosh et al., 2017; Soria et al., 2011), Voxel Based Morphometry
(Ashburner and Friston, 2000; Sawiak et al., 2013) and Cortical
Thickness studies (Tustison et al., 2013; Pagani et al., 2016; Nie et al.,
2014).

A common step in MRI pipelines is the segmentation of the acquired
volumes in different regions of interest or tissue classes. An expert
human segmenter can effectively perform this step by labeling each
MRI volume slice-by-slice, perhaps with the aid of an anatomical atlas,
but this time consuming approach is often impractical. Indeed, the time
required to perform it increases both with resolution and dataset size,
while continuous development of MRI techniques and related increase

of data quantity and quality worsen the problem. Furthermore, manual
segmentations can display a large inter-rater variability, with volume
overlaps usually varying between 80% and 95%, but depending on the
specific regions, the overlap can be as low as 70% (Ali et al., 2005).

For over 30 years many algorithms have been developed to accel-
erate and standardize the process of MRI segmentation resulting in the
variety of techniques that make up the current and still evolving state of
the art. Most of these algorithms focused on human MRI, and it can be
less than obvious which algorithms would better transfer to small ro-
dents: while small rodent MRIs often offer lower contrast and less de-
fined structures compared to human subjects, they also present less
anatomical variability (Bai et al., 2012). Automated segmentation
procedures can also be used to further enhance the registration algo-
rithms themselves, as in the case of DARTEL from the popular SPM suite
(Ashburner and Friston, 2005).

The purpose of this review is to present an overview of the state of
the art of brain MRI segmentation for small rodents. After a brief in-
troduction to common pre-processing steps, we will discuss atlas-based
and statistical classification methods, and their implementation in some
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of the most used and freely available toolsets for brain MRI research.

Segmentation in itself is a complex procedure, including con-
ceptually distinct steps. The main and historically oldest segmentation
tasks in MRI literature is tissue classification (Zhang et al., 2001), which
is aimed at a voxel-wise labeling of the MRI volume in a number of
tissue classes, for example White Matter (WM), Gray Matter (GM) and
Cerebrospinal Fluid (CSF), often achieved by employing expectation-
maximization methods, Markov random fields and registration. Tissue
classification is sometimes preceded by skull stripping, a specific seg-
mentation task in which the brain parenchyma is separated from the
rest of the MRI volume (mainly skull structures). While this can indeed
be considered a special case of tissue classification, several ad-hoc
methods have been developed for this task, which will be discussed
separately.

Brain region segmentation instead attempts to identify within the
MRI volume a set of regions of interest (ROIs) that have a distinct
anatomical or functional meaning. In small rodents this is often based
on registration alone, with the aid of one labeled atlas or by combining
the labeling results from multiple atlases. In region segmentation pi-
pelines a skull-stripping step is sometimes omitted, as the atlases em-
ployed may include a reference for the surrounding anatomy (Schwarz
et al., 2006), and the skull-stripping procedures themselves can be re-
gistration-based (Leung et al., 2011). A straightforward implementation
of a tool like FSL FIRST (Patenaude et al., 2011), combining manually
labeled data and a Bayesian framework to segment several subcortical
structures, is not currently available for rodents, although a similar
procedure might be implementable with Atropos (ANTs) (Avants et al.,
2011) in a more labor-intensive way. The segmentation methods pre-
sented in this review, unless stated otherwise, are all available for im-
plementation in small rodents.

Strategies for rodents brain segmentation in MRI are still in active
development. In addition to these approaches, we will also briefly
discuss recent developments in the landscape of segmentation algo-
rithms that are likely to be implemented for small rodents MRI in the
near future. While artificial neural networks are not new in the field of
MRI (Clarke et al., 1993; Schellenberg et al., 1990) the introduction of
contemporary Deep Learning methods (LeCun et al., 2015; Ronneberger
et al., 2015 Ronneberger et al., 2015) is likely to be one of the most
important factors in the development of segmentation algorithms in the
coming years.

2. Evaluation

In the available literature, the most common metrics to evaluate the
results of segmentation and skull stripping algorithms are the Jaccard
index J (Jaccard, 1912) and the Sgrensen-Dice coefficient or Dice score
D (Dice, 1945), defined as follows:
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The two metrics can be used to quantify the similarity between two
different segmentation masks, with a dimensionless index varying

Table 1
Overview of automated skull-stripping programs.
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between 0 (no overlap) and 1 (perfect overlap). Both metrics contain
the same information, and it is possible to calculate one from the other:
D
= ; D= 2
2—-D 1+J

J

To evaluate the quality of a segmentation map a manual segmen-
tation generally provides the ground truth, and the similarity between
that and the algorithm's output provides a metric for the quality of the
algorithm.

As popular as this metric is, it is not obvious that the average scores
across many regions as measured by different studies can be compared
directly. It is much easier to obtain high overlaps with large, bulky
ROIs, while smaller and elongated regions are harder to successfully co-
register. For this reason the most significant results when comparing
different algorithms are the ones operating the same tasks, registering
the same regions, on the same dataset.

3. Pre-processing
3.1. Intensity correction

The performance of both automated skull stripping and segmenta-
tion algorithms can be significantly enhanced by an intensity non-uni-
formity pre-processing step (Sled et al., 1998). The imperfections in the
uniformity of the RF excitation field and receiver coil sensitivity profile
often result in an artifact consisting in a smooth variation of the signal
even in homogeneous tissues, called the bias field. While these effects in
practice do not have a strong enough visual impact to impair manual
segmentation, they can hamper the performance of automatic skull
stripping and segmentation algorithms. Several algorithms have been
developed to correct this bias, like the implementation of the procedure
outlined by Sled et al. (1998) included in FreeSurfer, and it is re-
commended to implement a bias correction step before skull-stripping
and segmenting the volumes.

3.2. Skull-stripping

Many analysis pipelines include a separate skull-stripping step, de-
signed to discriminate brain and non-brain tissues. Several fully or
semi-automated procedures have been developed for this purpose in the
specific case of rodent MRI volumes (Table 1)

Pulse Coupled Neural Networks (PCNN) are a biomimetic neural
network based on the visual cortex of cats (Zhan et al., 2017). In their
original implementation PCNNs operated on individual 2D slices
(Murugavel and Sullivan, 2009) but the algorithm has later been ex-
panded to natively handle 3D data (Chou et al., 2011). 3D-PCNN re-
main competitive to this day, in some cases outperforming more recent
methods like RATS (Oguz et al., 2014), in particular for skull-stripping
in the presence of traumatic brain injuries (Roy et al., 2018). 3D-PCNN
has been tested over the years on multiple datasets, with Dice scores
generally above 0.9, up to 0.97 in ideal Signal-to-Noise Ratio conditions
(Chou et al., 2011; Oguz et al., 2014; Roy et al., 2018; Li et al., 2013).

Algorithm Type

Comments

Neural network
Graph segmentation
Based on BET

PCNN (Chou et al., 2011)
RATS (Oguz et al., 2014)
rBET (Wood et al., 2013)
3dSkullStrip-rat (Cox, 1996)

Well established and effective
Developed to remain effective in low SNR T; volumes
More recent and robust, reported slightly better performances compared to PCNN

The listed tools are freely available for research purposes at the following web addresses:

PCNN: https://sites.google.com/site/chuanglab/software/3d-pcnn.
RATS: https://www.iibi.uiowa.edu/rats-rodent-brain-mri.

rBET: https://www.nitrc.org/projects/rbet/.

3dSkullStrip: https://afni.nimh.nih.gov/.


https://sites.google.com/site/chuanglab/software/3d-pcnn
https://www.iibi.uiowa.edu/rats-rodent-brain-mri
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Comparable scores have also been reported using methods based on
constraint level sets (Uberti et al., 2009).

The RATS method, on the other hand, performs much better on T,
volumes (Oguz et al., 2014), while most of the algorithms for rodent
segmentation and brain extraction focus on T, volumes, as T, provides
better contrast for small rodents.

While deformable surface methods developed specifically for
human brain extraction can be inaccurate when applied directly to
rodent MRI, they can be effectively adapted. In recent years Li et al.
(2013), Wood et al. (2013) adapted the BET algorithm (Smith, 2002) to
the rodent brain, both by improving on the algorithm itself and through
a more appropriate choice of the shape prior. Both this implementation
and the AFNI 3dskullstrip -rat (Cox, 1996) function perform quite
effectively, with Dice scores slightly above the 3D-PCNN method (Li
et al., 2013; Roy et al., 2018).

Recently, Roy et al. (2018) applied Deep Neural Networks (LeCun
et al., 2015) to the skull-stripping of both human and mice subjects with
remarkable results, highlighting the robustness of these algorithms in
the presence of traumatic brain injuries, with Dice scores around 0.95.

Semi-automated methods for skull-stripping are less time-efficient,
but they can yield improved results. A common procedure, as outlined
by Delora et al. (2016) and Pagani et al. (2016), is based on registering
all mouse brains to study-specific template, to be segmented manually,
and later propagate the brain mask to the individual volumes. While not
fully automated this method yields excellent results, benefiting from
being tailored to the specific experimental parameters of the study and
the specific population, resulting in a reported Dice score of 0.96. In
general, methods based on registration and single or multi-atlas seg-
mentation are also common, implementing the same strategies that will
be discussed for the segmentation of the rodent brain in a larger number
of regions (Leung et al., 2011).

4. Segmentation

The task of brain region segmentation aims to identify a set of
predefined regions in the rodent's brain, and relies on two key com-
ponents to classify the different regions: a registration algorithm and
one or more atlases, with the overall quality of the segmentation de-
pending on both. The atlas or atlases contain the prior information on
the tissue classes, in the form of labeled MRI volumes or templates,
while the registration algorithm adapts the atlases to the volume to be
segmented. The final output of the procedure is a new volume in which
the labels and the original data to be segmented are co-registered in the
same space.

In this section we will discuss in turn these key aspects of brain
region segmentation and their implementation. Further on we will turn
our attention to clustering algorithms and the different task of tissue
segmentation. An overview of the general outline of a segmentation
pipelines is given by the diagram in Fig. 1.

4.1. Single atlas segmentation

4.1.1. Atlases

The prior knowledge required to semantically segment different
brain structures is often encoded in one or more anatomic atlases,
composed of two volumes: the original MR data, or a template volume,
and an associated voxel-by-voxel set of labels. Single MRI volumes, or a
study-specific template, can be co-registered with the atlas or atlases to
obtain a voxel-wise labeling of the volumes. Several atlases also feature
probabilistic maps, where the probability of belonging to a particular
class is mapped into each voxel, which can be seen as an early form of
multi-atlas segmentation. Over the years, many atlases have been de-
veloped both for rats (including (Kjonigsen et al., 2015; Schweinhardt
et al., 2003; Papp et al., 2014; Valdes Hernandez et al., 2011; Veraart
et al., 2011; Rumple et al., 2013; Johnson et al., 2012; Schwarz et al.,
2006; Hjornevik et al., 2007; Liang et al., 2017)) and mouses (including
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(Hjornevik et al., 2007; Dorr et al., 2008; Ma et al., 2005; Aggarwal
et al., 2009; Johnson et al., 2010; Kovacevi¢ et al., 2004; Chuang et al.,
2011)). Atlases can differ in many ways: template building strategy,
contrasts, resolution, number of subjects, breed and age of the subjects,
the use of ex vivo or in vivo data, coordinate reference, and segmentation
classes.

A simple template building strategy is to choose one random subject
and use a deformable registration algorithm to register this volume to
every other brain, compute the inverse transforms and average them, to
obtain a first average image. This process is then reiterated several
times using the average as the new registration target (Kovacevic et al.,
2004). Using a template generated from multiple subjects allows
avoiding errors due to imaging artifacts and individual variability,
which might also be a consequence of excision in ex vivo brains. An
alternative method is creating a minimum deformation template,
building the average brain that minimizes the required deformation to
be adapted to the entire database of individual subjects (Veraart et al.,
2011; Johnson et al., 2012; Kochunov et al., 2001; Ma et al., 2005).
Segmentations based on these templates can easily yield Dice scores
above 0.9, with the exception of small or elongated structures, which
are more sensible to slight registration errors (Ma et al., 2005). An ef-
fective template building strategy, based on the production of an initial
reference through affine transformations and its refinement with a
minimum nonlinear deformation approach, can be streamlined with the
use of the buildtemplateparallel script available in the ANTs
toolset (Avants et al., 2010).

A probabilistic atlas does not emerge from a direct segmentation of
the template. Every volume used to build the template is manually
segmented, and its final segmentation emerges from the statistics of the
labels as they are propagated to the template.

Ex vivo atlases offer higher resolution and eliminate motion artifacts
due to the breathing of the subject, however the brain itself is altered in
the process. Aggarwal et al. (2009) observed a shrinkage in ex vivo
brains from 1% up to (3.8 = 0.6)% depending on the axis, and high-
lighted the problem of different structures shrinking by a different
amount, also depending on the choice of reagents, concentrations and
fixation methods. To address this problem an ex vivo template can be
segmented and then non-linearly mapped to an in vivo population
average (Aggarwal et al., 2009; Veraart et al., 2011).

The template itself can be segmented manually, or with the aid of an
histological atlas. The popular Paxinos & Watson and Paxinos &
Franklin atlases (Paxinos and Franklin, 2004; Paxinos and Watson,
1986), in their multiple versions, have been employed for this purpose
by many authors, thus allowing for registration in stereotaxic co-
ordinates.

Several attempts have been made at integrating the diverse land-
scape of available atlases and data for small rodents (Hawrylycz et al.,
2011), including information such as function or gene and protein ex-
pression. The Waxholm space (Johnson et al., 2010), designed explicitly
for MRI, CT and PET mouse brain imaging, is easy to convert to a
stereotaxic reference, and is probably one of the most successful, but as
of yet the general landscape of atlases remains quite varied.

4.1.2. Registration

Given one atlas, the atlas and the volumes to be segmented are re-
gistered to the same space. A common strategy in state of the art seg-
mentation pipelines is to first build a study specific template, as dis-
cussed in the previous section for atlas building, and segment this
template by co-registration with the atlas. The labels can then be pro-
pagated back to the individual subjects by inverting the transformations
obtained (Pagani et al., 2016).

The quality of the labeling will be conditioned by the quality of the
registration itself, and many strategies have been devised to improve
this process. Image or volume registration is formulated as an optimi-
zation problem. Registration algorithms aim to find the optimal para-
meters for the transformation T, from the moving volume I, to the
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Fig. 1. General outline of segmentation pipelines including multiple tasks: skull stripping, region segmentation and tissue classification. Dashed lines indicate
alternative or optional paths: for example, not all tissue classification algorithms require prior maps. This general outline can be modified and improved upon: for
example one could implement a multi-atlas segmentation scheme, or a more complex template building strategy. Entire branches can be omitted, e.g. the user might
be only interested in tissue classification. Depending on the toolset employed, some of these steps might be automated and transparent to the user.

target volume I, minimizing a cost function C(Iy, I7):
T= argminTesTC(IMoT, Ir)

Where Ijso T represents the I, volume transformed by T, and Sy the
space of allowed transformations T (consistently with the notation of
Jenkinson and Smith (2001)). Linear transformations include transla-
tion, rigid registration, similarity, and affine, respectively allowing for
translation only, then adding rotation, scaling, and shear. All of the
most popular toolsets for MRI registration provide an easy way to im-
plement these transformations out-of-the-box, including FLIRT from the
FSL package (Jenkinson and Smith, 2001), ANTs (Avants et al., 2009),
SPM12 (Penny et al.,, 2011), MNI_autoreg (Collins et al., 1994) and
Elastix (Klein et al., 2010), and offer a variety of cost functions. Intra-
modal registration is compatible with simple least squares or cross-
correlation methods, while for inter-modal registration mutual in-
formation or normalized mutual information is often preferred. While
these metrics are almost universally available, many toolsets feature
cost functions that are not found in the others. A summary can be found
in Table 2. While these tools have been primarily developed for hu-
mans, the algorithms used for linear registration do not require any
particular fine tuning for the rodents. Many interpolation schemes are
available after the algorithm has found the optimal transformation,

Table 2
Overview of the metrics available for linear registration algorithms in popular
MRI research toolboxes.

AFNI FSL ANTs MNI_AutoReg Elastix
CR, Hellinger, LPC,  CR,LD, CC, CCH, GC, CC, MI, ND, SSC, MS, MI,
MI, MS, NMI MS, MI,  GD, ICP, VR NC, NMI
NC, NMI  JHCT, MS, MI,
PSE

Abbreviations: CC: cross correlation; CCH: histogram-based correlation coeffi-
cient; CR: correlation ratio; GC: global correlation; GD: gradient difference; ICP:
iterative closest point (Euclidean); LPC: local Pearson correlation; JHCT:
Jensen-Havrda-Charvet-Tsallis; LD: label difference; MS: mean squares; MI:
mutual information; NMI: normalized mutual information; NC: normalized
correlation; ND: normalized difference; PSE: point set expectation; SSC: cto-
chastic sign change; VR: variance ratio. ICP, JHCT and PSE are designed for
point-set registration.
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however when transforming the atlas volumes a nearest neighbor in-
terpolation is used to insure the labeling is preserved.

State of the art registration and segmentation procedures implement
affine transformations as a preliminary step, followed by non-linear,
diffeomorphic mapping. A diffeomorphic transformation is a differ-
entiable, non-linear transformation with a differentiable inverse, pre-
serving the topological relationships of the subject's anatomy (con-
nected or disjoint structures remain so) and ensuring that diffusion
tensors remain positive definite, which is of primary importance in
diffusion weighted imaging (Aggarwal et al., 2009). These large-de-
formations algorithms satisfy the inverse-consistency property, insuring
that the matrices associated to the forward and reverse mappings are
inverse to each other: invertibility is a key property of registration when
applied to segmentation, to propagate the labels or probabilistic maps.

Bai et al. (2012) found that employing the Large Deformation Dif-
feomorphic Metric Mapping, LDDMM algorithm (Beg et al., 2005) for
single atlas registration outperformed FFD and demons, with a mean
dice score of 0.81 compared to 0.72 from affine registration, although
at an high computational expense. Fu et al. (2017) compared one linear
algorithm (FLIRT) and four diffeomorphic algorithms: DARTEL, geo-
desic shooting (optimizations of LDDMM, (Ashburner, 2007; Ashburner
and Friston, 2011 Ashburner and Friston, 2011), diffeo-demons, geo-
desic-SyN and greedy-SyN (from ANTs). The best performing algo-
rithms were geodesic-SyN and greedy-SyN (Avants et al., 2008, 2009),
with mean volume overlaps of 0.77 and 0.76 respectively, the overlap
of the affine registration averaging at 0.68 across all regions.

The demons algorithm searches for a diffeomorphic transformation
with a diffusion based model (Thirion, 1998), whereas both LDDMM
and SyN are based on the optimization of a velocity field mapping one
volume to the other trough an integration step. While LDDMM is
symmetric in theory, the optimization problem in not formulated
symmetrically. By contrast, Avants et al. (2008) implemented an al-
gorithm that exploits the inherent symmetry of the problem and guar-
antees that the path from the fixed to the moving volume remains the
same when the roles are reversed, by defining an appropriate varia-
tional energy insuring that the two volumes contribute equally to the
path. Geodesic-SyN allows for an unconstrained optimization within
the space of diffeomorphic transformations, resulting in an higher ac-
curacy compared to greedy-SyN. While the latter is an approximated
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approach, it offers a major improvement in terms of speed, at the price
of a very small loss in accuracy. For the same registration task, Fu et al.
(2017) measured a running time of 103.2 min when performed with
geodesic-SyN, and 27.8 min with greedy-SyN.

Klein et al. (2009) also highlighted the high accuracy of geodesic-
SyN for brain MRI registration in human subjects, however direct ap-
plication of SyN algorithms with human optimized parameters to ro-
dent populations is not recommended. Fu et al. (2016) showed that
optimizing the parameters of the SyN protocol for mices results in a
18% improvement of the Dice score compared to the SyN protocol
optimized for humans, and a 22% improvement over affine registration.
Applying SyN with human-optimized parameters only resulted in a
minor improvement compared to the overlap achieved with linear re-
gistration methods. Fu et al. (2017) recommend large gradient descent
steps, as the anatomical variability in mouses is lower than in humans,
keeping the number of time points fixed at 2, and a time integration
step of 0.05, employing a Gaussian regularizer with ngdiem =3 and
82,1 = 2, and using cross correlation as a the similarity metric.

While according to Fu et al. (2017) they performed worse in high
resolution MRI, the DARTEL and geodesic shooting algorithms for
SPM12 are also widely used. Both tools are based on an intermediate
tissue segmentation step based on a clustering method, registering si-
multaneously different tissue classes. To the authors knowledge the
FNIRT tool included in FSL has not been compared to the ANTs or
SPM12 tools in small rodents, but it does not appear to outperform
them in humans (Klein et al., 2009).

Unlike AFNI's 3dQwarp (Cox, 1996), which constructs a diffeo-
morphic transformation by a composition of diffeomorphisms, FNIRT
builds one as a sum of diffeomorphic transformations. While this does
not guarantee that the sum would be diffeomorphic, FNIRT approaches
this problem by rejecting at each iteration non-diffeomorphic de-
formation fields and projecting them on the closest diffeomorphic field.
This allows for the selection of transformations characterized by a Ja-
cobian within a specified range, whereas different algorithms might
result in diffeomorphic transformations with a Jacobian arbitrarily
close to zero. The Jacobian determinant of a diffeomorphic transfor-
mation can itself be used to characterize local contractions or expan-
sions, allowing for the localization of voxel-level differences in the local
shape of brain structures (Pagani et al., 2016). FNIRT allows for the
direct selection of the optimal deformation withing a specified range. A
more comprehensive list of toolsets for nonlinear registration can be
found in Tables 3 and 4.

4.2. Multi-atlas segmentation

One single atlas is often unable to characterize individual varia-
bility, and its propagation turns into systematic errors all random errors
in the atlas building process. An effective alternative to single atlas
segmentation is to employ a database of different atlases, computing
the final segmentation using several manually segmented volumes.

Table 3
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Each atlas is registered to the target volume, and the final segmentation
is derived through a label fusion procedure. The general idea of multi-
atlas segmentation resulted in a large variety of techniques for the la-
beling of biomedical images (Iglesias and Sabuncu, 2015) and it can be
considered a class of supervised learning algorithms, several of which
have been employed for the segmentation of rodent brain MRI.

Lancelot et al. (2014) demonstrated a marked improvement of a
simple majority voting strategy over both single atlas and the propa-
gation of one probabilistic atlas for the rat brain. Bai et al. (2012)
compared several common registration and label fusion strategies for
the segmentation of in vivo mouse brains. They investigated the inter-
play of affine, FFD, Demons and LDDMM registrations with majority
voting, STAPLE and Markov Random Fields (MRF) as label fusion
strategies, comparing them to single atlas segmentation. The quality of
the registration step remained the most important variable, resulting in
the highest Dice score improvements. LDDMM registration improved
the average Dice score from 0.724 (affine registration) to 0.812 for
single atlas registration, while multi-atlas methods improved the final
overlap scores by about 0.03-0.04. The best results were obtained by
combining LDDMM registration with either majority voting or STAPLE,
resulting in a dice score of 0.845.

The MRF approach (Bae et al., 2009) jointly models the distribution
of a voxel labels with its neighborhood, while the STAPLE algorithm
(Warfield et al., 2004) estimates the performance of each generator
atlas and constructs an estimate of the “true” segmentation via an ex-
pectation-maximization algorithm. Unlike a majority vote rule, which
selects at each voxel the most frequent label, STAPLE is able to identify
the correct segmentation even when there are repeated errors in a
majority of the segmentations (Warfield et al., 2004). However the
higher complexity of these algorithms, originally developed for human
subjects, did not constitute a significant improvement over a much
simpler majority voting strategy for the mouse brain, presenting subtler
anatomical variations Bai et al. (2012).

STEPS (Cardoso et al., 2012, 2013) incorporates a local similarity
metric in the STAPLE algorithm and combines it with a MRF model to
address the problem of global vs. local image matching. Ma et al. (2012,
2014) confronted it with STAPLE and single-atlas registration after
optimizing the parameters required by STEPS with a grid search,
highlighting a marked improvement over both procedures on their
dataset. The overall Dice score improvement granted by multi-atlas
methods is not equally distributed among brain regions. Harder to
segment brain structures like the fimbria and the anterior commissure
register the highest improvements, of about 0.2 (Ma et al., 2012, 2014;
Bai et al., 2012), while improvements in the thalamus or the cerebellum
were smaller by one order of magnitude. The STEPS algorithm is dis-
tributed by the authors as part of NiftySeg.

Nie and Shen (2013) proposed a weighed average approach in
which the quality of the local alignment is estimated with a mutual
information strategy combined with a demons registration approach,
implementing a support vector machine classifier. They report an

Overview of the metrics available for nonlinear registration algorithms in popular MRI research toolboxes.

Toolbox Metrics Nonlinear transformations options
ANTs CC, Demons, GC, ICP, MS, JHCT, BSplineDisplacementField, BSplineExponential, BSplineSyN, Exponential, GaussianDisplacementField, SyN,
Mattes, MI, PSE TimeVaryingBSplineVelocityField, TimeVaryingVelocityField
AFNI CP, Hellinger, LPC MI, NMI, P Piecewise polynomial C1 diffeomorphism
FSL MS FNIRT
Elastix MS, MI, NC, NMI B-splines, Thin-plate splines, SplineKernelTransform, WeightedCombinationTransform, BSplineTransformWithDiffusion,
BSplineStackTransform
SPM12 Multinomial model Geodesic shooting, DARTEL

Abbreviations: CC: cross correlation; CCH: histogram-based correlation coefficient; CP: clipped Pearson; CR: correlation ratio; GC: global correlation; GD: gradient
difference; ICP: iterative closest point (Euclidean); JHCT: Jensen-Havrda-Charvet-Tsallis; LD: label difference; LPC: local Pearson correlation; MS: mean squares; MI:
mutual information; NMI: normalized mutual information; NC: normalized correlation; ND: normalized difference; P: Pearson Correlation; PSE: point set expectation;
SSC: stochastic sign change; VR: variance ratio. ICP, JHCT and PSE are designed for point-set registration.
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Table 4
Overview of diffeomorphic registration approaches.
Algorithm Type Comments
Demons Surface deformation Often preferred for some application outside the scope of this work, e.g. feature extraction
SyN, Splines  Deformation field Available in several variants, providing state of the art results in terms of accuracy
DARTEL Combined with a clustering step ~ Popular tool in SPM, requires a prior tissue segmentation map, reported to be less effective in high resolution MRI (Fu et al.,
2017)
FNIRT Sum of deformation fields User can specify the range of allowed local deformations

improved 0.859 Dice score over the initial 0.788 single-atlas overlap for
in vivo volumes, and respectively 0.90 and 0.85 scores for in vitro vo-
lumes. Lee et al. (2014) also implemented a majority voting strategy
weighed by intensity similarity after a b-spline deformation driven by
corresponding particles, reporting a 0.05 overlap improvement over the
0.84 score for the pairwise registration.

While all of these authors provided Dice scores to evaluate their
results, direct comparison of Dice scores across different studies, fo-
cusing on different atlases and different ROIs, is not necessarily
meaningful. We can note however that it approaches the inter-rater
overlap between different human raters (Ali et al., 2005).

4.3. Clustering methods

A different approach to tissue segmentation is to frame it as a
clustering problem, labeling the individual voxels as members of dif-
ferent tissue classes. One of the classical tasks this algorithm is applied
to is a 3 classes segmentation of gray matter, white matter and cere-
brospinal fluid. MRI volumes provide effective contrast between these
classes, but the problem is complicated by the bias field, noise and
partial volume effects.

Earlier statistical approaches attempted to label single voxels based
on probability values determined from the intensity distribution of the
image, treating voxels as independent samples drawn from a popula-
tion. Zhang et al. (2001) combined an expectation maximization ap-
proach with a Markov Random Field model (Li, 1994; Tohka et al.,
2010) to take into account the spatial context of the specific voxels,
articulated in a three steps expectation maximization algorithm alter-
nating estimates of the class labels, distribution parameters and bias
field, to maximize the interclass variance. This algorithm is currently
implemented as the FAST tool in the FSL toolbox. As the initial esti-
mates can suffer in the presence of strong bias fields the algorithm can
also be initialized with an a priori probability map. The number of
classes can also be increased, for example to account for strong lesions,
or reduced, if the WM-GM contrast is too small in the target volume.

Ashburner and Friston (2005) developed the algorithm that would
be implemented in SPM, combining registration and Gaussian mixture
clustering. While this expectation maximization algorithm does not
explicitly model spatial dependency in the same way of a MRF, context
information is derived from the deformable registration of a probabil-
istic map of the different tissue classes. At each step the mixture
parameters, bias fields and deformation are estimated separately while
keeping the others constant. As of the current implementation in
SPM12, the algorithm supports segmentation in several classes: GM,
WM, CSF, bone, soft tissue, background/air. Each class is described by
multiple Gaussians to account for partial volume effects and for the

Table 5

possibility that the true distribution might not be normal. Sawiak et al.
(2009) developed a toolbox to facilitate the extension of SPM func-
tionality to the animal brain, including mouse specific priors out-of-the-
box, called SPMMouse.

The Atropos tool (Avants et al., 2011) included in ANTs implements
an n-tissue segmentation algorithm capable of integrating multimodal
information to enhance the segmentation performance with minimal
memory requirements. Combining both of the strategies described
above Atropos can include either MRFs, template based priors or a
weighted combinations of both, as well as bias correction. It can also be
used for brain extraction and label propagation from a probabilistic
atlas. Atropos supports partial volume classes, for example the class of
voxels containing both WM and GM can be classified as a separate
category.

Supporting different initialization and optimization strategies,
likelihood models, and optimization options, Atropos is a powerful tool
with a significant number of parameters the user can tweak to fine tune
the tool to their specific needs, and it has been applied to very different
tasks like the segmentation of cysts in mouse kidneys tissues (Xie et al.,
2015). However this is not always a benefit, and in some cases a more
straightforward approach like the ones previously described can still
yield good results with less fine-tuning. Table 5 presents a short sum-
mary of the methods here discussed.

In the case of ex vivo studies, the fixation procedure can severely
impact the performance of a classic 3-classes segmentation. Pagani
et al. (2016) and Li et al. (2009) worked around the overestimation of
WM tissue at the expense of GM with Atropos and FSL respectively
when implementing voxel based morphometry measures, by increasing
the number of classes and reconstructing GM by merging the new
classes appropriately. However the large loss of CSF as a consequence of
fixation still impaired the quality of WM/CSF discrimination (Pagani
et al., 2016).

5. Future perspectives

Many of the methods discussed here reach overlap scores compar-
able to those obtained between segmentations from different human
raters (Ali et al., 2005). Beyond posing a ground truth problem, which
can still be defined as a multi-atlas labeling of the same volume ob-
tained from multiple human experts, these results are obtained at a
steep cost in terms of computational resources, and become impractical
when applied to large datasets. For this reason one of the biggest
challenges in current classification tasks is computational efficiency.

An emerging approach, to the authors knowledge not yet im-
plemented in small animals, is predictive registration (Gutierrez-Becker
et al., 2017; Dalca et al., 2018; Yang et al., 2017). A machine learning

Clustering based tissue classification tools included in the SPM12, FSL and ANTs toolboxes. Atropos also represents a valid choice for multi-atlas

label fusion.

Algorithm Toolbox Comments

Unified segmentation SPM12 Popular algorithm requiring spatial priors, MATLAB integration
FAST FSL Can include but does not require priors

Atropos ANTs Effective and versatile, provides a wide array of options to fine-tune
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algorithm is trained to predict the velocity field associated to a dif-
feomorphic deformation, given two volumes. The resulting momentum
can either be used directly or as a prior to initialize an optimization
algorithm, thus drastically reducing the optimization time.

Even more promising, both in terms of accuracy as in computational
efficiency, deep learning algorithms (LeCun et al., 2015; Akkus et al.,
2017 Akkus et al., 2017) are likely to revolutionize the current para-
digm for all segmentation and classification tasks and have already
been implemented for simpler classification tasks like skull-stripping
(Roy et al., 2018). This can be considered a multi-atlas approach, in
which the algorithm is trained on a large number of annotated volumes.
While the training step is computationally expensive it only has to be
performed once; the effective runtime of the classification task can be
drastically reduced. Recently, Wachinger et al. (2018) implemented a
Deep Neural Network capable of outperforming state of the art methods
for the segmentation of the human brain in one hour, whereas a single
registration on the same machine took 2 hours to be performed. Em-
ploying a fully convolutional approach with the U-Net architecture
Ronneberger et al. (2015) and Roy et al. (2018) brought the total
segmentation time down to 20s, while preserving the competitive
performance in terms of accuracy, by integrating in the training pro-
cedure volumes labeled with Freesurfer, an atlas based tool (Fischl
et al., 2002). As the segmentation speed is indeed one of the most im-
portant problems to be addressed right now in the field of MRI seg-
mentation, we are likely going to see this architecture or a similar al-
gorithms implemented as well for small rodents in the near future.

Increasing the segmentation speed will in turn facilitate research on
large datasets in all the different fields in which small rodents brain
MRI plays a role, from pathogenesis research to preclinical drug de-
velopment, from basic neuroscience to the study of neurodegenerative
diseases.
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