
Ann. Telecommun. (2008) 63:579–596
DOI 10.1007/s12243-008-0058-x

Class-based multicast routing in interdomain scenarios

Maria João Nicolau · António Costa ·
Joaquim Macedo · Alexandre Santos

Received: 17 February 2008 / Accepted: 1 July 2008 / Published online: 31 October 2008
© Institut TELECOM and Springer-Verlag France 2008

Abstract DiffServ-like domains bring new challenges
to quality of service (QoS) multicast routing simply by
shifting the focus from individual flows into classes of
flows. Packets are marked at edge routers and receive
differentiated treatment according to the class and not
the flow that they belong to. DiffServ therefore became
adverse to multicast, as packet replication inside the
domain may require classification and remarking func-
tions not present in core nodes. At the interdomain
level, no doubt multicast QoS complexity is increased
by the interleaving of DiffServ and non-Diffserv do-
mains, making it more difficult to address QoS mul-
ticast in an end-to-end perspective. In today’s real
interconnection world, classes of service have no mean-
ing in certain links of a full interdomain path. While
the problem is not new, as already pointed out, there
are no real efforts to bring multicast back to a class-
of-service domain without compromising its model of
operation. In this article, we present an innovative
multicast QoS routing strategy, clearly designed for the

M. J. Nicolau (B)
Departamento de Sistemas de Informação,
Universidade do Minho, Campus de Azurém,
4800 Guimarães, Portugal
e-mail: joao@dsi.uminho.pt

A. Costa · J. Macedo · A. Santos
Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710 Braga, Portugal

A. Costa
e-mail: costa@di.uminho.pt

J. Macedo
e-mail: macedo@di.uminho.pt

A. Santos
e-mail: alex@di.uminho.pt

new class-of-service paradigm. The solution is based
upon the construction of multiple trees, one per class
of service available, while still allowing receivers to
shift for source-specific trees in its own class of ser-
vice. The strategy is presented in a full end-to-end per-
spective. Intradomain trees use differentiated routing
paths thus helping traffic differentiation. Intradomain
receivers are allowed to shift from shared trees into an
adequate class-of-service source tree. At interdomain
level, each class-of-service interdomain tree branch is
accomplished by means of an improved path probing
strategy enabling for QoS path establishment. This pa-
per presents this new strategy, and associated protocols,
for constructing several multicast and directed distribu-
tion trees, one per class of service, within each multicast
group. This new strategy and associated protocols are
then simulated using NS-2 platform. Simulation results
are analyzed and compared with other multicast rout-
ing solutions, both at intra- and interdomain levels.

Keywords QoS routing · Multicast · Interdomain

1 Introduction

Many of the applications in the Internet, such as video
conference, distance learning, IP-TV, and video/audio
broadcast, would benefit from multicast support from
the underlying network. These applications involve
multiple users (several receivers and, some of them,
several sources too); thus, they need to use network
resources efficiently. Multicast communication is the
ability to send in an efficient way information to one
or more receivers at the same time without incurring
into network overloads. Hence, at each router, only a

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55618932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

580 Ann. Telecommun. (2008) 63:579–596

single copy of any incoming multicast packet is sent per
active link, rather than sending one copy of the packet
per number of receivers accessed via that link.

Routing multicast traffic requires the construction of
a distribution tree (or a set of trees). Data packets are
delivered through that tree; thus, the major objective
of the routing protocol is to build a tree with mini-
mum cost in order to optimize the network resources
involved.

In addition, most of the multicast applications are
quality-of-service (QoS) sensitive in nature; thus, they
will need QoS support too, if available. The new chal-
lenge lies on how to build a multicast tree (or a set of
multicast trees) to deliver the data from sources to mul-
tiple receivers so that QoS requirements are satisfied
and the cost of the multicast tree is still minimized.

There are two different models to provide QoS at the
network level: IntServ and DiffServ model. The main
strength of the IntServ model is to provide an absolute
service guarantee. However, it has several weaknesses
too. Each router is required to maintain state informa-
tion for each flow; thus, scalability problems may arise.
In addition, each router requires a significant amount
of processing overhead, and the connection setup time
is sometimes greater than the time required for the
transmission of all packets belonging to a specific flow.
The goal of DiffServ [4] is to provide the benefits of
different levels of QoS while avoiding the limitations of
the IntServ model. This is accomplished by aggregating
traffic into classes. DiffServ does not maintain any per-
flow information and also eliminates the connection
setup costs.

Most proposals for differentiated services involve
control algorithms for aggregating service levels, packet
marking and policing, and preferential treatment of
marked packets in the network. The issue of routing
for enhancing aggregate QoS has not yet received the
necessary attention.

In this paper, an innovative multicast QoS-aware
routing strategy is proposed addressing several of the
problems faced by interdomain and intradomain mul-
ticast routing. This strategy is based upon the class-of-
service (CoS) paradigm and is well suitable for DiffServ
architectures.

1.1 Multicast routing

The multicast routing problem is to find and establish
the most efficient path between a single or multiple
sources and multiple receivers. As this problem is sim-
ilar to the unicast routing problem, the solution is also
expected to be closely related.

To build a theoretical definition of the routing prob-
lem, a computer network is represented as a graph G =
(V, A), where each v ∈ V is a router and each a ∈ A is
a communication link between two routers. Each graph
edge has an associated cost c → R+.

For one-to-one (unicast) routing, the problem is the
establishment of the lowest-cost path between two ar-
bitrary vertexes v, u ∈ V. For one-to-many or many-
to-many (multicast) routing, a communication group
M ⊆ V is also defined, and the problem is to find a
lowest-cost subgraph R = (V ′, A′) connecting all group
members, that is M ⊆ V ′ ⊆ V. The R subgraph must
be connected and acyclic, which are the properties of
a tree. To use R as a multicast route, m (m ∈ M)
originated packets are replicated along all the edges
a ∈ A′. Some R vertexes may not be members of M and
are only traversed by packets to reach group members.

The optimal solution results from the computation of
the lowest-cost c = ∑

a∈A′ ca tree R′ = (M′, A′). When
all the vertexes of graph G are members of the group,
that is M = M′ = V (broadcast), the lowest-cost tree is
named the minimal spanning tree (MST). There are sev-
eral efficient algorithms to compute the MST. For the
remaining trees, where there are vertexes not included
in the multicast group, M ⊂ V, the optimal solution
is the Steiner tree. The Steiner tree computation is a
classical problem of nondeterministic combinatory cal-
culus, focused by research in the last 50 years. As a NP
complete problem, suboptimal solutions are welcome,
and there are several good Steiner tree approximations.
Some of the existing heuristic algorithms [14] use, as a
first step, the reduction of a given Steiner problem into
a MST one.

1.2 Reverse path multicast

Steiner tree approximation algorithms are not used in
real multicast protocols because they are not scalable
and most of them require a prior and complete knowl-
edge of the multicast group membership. The relative
dimension of network topology |V| and multicast group
|M| are key issues on the choice of the multicast routing
best approach. If |M| ∼ |V|, the scenario is the dense
mode, and if |M| � |V|, the scenario is the sparse mode.
In the former mode, there are several algorithms based
on flooding techniques. In the later one, a strategy
based on explicit join requests is usually used, where the
multicast tree is built finding the shortest path from the
new participant to the nearest node of the multicast tree
already built. Flooding-based strategies have scalability
problems and they are often improved using reverse
path forwarding (RPF) checking. RPF checking con-
sists in the following: when a router receives a multicast

Ann. Telecommun. (2008) 63:579–596 581

packet, it checks if the packet’s incoming interface is
the one used by the router to reach the packet’s source.
If it is, the packet is then forwarded through all the
interfaces of the router except the packet’s incoming
interface. Otherwise, the router simply discards the
packet. This type of strategy leads to a multicast tree
that is actually built in the opposite direction of the
one used by traffic. A variant of this algorithm is used
by the dense mode variant of protocol-independent
multicast (PIM-DM [1]). In the sparse mode version
of PIM (PIM-SM [12]), multicast tree branches are es-
tablished as PIM-join messages propagate towards the
rendezvous points (RPs) or the source. The multicast
tree is built by explicit join request messages, but it is
also a reverse path tree. Assuming that link costs may
be asymmetric, the path taken by the join message may
not be the shortest path that actual traffic toward the
receiver should follow. Thus, the resulting shared or
source-based trees may not be optimal.

1.3 Asymmetric networks

The already defined multicast problem assumes a sym-
metric network, represented by a undirected graph,
where all group members, transmitters, and receivers,
have an equivalent role. However, real communica-
tion networks may be asymmetric due to the commu-
nication links used and also, and in most cases due
to asymmetric network load conditions that are very
relevant when there are QoS requirements, needed by
the traffic source nodes and even by the receivers. So,
a more realistic model for a communication network is
a directed graph. The above solutions based on Steiner
trees or MSTs are not usable in such cases.

With asymmetric networks, the used approach is to
build a tree assuming a group member (or even an
arbitrary node at the center of the network topology)
as the root, e.g., the source of the traffic. When the
multicast tree is source-based, the complexity of the
problem grows (S times, where S is the number of
sources) as the multicast routing protocol needs to build
a different tree for each potential source of the group.
This characteristic is expensive when there are a large
number of groups and sources. This is even worse for
sparse groups on large network topologies. In such
cases, it would be better to build a single multicast
tree for each group, shared by all sources, with a root
on a central and predefined node on the topology.
Nevertheless, to find this central node in the presence
of dynamic groups is also a NP-complete problem. The
choice of this central node is critical and influences the
quality of the multicast tree built.

As the delay penalty for a shared tree in comparison
with a source-based tree may reach an average of 1.4,
some proposals give the receivers the possibility to
switch from an initial shared tree to a source-based tree.
In this scenario, a new source starts its transmission
using a shared tree, but it may also transmit using a
source-based tree after some receiver issues a join to a
source based-tree to request it. In the worst case, there
are (S + 1) trees for each group, one shared tree and S
source-based trees.

One possible approach to build directed source-
based trees is to use the shortest paths from the root
to each group member. The tree that results from this
strategy is not the Steiner tree but it is a good approx-
imation. The shortest-paths tree (SPT) is built using a
centralized Dijkstra shortest-path algorithm. For this
reason, SPTs are frequently used in conjunction with
intradomain link state algorithms, as open shortest path
first (OSPF) and IS–IS. The computation of multicast
routes is a simple extension of the unicast shortest path
algorithm. However, this type of strategy does not scale
well because it maintains too much state information
in each node. For example, multicast OSPF (MOSPF)
uses link state advertisements (LSAs) to ensure that
all nodes know about the current network topology
and link state information. Also, a group membership
LSA is used to ensure that all nodes know which are
the members of all groups. This amount of informa-
tion brings complexity to nodes but also brings the
possibility to, at every instant, calculate the real SPTs
(not reverse-path trees!) that connect any source to all
members of a multicast group.

1.4 QoS routing

Routing in the Internet has so far been based on a best-
effort service model, primarily concerned with connec-
tivity. Packets are delivered using a route based on
destination addresses. Typically a single metric, a cost
assigned to each link, is taken into account to make
route decisions. Thus, routing protocols build routing
tables having the goal of minimizing the cost of each
path. However, this model is not adequate to satisfy
the growing demands of the applications, most of which
demand QoS assurances. In order to support a wide
range of QoS requirements, routing protocols need
to have a more complex model where the network is
characterized with multiple metrics, such as bandwidth,
delay, and loss probability. The basic problem of QoS
routing is then to find a path able to satisfy multiple
constraints.

Most of these new metrics are network-load-
dependent values, so even symmetric communication

582 Ann. Telecommun. (2008) 63:579–596

links become asymmetric ones due to the presence
of an asymmetric network load. It is assumed that
instantaneous values of each metric result from direct
monitoring of output links and can be kept updated
along the time, as soft state information. Link metrics
can be combined to find the corresponding value for the
whole path. This is done using composition rules that
depend on the correspondent classification: additive
(e.g., delay, jitter), multiplicative (e.g., losses), and con-
cave (e.g., minimum bandwidth). Multiplicative metrics
can be converted into additive ones using logarithmic
transformation. Most of time, some of these path metric
compositions are applicable to multicast trees also.

QoS requirements are usually presented as a restric-
tion set. Restrictions can be classified as link, path, or
tree restrictions. When a group member is requesting
a B bps connection to a group, this means that only
links with bandwidth equal to or greater than B may
be considered. The same is true for eligible paths and
the resultant tree. Path and tree are feasible if they can
satisfy requested QoS requirements.

Once requests have QoS requirements specified as
a set of restrictions, a reformulated version of the
multicast routing problem may be introduced. Given
a network graph G = (V, A), a multicast group M
with a set of tree restrictions CM and sequence of
join/leave requests E = (e0, e1, .., en), where each event
is described by (v, op, Cv), Cv is a set of restrictions for
the operation op of the new member v. The objective
is the computation of a sequence of multicast trees
satisfying CM and Cv restrictions.

A considerable number of QoS-aware algorithms
result from extensions on existing multicast algorithms.
Source-based trees usually need more network re-
sources but have potential superior quality in both best
effort and QoS scenarios. On the other side, shared
bidirectional trees introduce some traffic concentration
and some degradation of end-to-end multicast sessions.
Even with resource reservation mechanisms, the re-
served resources must be shared by all group sources.
Core router selection, not considering receiver QoS
requirements, also introduces difficulties on the setup
of multicast routes. For flood-based algorithms, the
multicast flow reaches the potential receivers before
any explicit receiver request. In this way, receivers have
no chance to explicitly give their QoS requirements for
path selection.

The approximate Steiner tree with restriction-
proposed solutions can be grouped into two main
classes: distributed and centralized algorithms. The last
ones assume that a single network node has a complete
knowledge about group members. This assumption is
not suitable due to inherent dynamism of network load

dependent QoS parameters and group membership.
In this way, partial information based strategies like
path probing are superior to others, at least in large
topologies, in which each node must have up-to-date
information of the global network state.

2 Interdomain multicast QoS routing

The global scenario for both intra- and interdomain
multicast routing is generally a two-tier problem, as it
may be depicted in Fig. 1, where different domains may
identify different autonomous systems, eventually with
very different routing policies.

Most of the various proposals actually presented for
multicast routing are, to a smaller or greater extent,
somehow related with PIM, no doubt the most com-
monly used multicast routing protocol. There are two
main PIM protocols, PIM-DM [1] and PIM-SM [12].
PIM uses unicast routing information originating from
any routing protocol to perform multicast forwarding,
instead of exchanging independent multicast routing
information between routers. PIM-SM is used in most
cases, under the assumption that only a subset of net-
works within any routing domain will be interested in
receiving any multicast group information.

PIM-SM [12] is then a widely deployed multicast
routing protocol, especially useful for groups where
members are sparsely distributed over the routing do-
main. It is based upon the concept of RPs, predefined
points within the network known by all routers. A
router with attached hosts interested in joining a mul-
ticast group will start a multicast tree by sending a join

Domain E

PIM-DM

IGMP

PIM-SM

IGMP IGMP IGMP

DVMRP

PIM-DM IGMP

IGMP

IGMP

MOSPF

BGMP

BGMP

BGMP

BGMP

CBT

Domain A (Root Domain) Domain B

Domain C

Domain D

Domain F

BR

BR

BR

BR

BR

S2

BR

BR

R1

R2

R4

R3

S1

BR

BR

BR

Fig. 1 Hierarchical routing: intra- and interdomain multicast
routing protocols

Ann. Telecommun. (2008) 63:579–596 583

request message on the shortest path to the RP. This
join request message is processed by all the routers in
between the receiver and the RP so that a new branch
for the new member is setup within the multicast tree.

PIM-SM has important advantages when compared
to other multicast routing protocols: it does not depend
on any specific unicast routing protocol and source
rooted trees may be used, instead of the shared tree,
if the data rate of a source exceeds a certain threshold.
However, PIM-SM assumes symmetric routing paths as
it uses reverse-path routing, and thus, it is not suitable
for use in conjunction with any kind of constraint im-
posed by QoS routing.

Indeed, most of the deployed multicast routing pro-
tocols, like core-based trees (CBT) [3], and PIM-SM
are based upon reverse-path routing. Only multicast
extensions to OSPF, MOSFP [18, 19], handling the
topological database as a directed graph, deal with
asymmetric networks topologies. MOSPF has seen im-
plementations and has been deployed in intradomain
networks but cannot cope, because it does not scale,
with interdomain.

There are few proposals for interdomain constrained
multicast routing. Among those are border gateway
multicast protocol (BGMP) [15, 22], yet another mul-
ticast routing protocol (YAM) [6], QoS-sensitive multi-
cast Internet protocol (QoSMIC) [11], and QoS-aware
multicast routing protocol (QRMP) [8].

BGMP is an interdomain multicast routing protocol
able to cope with several of the scaling problems that
other multicast protocols exhibit. BGMP has several
features that, like its unicast counterpart, the border
gateway protocol (BGP) [21], make it suitable for
ISPs usage. BGMP has been designed in order to
support both unidirectional source and shared trees,
as well as bidirectional shared trees for multicast data
distribution. Each type of tree is specially useful for

certain types of applications (e.g., unidirectional trees
for single-source and also for backward compatibility;
shared trees for many-to-many distribution). BGMP
is able to build shared trees that are rooted at the
autonomous system where the multicast group address
originates, using several different mechanisms in order
to discover which autonomous system “owns” the mul-
ticast group address being distributed.

So, BGMP nicely supports “source-specific multi-
cast” and, by means of shared trees, is also able to
support “any-source multicast.” Nevertheless, as a ma-
jor drawback, BGMP has not taken any QoS metric
into account, although some extensions have later been
proposed. YAM, proposed by Carlberg and Crowcrof,
builds shared trees with the capability to provide multi-
ple routes to connect a new node onto an existing tree.

YAM establishes on-demand shared trees, handling
dynamic membership, making use of the discovery fea-
ture associated with the one-to-many join mechanisms,
as depicted in Fig. 2. Nevertheless, YAM does not
require any global network state at routers, although
it implies excessive communication overhead because
it relies on flooding to find a feasible tree branch to
connect a new member.

YAM itself does not take into account any specific
QoS metric but it is able to operate over alternate
paths. Several extensions to YAM have been proposed
[7, 11], able to cope with multicast QoS requirements.

QoSMIC, proposed by Michalis Faloutsos et al.,
alleviates the flooding behavior but introduces a new
complex element: the manager router. QoSMIC uses
two different procedures to find a feasible tree: a local
search and a multicast tree search. Local search, as
shown in Fig. 2, is initiated by the new member router
by flooding BID-REQ messages to its neighborhood,
with scope controlled by time to live. Any in-tree
router that receives a BID-REQ message becomes a

Fig. 2 Search policies for
new member: YAM (left)
vs QoSMIC (right)

a

b

d

e h

c

Local search...

New
Member

Root

Distribution Tree..

Reaching range TTL=3

Reaching range TTL=2

Established

Reaching range TTL=1

a

b

d

e h

c

TTL=1TTL=2

New
Member

 Local or in-tree Search ...

Tree
Manager

Root

Reaching ranges

Distribution Tree..
Established

584 Ann. Telecommun. (2008) 63:579–596

candidate router and replies with a BID message, which
is unicast to the new router. The BID message collects
information about the path on its way that can be
used for selection purposes. The multicast tree search
occurs at the same time, initiated by a manager after
receiving a M-JOIN request from the new receiver. The
manager sends a BID-ORDER message to a set of in-
tree routers, that become candidate routers and reply
with BID messages exactly as described for the local
search procedure.

In QRMP [8], proposed by Shigang Chen et al. in
2000, two search modes are defined: single-path mode
and multiple-path mode. The routing process starts
with the single-path mode, attempting to search only
the unicast routing path travelled by the join request
message through the multicast tree. The join request
message carries the QoS requirements. As it travels, it
checks the resource availability of every intermediate
node and proceeds only when the node has the required
resources. If an intermediate node does not have the
required resources, it triggers the multiple path mode
by sending a not acknowledge message to the previous
node. Upon receipt of the not acknowledge message,
the previous node sends the join request message to
all neighbor nodes except those from which the join
request messages and not acknowledge messages were
previously received. Once a feasible branch is detected,
an acknowledge message is sent back along the branch
that triggers the multiple path mode. If more then one
acknowledge message arrives at this node, the node
will select the best branch and reject all the others. In
QRMP, tree construction occurs from the new receiver
in the direction toward the tree instead of from the
first in-tree node found backwards toward the receiver;
therefore, it does not seam adequate for asymmetric
topologies. In multiple-path mode, the join request
messages are flooded. Besides, it does not support the
establishment of multicast routing policies.

3 CoS multicast routing: a new approach

There are two different approaches in order to pro-
vide QoS to routing processes: per flow and per class
routing. Per flow routing strategies are based on the
principle that QoS routes must be computed for each
request, being that requests explicitly express their re-
source requirements, resorting to resource reservation
in order to maintain those requirements after a feasible
path has been found. This type of strategy can be easily
adapted to the multicast scenario. In a multicast sce-
nario, the path searching process is usually initiated by
the new receiver, which explores different alternative

paths and evaluates them in terms of how well they fulfil
requirements. When a feasible path is found, a new
multicast tree branch is built joining the receiver to the
multicast tree. This type of strategy is usually adopted
by interdomain multicast QoS routing strategies, like
YAM and QoSMIC, because it does not require the
nodes to keep global state information. There is no
need to keep any type of link state information since
QoS path metrics are evaluated by each node during
the setup phase. Nevertheless, after a feasible path is
found, per-flow information is kept in those in-path
nodes. As the number of simultaneous per node flows
may grow indefinitely, resource consumption becomes
a critical issue.

The alternative approach is per-class routing. Instead
of trying to deal with each specific flow individually, the
idea is to group them into a small amount of predefined
classes. Packets on each flow are first marked into one
of the available classes and receive, thence, a class-
specific treatment in all forwarding tasks. By changing
the focus from flows to classes of flows, this approach
really introduces a big paradigm shift. Flows are aggre-
gated by affinity in terms of QoS requirements, thus
making per-flow strong guaranties difficult to achieve.
However, since the number of classes is both small
and well known, routes can be precomputed per class
instead of computed on demand. Since routes can differ
from class to class, there is an enormous potential for
traffic engineering and class differentiation by means
of routing differentiation. This approach has been pro-
posed for unicast but not yet for multicast, or at least
not with the same conviction. However, this strategy
can easily be used in multicast, with the same benefits
and the same withdraws as in unicast.

In a DiffServ multicast scenario with heterogeneous
group members, each one demanding a different CoS
treatment, multiple multicast trees should be built (in-
stead of a route per CoS like in unicast routing), at
least one tree per CoS, in order to comply with dif-
ferent per-class QoS requirements. Thus, each router
will have to deal with more state information than in
traditional multicast routing; however, the total number
of different classes will be much smaller than the total
number of members in a multicast group. So, a real
improvement is expected.

Another problem that must be solved in order to
implement QoS multicast routing is the way multicast
distribution trees are built. Most of the deployed multi-
cast routing protocols, such as DVRMP [23], CBT [3],
and PIM-SM, are based on reverse path routing. Only
MOSFP [18] handles asymmetric network topologies
since the topological database in MOSFP is stored as
a directed graph. In PIM-SM, the packet deliver path

Ann. Telecommun. (2008) 63:579–596 585

is set-up as PIM-join messages propagate towards the
RP or the source. Therefore, the multicast distribution
tree actually built by PIM-SM protocol is in fact a
multicast reverse path tree, as it is built in the opposite
direction to the one used by multicast traffic. This is an
important problem to address when dealing with QoS
routing because these routing constraints expose link
asymmetry in terms of the QoS they offer. Due to these
asymmetries, the path taken by the join request message
may not be the shortest path that data traffic should
follow. Thus, the resulting trees, shared or source-
based, may not be optimal. In order to address the
multicast routing problem, aware of DiffServ context,
a new strategy is therefore proposed: a strategy based
on establishing directed multiple CoS multicast trees.

3.1 Directed shared tree construction

In order to give receivers the ability to join a group
without knowing a priori who and where the sources
are, a shared tree is established to begin with.

To build a directed shared tree, explicit join request
messages issued by new receivers must be sent towards
the RPs router. When the RP router receives a join re-
quest message, it must send back an acknowledgement
packet. This acknowledgement packet is sent back to
the receiver along the shortest path between the RP
router and the new receiver; this path may differ from
the one followed by the join request message.

Routers along this path, when receiving such an ac-
knowledgement packet, may then update their routing
tables in order to build new multicast tree branches.
Updating is basically accomplished by registering with
the multicast routing entry for that tree, both the in-
coming and outgoing router interfaces traversed by
acknowledgement packets.

When CoS multicast routing is considered, a shared
tree per CoS is needed (instead of a single shared mul-
ticast tree) in order to enable sources to start sending
data within any class. It is assumed that the total num-
ber of “available” classes of service has a preestablished
upper limit and is small, when compared to the number
of group members. Figure 3a, b illustrates a receiver
joining directed shared trees.

Data packets issued by sources, previously marked
according to source-defined QoS parameters, are sent
towards the RP router. This RP router forwards data
packets, based on the CoS they are marked with, using
one of the shared trees.

When a new receiver decides to join, the designated
router sends an explicit join request towards the RP
router. Routers along the way between the new re-
ceiver and the RP just forward the join request message

and no state information is kept. When the RP receives
a join request message from a new receiver, it must send
a join acknowledge message per CoS. These messages
must travel towards the new receiver through the best
available unicast path per CoS, building new branches
in each CoS multicast tree (see Fig. 3b). When joining a
group, receivers may initially connect to any of the RP
shared trees.

3.2 Heterogeneous QoS receivers: switching
from shared to source-based trees

The multiple RP shared tree mechanism, presented so
far, does not really allow receivers to specify their
own QoS requirements. Traffic flows from sources to
receivers using one of the shared trees, according to
the QoS parameters defined by sources. After a starting
period, a receiver may demand for a reclassification
of source multicast traffic. This issue cannot be ac-
complished by a shared tree, but it may be met if the
receiver joins a source-based tree. When initiating the
join to source procedure, the receiver should specify
the desired CoS and include it in the join request
message. It is up to the source to decide whether or not
to accept the join, knowing that, when accepting a join,
traffic in the requested CoS must be generated.

When accepting a join for a new CoS, a source must
generate an acknowledge message, addressed to the
corresponding receiver. This procedure is similar to the
one described for the construction of the shared trees,
being that now a single join acknowledge message per
join request is generated. Two different situations may
still occur: the receiver decides to switch to a source
lying in its own domain or it may want to switch to a
source in a different administrative domain.

3.2.1 Join a source-based tree in the same
administrative domain

Even in this specific situation, two different types of
source-based tree join may occur: the receiver decides
to switch to a source-based tree in the same CoS or it
may decide both to switch to a source-based tree and
request a different CoS.

The first case is similar to the switch, from shared
tree to source-based tree, issued by a receiver in PIM-
SM, with some changes due to the directed nature of
multicast trees. In PIM-SM, when a receiver decides to
switch from a shared to a source-based tree, it sends a
join request message to the source. All routers in the
path between the receiver and the source are responsi-
ble by building the new tree branch in the source-based
tree. Besides, when a router lying between the source

586 Ann. Telecommun. (2008) 63:579–596

Class (i) Tree
Class (j) Tree

RP (all trees)

S1

S2

R2

R1

S3

New Member

Join(*)
Ack(i)

Ack(j)

R1, R2, R3 - Receivers
S1, S2, S3 - Sources

(a) New member joins shared trees on all classes

Class (i) Tree
Class (j) Tree

RP (all trees)

S1

S2

R3 R2

R1

S3

R1, R2, R3 - Receivers
S1, S2, S3 - Sources

(b) Resultant shared trees per class-of-service

Class (i) Tree
Class (j) Tree

RP (all trees)

S1

S2

R3 R2

R1

S3

Join(S1,i)

Ack(i)

R1, R2, R3 - Receivers
S1, S2, S3 - Sources

(c) New member requests a specific class to a source

Class (i) Tree
Class (j) Tree

RP (all trees)

S1

S2

R3 R2

R1

S3

R1, R2, R3 - Receivers
S1, S2, S3 - Sources

(d) Resultant set of shared and source-based trees

Fig. 3 Intradomain multiple tree construction (a–d)

and the receiver starts receiving data from that source,
it must issue a prune of that source on the shared tree
because now packets must be received via the source-
based tree and not from the shared one. When building
directed trees, the same idea is to be applied, with some
minor changes. Here, the new source based tree branch
is built by a join acknowledge message instead of the
join request message.

In [20], the source-based tree join request message
sent by the receiver is just forwarded towards the
source by all the routers along the path. When the
source receives the join request message, it sends back a

join acknowledge message towards the receiver and this
message will induce the construction of the new tree
branch. Each router in the path between the source and
the receiver will process and forward the join acknowl-
edge message, updating its routing tables. The interface
to be added in the corresponding outgoing interface list
is the one that has been used to forward the join ac-
knowledge message. When one of the routers belonging
to the new multicast tree branch begins receiving traffic
from the source, it must issue a corresponding prune
on the shared tree of that class. This prune indicates
that packets from this source, on CoS i, must not be

Ann. Telecommun. (2008) 63:579–596 587

forwarded using this branch of the shared tree because
they are being received by means of the source-based
tree. This mechanism is implemented by sending a
special prune to the upstream neighbor in the class i
shared tree. When a router at the shared tree of the
class i receives this type of prune, it creates a special
type of entry [an (i,S,G)RPT-bit entry], where the
outgoing interface list of the new (i,S,G)RPT-bit
entry results from a copy of the (i,*,G) entry; the
interface to be deleted is the one being used to reach
the node that issued the prune (may not be the ar-
riving interface of the prune packet). This is because
we are dealing with directed trees, not reverse-path
ones. These (i,S,G)RPT-bit entries must be up-
dated whenever a join acknowledge message arrives in
order to enable any new receiver to join a shared tree
(even if it had source-specific prune state established).

When a receiver decides to join a source, requesting
a different CoS, the process develops as depicted in
Fig. 3c, d. When a new (i,S,G) entry is created, the
outgoing interface list should not be copied from the
(i,*,G) entry because, in this case, the other receivers
connected through the corresponding shared tree still
need to receive data packets in the source’s default
CoS. For the same reason, these entries should not be
updated when a posterior join to shared tree acknowl-
edge message is received. In addition, the “prune of
source in the shared tree” mechanism must be triggered
by the receiver when it receives the join acknowledge
message. The prune messages must be sent to the
shared trees of all classes, except to the shared tree
of the class for which the receiver recently commuted.
This is because the receiver will start to receive the
source’s packets via the source tree in the desired class,
so it should not keep on receiving them via the shared
tree established for the source’s default CoS. Figure 3
summarizes the process of multiple tree construction in
the intradomain.

3.3 Connecting administrative domains

Despite the huge number of QoS multicast routing pro-
posals that have emerged in the past few years, very few
were actually designed for the dual-level hierarchical
model of the current Internet. This is also true for non-
QoS-aware protocols.

One of the most common difficulties, absent in in-
tradomain routing, is the need to address policy issues.
Domains are delimited by administrative boundaries
and domain border routers must be configured to en-
force domain policies. This is usually carried out by
filtering routing information that enters or leaves a
domain. BGP long life lasting derives mostly from its

policy friendliness. Because BGP routes are qualified
with a full AS-Path attribute, it is not hard to write
complex filtering patterns without the risk of inducing
loops. This issue really changes the focus of interdo-
main routing: from efficiency to political connectivity.
With such a focus, QoS usually turns out to be a sec-
ondary issue.

Furthermore, in order to preserve domain indepen-
dence, it is also desirable that independent domains
do not have to rely on external resources managed
by others. This simple nontechnical issue frustrates the
construction of global shared trees rooted at single
external RP nodes.

Another specific interdomain problem is the accu-
racy of the QoS information collected. Currently, a
route update can take several minutes to spread across
multiple domains. Absolute measures of QoS metrics
like bandwidth, losses, or delays are useless in such a
time interval. Efforts are therefore directed to provide
statistical values, such as means and deviations, which
are more valuable in near future predictions [16]. The
engineer task turns out to be selecting the right amount
of information to include in summary metrics without
severely degrading its accuracy.

All other issues are common to both intra- and inter-
domain levels but are eventually more stressed by scale
and policies. One example is the asymmetric nature
of routing. As pointed out in the intradomain section,
routes are asymmetric when dynamic QoS metrics are
considered. Resource consumption depends upon flows
admitted; for most multicast applications, flows show
intense packet rates from sources to destinations and
almost no traffic in the reverse direction. A good path in
one direction may not be a feasible one for the reverse
direction. Interdomain specific issues, like policies, en-
force this asymmetric nature.

3.4 CoS and non-CoS domains coexistance

The analysis of interdomain specific requirements leads
to a fundamental question: can we simply expand the
intradomain strategy presented so far or is it inadequate
according to those requirements?

Preserving domain independence implies allowing
each domain to decide whether to use CoS or not. It
implies also to allow domains to not depend on external
RPs, as already pointed out. This compromises the
goal of multiple shared trees at the interdomain level,
but not its usage inside the domain. RPs within each
domain can establish peer relations between them, as
in MSDP [13] or [9], in order to exchange information
about their active sources. Some announcements will
carry CoS, while others will not.

588 Ann. Telecommun. (2008) 63:579–596

Figure 4 illustrates this relationship with non-CoS
domains. A CoS domain internally builds multiple
shared trees, a tree for each class, and announces all
its sources to external peers with the associated CoS.
Classes are supposed to be standard and well known
by all domains, without invalidating the freedom to use
them or not. It is also assumed that it is always possible
to map a set of QoS metrics obtained for a flow, a link,
or a path into a specific CoS. A mapping function, as
well as its reverse function, are both needed in order to
avoid class mismatches.

Domains having no members on a specific group will
just resend the announcement to all peers except the
originator. Non-CoS domains having active receivers
inside will probably proceed with a join to that source,
as usual, ignoring any class mark Fig. 5a. CoS domains
should consider all external unmarked announcements
as belonging to a default class.

Figure 4b illustrates the way two CoS domains could
interact. Each domain announces its sources’ availabil-
ity with the correspondent CoS. In order to provide
traffic to its domain receivers, RPs join the interdomain
tree for the CoS the source announces. An internal
receiver, within any domain, may shift to a source-

specific tree branch, on the same or on any other CoS,
by sending a join request message on the desired CoS.
This is also illustrated in Fig. 4b.

3.5 Interdomain via path probbing: effort
vs. efficacy trade-off

The next question is how to build the interdomain QoS-
aware multicast tree. In intradomain, precomputed uni-
cast paths can be used if they exist on unicast routing
tables. A CoS unicast routing protocol may be used
in order to find the best unicast path per CoS. How-
ever, applying this type of strategy to the interdomain
context introduces some scalability problems related to
state information accuracy and memory consumption
on routers.

The alternative is to build tree branches on demand,
probing the QoS of the available paths. Special care
must be taken in order to build directed trees instead
of reversed path ones because asymmetries are highly
stressed at the interdomain level.

Probing techniques pointed out so far differ basically
in the spread of network regions covered by the probes

Class(j) Tree

RP (all trees)

R1

S1 S2

R2

RP
RP

Join(S1)
Join(S2)

Non-CoS Domain(Y)CoS Domain(X) Non-CoS Domain(Z)

Source Annouce (RP(x),S1,Class(j)) Source Annouce (RP(z),S2)

Class(i) Tree

(a) Source announcements exchanged with non-CoS domains

(b) Joining external sources requires QoS map functions
Class(j) Tree

RP (all trees)

R1

S1 S2

R2

RP
RP

Non-CoS Domain(Y)CoS Domain(X) CoS Domain(Z)

Join(S2,Class(i))

Source Annouce (RP(z),S2,Class(i))Source Annouce (RP(x),S1,Class(j))

Join(S1,Class(j))

Join(S1,Class(i))

Class(i) Tree

Fig. 4 Interconnecting administrative domains (a, b)

Ann. Telecommun. (2008) 63:579–596 589

and in the direction they follow. Larger areas probed
means greater efficacy but also a greater control over-
head. There is a clear trade-off between the number of
probes launched and the number of feasible paths that
can be found. Techniques like YAM perform well when
the new member is in the neighborhood of an existing
tree. This is, of course, unlikely to occur in large net-
works. This technique can be turned up by enlarging the
size of the expansion rings used, but the overhead grows
exponentially. Other approaches, such as QoSMIC, try
first to locate the multicast tree and then select a subset
of in-tree nodes to launch probes. This technique can
be turned up on the in-tree node selection procedure.
The best results are, however, achieved if all in-tree
nodes launch probe messages, but that introduces huge
overheads. Perhaps the best approach, in this effort vs
efficacy trade-off, is the one followed by QRMP: first
follow the usual path towards the tree and measure it;
launch probes in multiple directions only if the obvious

path is not feasible. This technique can also be tuned
up by controlling the number of times a probe can be
forked. It has, however, a major drawback: the direc-
tion of the probing process. Paths are probed from new
members to tree roots, and they should be issued in the
reverse direction, due to asymmetries.

The path probing strategy proposed here is based on
these key ideas: find the tree as fast as possible, launch
probes in the downstream direction, and increase prob-
ing efforts only when paths cannot be found. The strat-
egy description that follows will show that these options
lead to the best fit to the interdomain level.

3.6 Interdomain tree branches construction

Figure 5 shows the way interdomain trees are con-
structed. Multiple domains are connected by border
routers that exchange MBGP routes. Policies are ap-
plied first by filtering MBGP announcements, sent or

InterDomain
Tree Root: S

New Member: N1

2

3

3

4

5
6

4

4

1. N sends Join(S,Class)
2. Join(S,Class) is forwarded
 until it reaches the tree in T
3. T sends 3 probe messages
 Answer(N,Class) to N
4. Two probes fail in first step,
 and Nack(T,Class) are sent back
 The other probe proceeds to N
5. Last probe also fails and
 another Nack(T,Class) is sent
6. Nack() is forwarded to T that
 detects fails on all possible
 available paths to N.

T

(a) First in-tree node found conducts probing process

InterDomain
Tree Root: S

New Member: N

7

8

9
10

11
12

13

7. After detecting path probe
 failure, intree node T forwards
 Join(S,Class) towards S

8. Join reaches S that lauches
 only one probe to N. Avoids
 others because they will fail.

9., 10. The probe is successfully
 forwarded until it reaches N

11. N selects that path as the
 best one available, and sends
 Ack(S) to establish it.
12, 13. Ack establish path to S

T

(b) Limited retries are issued further inside the tree

Fig. 5 Interdomain tree built by path probing strategy (a, b)

590 Ann. Telecommun. (2008) 63:579–596

received. So, only policy compliant routes remain to be
used on multicast tree construction.

An interdomain tree is needed only when a receiver
(or a RP-node on the receiver’s behalf) decides to
join an external source. The request to join is gener-
ated either within the original class, extracted from the
source announcement received, or in a different one, if
explicitly expressed by receivers.

The join request message is forwarded between bor-
der routers, without creating state information, until it
reaches the first node already in the source tree for that
CoS. Note that the request is not forwarded up to the
tree root, as it was inside the domain, in order to avoid
overloading it. Tree branches are constructed based
on the QoS values maintained on each tree node and
loops are avoided by analyzing the AS-path value of the
branch. After having received the join request message,
the newly found in-tree node sends a probe message on
every possible path, directed to the requesting domain.
That is the right way to cope with asymmetries.

Each node that receives a probing message must
update its QoS path value by using the measured QoS
on the next link in the path leading to the joining node.
If the computed cumulate QoS value can no longer
be mapped into the requested CoS, or if the node is
already in the tree, the probe procedure fails. In this
case, a negative ack is sent back to the in-tree node that
is controlling the probe process.

Eventually, one or more probes do reach the new
member and a path is selected. However, if all attempts
fail, as illustrated in Fig. 5a, a new retry must be initi-
ated, further inside the tree, by resending the original
join request towards the tree root. The total number of
retries is limited to keep the strategy scalable. The next
node that receives the request will then conduct its own
probing, using exactly the same procedure. As soon as
the new member receives one valid probe message, it
establishes the new tree branch by sending an ack on
this specific path.

4 Experiments in multiclass multicast routing

4.1 Experimental setup

NS [10] has been used in order to simulate and evaluate
our multicast routing proposal. First, directed trees
construction inside a single domain has been imple-
mented and results have been compared with a PIM-
SM implementation. In these simulations, the CoS link
state protocol (CoSLSP) has been used. CoSLSP is a
CoS unicast routing protocol based on LS (a link-state

unicast routing protocol implementation included in
NS-2 distribution).

CoSLSP aims to provide a class-based unicast rout-
ing mechanism. The basic idea is to find one route per
CoS, able to satisfy the QoS requirements of that class.
It is a unicast link-state protocol that uses a modified
Dijkstra algorithm capable of finding the shortest path
routes, if they exist at all, that can meet the QoS
requirements of different classes of service. In a few
words, the path calculation algorithm starts by find-
ing the shortest path, whose feasibility is then verified
against the QoS requirements. If unfeasible, the next
shortest path is then iteratively verified until a feasible
path is found or a configured threshold is reached. In
this way, a different route is found for each CoS and
it is installed in the unicast routing table. The packet
forwarding process has been modified too in order to
lookup for the appropriate route depending on the CoS
of each packet. These CoS paths in unicast routing
tables are used by join acknowledge messages, which
travelled from RP and sources to receivers in order
to build CoS-directed multicast trees. This was just a
simple way to achieve per-CoS routes in unicast routing
tables.

4.2 Used metrics

To evaluate the proposal, different metrics have been
used. First of all, it is needed to measure the quality of
the multicast trees built. The best way to achieve this,
since there are multiple trees, is to count the number
of data packet replicas that are originated by nodes
while forwarding those packets across the distribution
tree. In order to realize how well the tree construc-
tion mechanism deals with link asymmetries, instead of
using only the number of data packet replicas, a metric
combining this number with the cost associated to each
link traversed by each packet replica is used.

The second thing we intend to evaluate is the gain
of using CoS multicast routing. In our simulation ex-
periments, CoS requirements were defined in terms
of packet losses. Therefore, to measure the gain of
our multiclass multicast routing strategy, we used the
average packet drops that occurred in the flows of each
CoS (Fig. 6).

4.3 Results obtained

The topology used in the first simulation scenario (a
single DiffServ domain) is a typical large ISP network
[2]. This topology (Fig. 6) includes 36 nodes; 18 of them
are core nodes, and the other 18 are edge nodes. Each
of the core nodes is connected with one edge node

Ann. Telecommun. (2008) 63:579–596 591

33

26

34

29

30

16

17

15

10

14

2

13

20

12

18

11

19

25

9

23

27

7

28

8

31

6

32

5

35

4

21

3

22
1

24

0

Fig. 6 Typical large ISP topology

by a symmetric link with the cost 1. The core nodes
are interconnected with each other by 30 asymmetric
links. There are different alternative paths with differ-
ent costs between any pair of core nodes. Link costs are
integers randomly chosen from the interval [1, 12].

Three different classes of service with different QoS
requirements in terms of losses were considered. Class
1 does not support any losses; class 2 supports well
losses; and, finally, class 3 can deal with greater losses.
Each link has three physical queues (one per class) and
two virtual queues corresponding to two different drop
precedence. All queues are configured exactly in the
same way in order to prevent inside node differentia-
tion. Therefore, the only class differentiation that can
occur is caused by the action of the routing protocol.

For each simulation run, only one group is consid-
ered, and the RP is randomly chosen within the set

of all nodes. There are four fixed sources, and each
source generates traffic in a CoS randomly chosen. It
is assumed that a single receiver is connected to each
edge node in the topology and that all edge nodes have
one potential receiver attached.

At the beginning of the simulation, there are no
receivers joining the group. After an initial period,
nine receivers start to join the group building three
shared trees rooted at RP. After all the receivers have
joined, eight randomly chosen receivers join the four
different sources requesting a CoS that is also randomly
chosen. This scenario is then kept until the end of the
simulation. Before the simulation ends, all the receivers
leave the group.

Simulation results are presented in Figs. 7 and 8,
where shown values reflect the computed average after
100 independent simulations.

Figure 7 shows the characteristics of the trees built
with the two strategies (MCMRP and PIM-SM). The
curves presented in Fig. 7a show the average tree cost
in function of number of receivers. The tree cost is
measured in terms of number of replicas times
link cost. The curves presented in Fig. 7b show the
total number of links in the topology that are involved
in the multicast trees as a function of the number of join
or leave operations.

The results shown in Fig. 7a bring to evidence that
CoS trees have costs smaller than those created by
PIM-SM. This is because they are directed trees instead
of reverse-path trees. Note that CoSLSP, the underly-
ing unicast routing protocol, does not choose the best
unicast routing path; it chooses the best unicast path
that, furthermore, can also meet the QoS requirements
of each CoS. Even with this characteristic, it is able to

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 T
re

e
C

os
t (

R
ep

lic
as

 *
 L

in
k

C
os

t)

Number of Receivers

MCMRP with CoSLSP
PIM-SM with LS

(a) Tree Cost(number of replicas times the link cost)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 T
re

e
C

os
t (

N
um

be
r

of
 L

in
ks

)

Number of Receivers

MCMRP with CoSLSP
PIM-SM with LS

(b) Number of Links in the multicast trees

Fig. 7 Multicast trees quality (a, b)

592 Ann. Telecommun. (2008) 63:579–596

build better trees than PIM-SM. In addition, observing
Fig. 7b, we conclude that MCMRP is able to build better
trees than PIM-SM without enlarging their size.

Figure 8 shows the average packet drops suffered
in function of number of receivers. Figure 8a, b, and
c show the average packet drops that occurred in
the flows of each CoS when using the two protocols
(MCMRP and PIM-SM). Figure 8d shows the results
obtained for all the three classes, in terms of packet
drops per flow, when using MCMRP.

These results demonstrate that when MCMRP is
used a considerably lower amount of drops is veri-
fied. This is because MCMRP try to find routes less
congested when links became bottlenecks. In addition,
results show that MCMRP routing strategy promotes
the expected differentiation between classes. Observ-
ing Fig. 8d, we conclude that the average number of
packet drops suffered by class 3 is greater than the

average number of packet drops suffered by class 2
and the average number of packet drops suffered by
class 2 is greater than the average number of packet
drops suffered by class 1. This is because class 1 has
the highest QoS requirements, followed by class 2, and
finally, class 3 is the least demanding one.

5 Experiments in interdomain via path probing

5.1 Experimental setup

NS [10] was also used to simulate and evaluate our
proposal at the interdomain level. Interdomain tree
branches are created only when a new member joins a
source-based tree rooted at another administrative do-
main. When that happens, a path probing procedure is
initiated. In this set of simulations, two other protocols

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 P
er

 F
lo

w
 D

ro
ps

/s

Number of Receivers

class1 MCMRP with CoSLSP
class1 PIM-SM with LS

(a) Flow Drops-Class 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 P
er

 F
lo

w
 D

ro
ps

/s

Number of Receivers

class2 MCMRP with CoSLSP
class2 PIM-SM with LS

(b) Flow Drops - Class 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 P
er

 F
lo

w
 D

ro
ps

/s

Number of Receivers

class3 MCMRP with CoSLSP
class3 PIM-SM with LS

(c) Flow Drops - Class 3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 P
er

 F
lo

w
 D

ro
ps

/s

Number of Receivers

class1 MCMRP with CoSLSP
class2 MCMRP with CoSLSP
class3 MCMRP with CoSLSP
class4 MCMRP with CoSLSP

(d) Flow Drops per Class-of-Service

Fig. 8 Average packet drops (a–d)

Ann. Telecommun. (2008) 63:579–596 593

have been used: QoSMIC and PIM-SM. They are seen
as top and bottom lines in results analysis. PIM-SM
is the obvious bottom line because it connects each
member on the shortest path towards the tree without
doing any probings at all. On the other hand, QoSMIC
is the reference for upper values because it can be con-
figured in very aggressive local and tree-based search
procedures.

GT-ITM [5] and BRITE [17] were used to generate
interdomain topologies. Those topology generators use
different methods to synthesize topologies that can be
representative or have characteristics similar to the
autonomous system structure of the Internet. Examples
of the topologies generated are presented in Fig. 9.

Simulations were run only at the interdomain level,
ignoring inside domain routing approaches. Relations
between intra- and interdomain were not considered
at this phase. A domain is therefore abstracted as a
single node that initiates a join procedure. Instead of
building complex traffic generation scenarios, the avail-
able bandwidth at each link was also generated with
uniform distribution in the interval 1.5–10 Mb. Heavy
tailed and exponentional distributions were also con-
sidered. Traffic generation has been avoided because it
is very expensive in computational terms and usually
impracticable. From extensive conducted experiments
with different scenarios, only the node degree function
seems to affect the results. Other parameters do not
impact protocol comparison.

Since all path probing actions occur only when nodes
join the group and no tree reconstruction is done at

leave events, only join operations were considered in
each simulation scenario. For each simulation, a node
was randomly chosen as source and tree root. Then,
one by one, 60% of all nodes join the group. Each
node is randomly chosen among all unconnected ones.
Multicast receivers attached try to connect on paths
with higher available bandwidth. The multicast sender
generates CBR traffic and 100 simulations were run for
each topology.

5.2 Used metrics

The goal of the path probing strategy is to find the
best available path that can be used to connect a new
member to the multicast tree, according to its QoS
requirements. So the first step to evaluate this proce-
dure is to define the path quality, in terms of QoS, and
measure it for all joining members. This QoS obtained
metric can therefore be used to compare the efficacy of
the probing strategy.

In this set of experiments, we have considered path
quality as a function of the available bandwidth. Avail-
able bandwidth on a path is the minimum available
bandwidth of all its links. Values are collected for the
entire tree branches, from the tree root towards the
new member. Each routing strategy, after path probing,
provides a set of available connecting branches to the
new member. Within the set of results, the best possible
path is the one with the higher available bandwidth.
From the new member perspective, the most efficacious
strategy provide paths with higher available bandwidth.

Fig. 9 Examples of BRITE AS (100) and GT-ITS (600) interdomain topologies

594 Ann. Telecommun. (2008) 63:579–596

Success measures can be stressed graphically with the
percentage of members vs the QoS obtained.

To measure the efficiency of the path probing strat-
egy, the construction effort is estimated in terms of the
number of control messages generated by each oper-
ation and the time spent in the entire probing phase.
Some multicast routing approaches achieve better ef-
ficacy but at the expense of more construction effort,
so to be more fair on result analysis, all metrics are
needed.

5.3 Results obtained

Figure 10 presents a set of results obtained when eval-
uating the path probing strategy. The top two graphics
(Fig. 10a and b) show efficacy measures for the synthe-
sized topologies illustrated in Fig. 9. Figure 10a shows
QoS obtained for the BRITE AS (100) topology for all
protocols. As expected, PIM-SM appears as the bot-
tom line. This graph shows that the proposed strategy
performs good but not as well as QoSMIC when only

the first intree node launches probe messages. The
graph shows that, with PIM-SM, only 50% of the mem-
bers that joined the group achieve more than 3 Mbps
available bandwidth. That percentage grows to almost
70% when using the proposed strategy and to near 80%
with QoSMIC. However, the performance improves
when the number of retries is increased. For two re-
tries (two intree nodes initiate the probe procedure),
the results are already similar to the normal QoSMIC
version. This brings to evidence that inside tree search
is a good approach, and it can avoid the complexity
of the tree manager element in QoSMIC architecture.
This improvement remains true for the GT-ITM AS
(600) topology.

The relative positions of the other protocols remain
the same in both graphics, showing no strong evidence
that the type of topology affects results. This reading
can be later transformed into a conclusion if confirmed
by further experiments.

The two bottom graphics (Fig. 10c and d) show the
efficiency metrics for the larger topology. The number

QoS (available bandwidth)

Jo
in

 P
er

ce
n

ta
g

e

0Mb 1.5Mb 3.0Mb 4.5Mb 6.0Mb 7.5Mb 9.0Mb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
PIM-SM
QoSMIC
QoSMIC (mcast only)
QoSMIC (full)
PAQoSIDMR
PAQoSIDMR (retry 2)
PAQoSIDMR (retry 3)
PAQoSIDMR (retry all)

(a) QoS obtained by Receivers on BRITE AS (100) topologies

QoS (available bandwidth)

Jo
in

 P
er

ce
n

ta
g

e

0Mb 1.5Mb 3.0Mb 4.5Mb 6.0Mb 7.5Mb 9.0Mb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
PIM-SM
QoSMIC
QoSMIC (mcast only)
PAQoSIDMR
PAQoSIDMR (retry all)

(b) QoS obtained by Receivers on GT-ITM AS (600) topologies

Number of Join/Leave Operations

N
u

m
b

er
 o

f
C

o
n

tr
o

l M
es

sa
g

es
 S

en
t

0 20 40 60 80 100 120

0

10000

20000

30000

40000

50000
PIM-SM
QoSMIC
QoSMIC (mcast only)
PAQoSIDMR
PAQoSIDMR (retry all)

confidence interval
at 95% confidence level

(c) Control messages over head on BRITE AS (100) topologies

Time (seconds)

L
at

en
cy

 (
se

co
n

d
s)

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4 PIM-SM
QoSMIC
QoSMIC (mcast only)
PAQoSIDMR
PAQoSIDMR (retry all)

confidence interval
at 95% confidence level

(d) Join Latency on GT-ITMAS (600) topologies

Fig. 10 Simulation results: interdomain tree branch construction (a–d)

Ann. Telecommun. (2008) 63:579–596 595

of control messages needed to do the probing and
connect a new member is counted for every join event
operation, and an average of all simulations is com-
puted. Results are presented graphically using the ac-
cumulated values in order to stress the differences. The
number of control messages is therefore always increas-
ing as the number of join events increases. Results show
that PIM-SM has little overhead and that the proposed
strategy uses fewer control messages than QoSMIC.
The join latency (time spent in the join procedure)
is also presented in Fig. 10d. The normal QoSMIC
starts with greater join latency because its local search
procedure is unable to find any intree node in the new
member neighborhood when the group is small and
sparse. It becomes more effective for larger groups
(join events increase with time). When we use only the
tree-based search procedure of QoSMIC (QoSMIC-
mcast), the values become more stable in time because
they only depend on the distance between the new
member and the tree manager that conducts the prob-
ing procedure. The join latency value is smaller for
the proposed strategy because it only depends on the
time to reach the first intree node. The values do not
increase with the number of retries because, in these
simulations, they are launched all at once.

6 Discussion and future work

Multicast has somehow been put aside from the dif-
ferentiated service QoS model simply because it may
involve tasks that are too complicated for domain core
nodes. While packet replication is not complex at all,
and may be allowed inside the domain, that is no longer
true for packet classification and marking, usually done
at edge routers. One of the problems to face is the
difficulty to reflect receivers’ QoS requirements, due to
the unidirectional nature of DiffServ: packets are to be
marked in the downstream path to the receivers.

At the interdomain level, difficulties arise from the
need to interconnect different administrative domains,
either DiffServ or non-DiffServ. Notice that traditional
any-source multicast model allows multiple sources and
receivers to join and leave any group at any time,
whatever their administrative domain would be.

In this article, an innovative intra- and interdomain
QoS multicast routing strategy has been proposed and
evaluated by means of NS-2 simulations. The strategy
was specially designed for class-based domains and
allows every member, source, or receiver to join a
QoS-aware multicast group according to its own QoS
requirements. There is no need to remark packets
inside a domain because multiple trees can be built,

one tree per CoS. With this approach, multicast fits in
DiffServ architectures, as well as unicast.

Simulation results show important decreases in
packet drops when the new strategy is used and also
evidence the ability to dynamically find, and commute
traffic to, multicast distribution paths that avoid bot-
tlenecks and congested links. Furthermore, this new
routing strategy promotes CoS traffic differentiation,
being able to keep traffic from priority classes within
more stringent limits.

At the interdomain level, the same multiclass/
multitree approach has been analyzed. Interdomain
tree branches are now constructed using an efficient
path probing mechanism that border domain routers
issue in order to build directed QoS-aware trees, in-
stead of establishing simple reverse (non-QoS-aware)
path trees. The path probing strategy used in inter-
domain scenarios has been shown to be efficient both
on flat and hierarchical topologies, without incurring
significant overheads even when compared against non-
QoS-aware interdomain solutions. Interdomain scenar-
ios with 600 border domain routers have been used
in NS-2 simulations. In such a large simulation sce-
nario, building trees from roots towards leaf members
induces greater join latencies. However, results have
shown that this problem may be addressed by building
multiple directed unidirectional multicast distribution
trees. Furthermore, to avoid tree root routers overload,
join requests are handled in a distributed manner by the
first in-tree border domain router that receives them,
thus relieving the tree root domain from this task.

Simulation results have also shown that QoS ob-
tained with this new strategy, as perceived by receivers,
is adequate, and join latency is kept small because new
members try to find any in-tree BDR node, as fast as
possible, by sending control packets towards the root
domain.

Finally, results presented also show that, using this
strategy, there are significant gains in the costs of dis-
tribution trees, even when compared with non-QoS-
aware interdomain multicast routing solutions. Future
work includes a careful evaluation of the usage of
per-class precomputed routes, even without dynamic
probing, also at the interdomain (BGP) level.

References

1. Adams A, Nicholas J, Siadak W (2005) Protocol indepen-
dent multicast-dense mode (PIM-DM): protocol specification
(revised). RFC 3973 (Experimental). http://www.ietf.org/rfc/
rfc3973.txt

http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc3973.txt

596 Ann. Telecommun. (2008) 63:579–596

2. Apostolopoulos G, Guerin R, Kamat S, Tripathi SK
(1998) Quality of service based routing: a performance
perspective. In: SIGCOMM, pp 17–28. citeseer.nj.nec.com/
apostolopoulos98quality.html

3. Ballardie A (1997) Core based trees (CBT version 2) multi-
cast routing—protocol specification. RFC 2189 (Experimen-
tal). http://www.ietf.org/rfc/rfc2189.txt

4. Blake S, Black D, Carlson M, Davies E, Wang Z,
Weiss W (1998) An architecture for differentiated ser-
vice. RFC 2475 (Informational). Updated by RFC 3260.
http://www.ietf.org/rfc/rfc2475.txt

5. Calvert K, Zegura E (1996) Gt-itm: Georgia tech internet-
work topology models (software). http://www.cc.gatech.edu/
fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz

6. Carlberg K, Crowcroft J (1997) Building shared trees using
a one-to-many joining mechanism. Comput Commun Rev
27:5–11

7. Carlberg K, Crowcroft J (1998) Quality of multicast service
(qoms) by yet another multicast (yam) routing protocol. In:
Proceedings of HIPARCH’98, June 1998

8. Chen S, Nahrstedt K, Shavitt Y (2000) A qos-aware mul-
ticast routing protocol. In: INFOCOM (3), pp 1594–1603.
citeseer.nj.nec.com/article/chen00qosaware.html

9. Costa A, Nicolau MJ, Santos A, Freitas V (2005) A new
path probing strategy for inter-domain multicast routing.
In: First conference on next generation internet networks
traffic engineering (NGI’2005). IEEE Comm Society, Cata-
log Number 05EX998C, ISBN 0-7803-8901-8, Libr of Congr
2004116428

10. Fall K, Varadhan K (2001) The NS manual. http://www.
isi.edu/nsnam/ns/ns-documentation.html

11. Faloutsos M, Banerjea A, Pankaj R (1998) Qosmic: qual-
ity of service sensitive multicast internet protocol. In:
Proceedings of the ACM SIGCOMM ’98 conference on
applications, technologies, architectures, and protocols for
computer communication, pp 144–153. ACM, New York.
doi:10.1145/285237.285276

12. Fenner B, Handley M, Holbrook H, Kouvelas I (2006) Proto-
col independent multicast-sparse mode (PIM-SM): protocol

specification (Revised). RFC 4601 (Proposed Standard).
http://www.ietf.org/rfc/rfc4601.txt

13. Fenner B, Meyer D (2003) Multicast source discovery
protocol (MSDP). RFC 3618 (Experimental). http://www.
ietf.org/rfc/rfc3618.txt

14. Kou L, Markowsky G, Berman L (1981) A fast algorithm for
Steiner trees. Acta Inform 15:141–145

15. Kumar S, Radoslavov P, Thaler D, Alaettinoglu C,
Estrin D, Handley M (1998) The masc/bgmp architecture
for inter-domain multicast routing. In: Proceedings of the
ACM SIGCOMM ’98 conference on applications, tech-
nologies, architectures, and protocols for computer commu-
nication, pp 93–104, Vancouver, 31 August–4 September
1998

16. Lui KS, Nahrstedt K, Chen S (2004) Routing with topol-
ogy aggregation in delay-bandwidth sensitive networks.
IEEE/ACM Trans Netw 12(1):17–29

17. Medina A, Lakhinam A, Matta I, Byers J (2001) Brite: an
approach to universal topology generation. In: Proceedings
of the international workshop on modeling, analysis and
simulation of computer and telecommunications systems-
MASCOTS ’01, Cincinnati, August 2001

18. Moy J (1994) MOSPF: analysis and experience. RFC 1585
(Informational). http://www.ietf.org/rfc/rfc1585.txt

19. Moy J (1994) Multicast extensions to OSPF. RFC 1584 (Pro-
posed Standard). http://www.ietf.org/rfc/rfc1584.txt

20. Nicolau MJ, Costa A, Santos A (2007) Design and evaluation
of a multi-class based multicast routing protocol. In: Proc of
the 21st edition of the international conference on informa-
tion networking (ICOIN 2007), Estoril

21. Rekhter Y, Li T, Hares S (2006) A border gateway pro-
tocol 4 (BGP-4). RFC 4271 (Draft Standard). http://www.
ietf.org/rfc/rfc4271.txt

22. Thaler D (2004) Border gateway multicast protocol
(BGMP): protocol specification. RFC 3913 (Informational).
http://www.ietf.org/rfc/rfc3913.txt

23. Waitzman D, Partridge C, Deering S (1988) Distance vec-
tor multicast routing protocol. RFC 1075 (Experimental).
http://www.ietf.org/rfc/rfc1075.txt

http://www.citeseer.nj.nec.com/apostolopoulos98quality.html
http://www.citeseer.nj.nec.com/apostolopoulos98quality.html
http://www.ietf.org/rfc/rfc2189.txt
http://www.ietf.org/rfc/rfc2475.txt
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz
http://www.citeseer.nj.nec.com/article/chen00qosaware.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://doi.acm.org/10.1145/285237.285276
http://www.ietf.org/rfc/rfc4601.txt
http://www.ietf.org/rfc/rfc3618.txt
http://www.ietf.org/rfc/rfc3618.txt
http://www.ietf.org/rfc/rfc1585.txt
http://www.ietf.org/rfc/rfc1584.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc3913.txt
http://www.ietf.org/rfc/rfc1075.txt

	Class-based multicast routing in interdomain scenarios
	Abstract
	Introduction
	Multicast routing
	Reverse path multicast
	Asymmetric networks
	QoS routing

	Interdomain multicast QoS routing
	CoS multicast routing: a new approach
	Directed shared tree construction
	Heterogeneous QoS receivers: switching from shared to source-based trees
	Join a source-based tree in the same administrative domain

	Connecting administrative domains
	CoS and non-CoS domains coexistance
	Interdomain via path probbing: effort vs. efficacy trade-off
	Interdomain tree branches construction

	Experiments in multiclass multicast routing
	Experimental setup
	Used metrics
	Results obtained

	Experiments in interdomain via path probing
	Experimental setup
	Used metrics
	Results obtained

	Discussion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

