1,735 research outputs found

    Analysis of topology aggregation techniques for QoS routing

    Get PDF
    We study and compare topology aggregation techniques used in QoS routing. Topology Aggregation (TA) is defined as a set of techniques that abstract or summarize the state information about the network topology to be exchanged, processed, and maintained by network nodes for routing purposes. Due to scalability, aggregation techniques have been an integral part of some routing protocols. However, TA has not been studied extensively except in a rather limited context. With the continuing growth of the Internet, scalability issues of QoS routing have been gaining importance. Therefore, we survey the current TA techniques, provide methodology to classify, evaluate, and compare their complexities and efficiencies. ©2007 ACM.postprin

    Topological Design of Multiple Virtual Private Networks UTILIZING SINK-TREE PATHS

    Get PDF
    With the deployment of MultiProtocol Label Switching (MPLS) over a core backbone networks, it is possible for a service provider to built Virtual Private Networks (VPNs) supporting various classes of services with QoS guarantees. Efficiently mapping the logical layout of multiple VPNs over a service provider network is a challenging traffic engineering problem. The use of sink-tree (multipoint-to-point) routing paths in a MPLS network makes the VPN design problem different from traditional design approaches where a full-mesh of point-to-point paths is often the choice. The clear benefits of using sink-tree paths are the reduction in the number of label switch paths and bandwidth savings due to larger granularities of bandwidth aggregation within the network. In this thesis, the design of multiple VPNs over a MPLS-like infrastructure network, using sink-tree routing, is formulated as a mixed integer programming problem to simultaneously find a set of VPN logical topologies and their dimensions to carry multi-service, multi-hour traffic from various customers. Such a problem formulation yields a NP-hard complexity. A heuristic path selection algorithm is proposed here to scale the VPN design problem by choosing a small-but-good candidate set of feasible sink-tree paths over which the optimal routes and capacity assignments are determined. The proposed heuristic has clearly shown to speed up the optimization process and the solution can be obtained within a reasonable time for a realistic-size network. Nevertheless, when a large number of VPNs are being layout simultaneously, a standard optimization approach has a limited scalability. Here, the heuristics termed the Minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm proposed to approximate the optimal bandwidth and sink-tree route assignment for multiple VPNs within a polynomial computational time. Numerical results demonstrate the MCSTA algorithm yields a good solution within a small error and sometimes yields the exact solution. Lastly, the proposed VPN design models and solution algorithms are extended for multipoint traffic demand including multipoint-to-point and broadcasting connections

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Performance Assessment of Aggregation and Deaggregation Algorithms in Vehicular Delay-Tolerant Networks

    Get PDF
    Vehicular Delay-Tolerant Networks (VDTNs) are a new approach for vehicular communications where vehicles cooperate with each other, acting as the communication infrastructure, to provide low-cost asynchronous opportunistic communications. These communication technologies assume variable delays and bandwidth constraints characterized by a non-transmission control protocol/ internet protocol architecture but interacting with it at the edge of the network. VDTNs are based on the principle of asynchronous communications, bundleoriented communication from the DTN architecture, employing a store-carryand- forward routing paradigm. In this sense, VDTNs should use the tight network resources optimizing each opportunistic contact among nodes. At the ingress edge nodes, incoming IP Packets (datagrams) are assembled into large data packets, called bundles. The bundle aggregation process plays an important role on the performance of VDTN applications. Then, this paper presents three aggregation algorithms based on time, bundle size, and a hybrid solution with combination of both. Furthermore, the following four aggregation schemes with quality of service (QoS) support are proposed: 1) single-class bundle with N = M, 2) composite-class bundle with N = M, 3) single-class bundle with N > M, and 4) composite-class bundle with N > M, where N is the number of classes of incoming packets and M is the number of priorities supported by the VDTN core network. The proposed mechanisms were evaluated through a laboratory testbed, called VDTN@Lab. The adaptive hybrid approach and the composite-class schemes present the best performance for different types of traffic load and best priorities distribution, respectively

    Class-based multicast routing in interdomain scenarios

    Get PDF
    DiffServ-like domains bring new challenges to quality of service (QoS) multicast routing simply by shifting the focus from individual flows into classes of flows. Packets are marked at edge routers and receive differentiated treatment according to the class and not the flow that they belong to. DiffServ therefore became adverse to multicast, as packet replication inside the domain may require classification and remarking functions not present in core nodes. At the interdomain level, no doubt multicast QoS complexity is increased by the interleaving of DiffServ and non-Diffserv domains, making it more difficult to address QoS multicast in an end-to-end perspective. In today’s real interconnection world, classes of service have no meaning in certain links of a full interdomain path. While the problem is not new, as already pointed out, there are no real efforts to bring multicast back to a class-of-service domain without compromising its model of operation. In this article, we present an innovative multicast QoS routing strategy, clearly designed for the new class-of-service paradigm. The solution is based upon the construction of multiple trees, one per class of service available, while still allowing receivers to shift for source-specific trees in its own class of service. The strategy is presented in a full end-to-end perspective. Intradomain trees use differentiated routing paths thus helping traffic differentiation. Intradomain receivers are allowed to shift from shared trees into an adequate class-of-service source tree. At interdomain level, each class-of-service interdomain tree branch is accomplished by means of an improved path probing strategy enabling for QoS path establishment. This paper presents this new strategy, and associated protocols, for constructing several multicast and directed distribution trees, one per class of service, within each multicast group. This new strategy and associated protocols are then simulated using NS-2 platform. Simulation results are analyzed and compared with other multicast routing solutions, both at intra- and interdomain levels

    Energy Efficient Routing Protocols and algorithms for Wireless Sensor Networks a A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are an emerging technology for monitoring physical world. The sensor nodes are capable of sensing various types of environmental conditions, have some processing capabilities and ability to communicate the sensed data through wireless communication. Routing algorithms for WSNs are responsible for selecting and maintaining the routes in the network and ensure reliable and effective communication in limited periods. The energy constraint of WSNs make energy saving become the most important objective of various routing algorithms. In this paper, a survey of routing protocols and algorithms used in WSNs is presented with energy efficiency as the main goal
    • 

    corecore