1,485 research outputs found

    An approach to enhance aggregated source specific multicast scheme

    Get PDF
    The Aggregated Source Specific Multicast (ASSM) scheme is proposed to overcome the limitations of Source Specific Multicast (SSM). It aims to handle the scalability issue of SSM. The key idea is that multiple groups are forced to share a single delivery tree. However, the ASSM scheme suffers from routers under utilization problem. In our previous work we have proposed an approach to overcome this problem. In this paper our proposed approach was presented and evaluated. It was shown that our proposed scheme results in achieving higher routers utilization

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Making On-Demand Routing Efficient with Route-Request Aggregation

    Full text link
    In theory, on-demand routing is very attractive for mobile ad hoc networks (MANET), because it induces signaling only for those destinations for which there is data traffic. However, in practice, the signaling overhead of existing on-demand routing protocols becomes excessive as the rate of topology changes increases due to mobility or other causes. We introduce the first on-demand routing approach that eliminates the main limitation of on-demand routing by aggregating route requests (RREQ) for the same destinations. The approach can be applied to any existing on-demand routing protocol, and we introduce the Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how RREQ aggregation can be used. ADARA is compared to AODV and OLSR using discrete-event simulations, and the results show that aggregating RREQs can make on-demand routing more efficient than existing proactive or on-demand routing protocols

    Web Conferencing Traffic - An Analysis using DimDim as Example

    Full text link
    In this paper, we present an evaluation of the Ethernet traffic for host and attendees of the popular opensource web conferencing system DimDim. While traditional Internet-centric approaches such as the MBONE have been used over the past decades, current trends for web-based conference systems make exclusive use of application-layer multicast. To allow for network dimensioning and QoS provisioning, an understanding of the underlying traffic characteristics is required. We find in our exemplary evaluations that the host of a web conference session produces a large amount of Ethernet traffic, largely due to the required control of the conference session, that is heavily-tailed distributed and exhibits additionally long-range dependence. For different groups of activities within a web conference session, we find distinctive characteristics of the generated traffic

    Point process modeling for directed interaction networks

    Full text link
    Network data often take the form of repeated interactions between senders and receivers tabulated over time. A primary question to ask of such data is which traits and behaviors are predictive of interaction. To answer this question, a model is introduced for treating directed interactions as a multivariate point process: a Cox multiplicative intensity model using covariates that depend on the history of the process. Consistency and asymptotic normality are proved for the resulting partial-likelihood-based estimators under suitable regularity conditions, and an efficient fitting procedure is described. Multicast interactions--those involving a single sender but multiple receivers--are treated explicitly. The resulting inferential framework is then employed to model message sending behavior in a corporate e-mail network. The analysis gives a precise quantification of which static shared traits and dynamic network effects are predictive of message recipient selection.Comment: 36 pages, 13 figures; includes supplementary materia

    Networking Group Content: RESTful Multiparty Access to a Data-centric Web of Things

    Full text link
    Content replication to many destinations is a common use case in the Internet of Things (IoT). The deployment of IP multicast has proven inefficient, though, due to its lack of layer-2 support by common IoT radio technologies and its synchronous end-to-end transmission, which is highly susceptible to interference. Information-centric networking (ICN) introduced hop-wise multi-party dissemination of cacheable content, which has proven valuable in particular for low-power lossy networking regimes. Even NDN, however, the most prominent ICN protocol, suffers from a lack of deployment. In this paper, we explore how multiparty content distribution in an information-centric Web of Things (WoT) can be built on CoAP. We augment the CoAP proxy by request aggregation and response replication functions, which together with proxy caches enable asynchronous group communication. In a further step, we integrate content object security with OSCORE into the CoAP multicast proxy system, which enables ubiquitous caching of certified authentic content. In our evaluation, we compare NDN with different deployment models of CoAP, including our data-centric approach in realistic testbed experiments. Our findings indicate that multiparty content distribution based on CoAP proxies performs equally well as NDN, while remaining fully compatible with the established IoT protocol world of CoAP on the Internet

    A Hybrid Approach to Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Multimedia services envisaged for high speed networks may have large numbers of users, require high volumes of network resources and have real-time delay constraints. For these reasons, several multicast routing heuristics that use two link metrics have been proposed with the objective of minimising multicast tree cost while maintaining a bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient. This thesis presents a detailed analysis and evaluation of these heuristics which illustrate that in some situations their average performance is prone to wide variance for a particular multicast in a specific network. It concludes that the efficiency of an heuristic solution depends on the topology of both the network and the multicast, which is difficult to predict. The integration of two heuristics with Dijkstras shortest path tree algorithm is proposed, to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. The evaluation results show good performance over a wide range of networks (flat and hierarchical) and multicast groups, within differing delay bounds. The more efficient the multicast tree is, the less stable it will be as multicast group membership changes. An efficient heuristic is extended to ensure multicast tree stability where multicast group membership is dynamic. This extension decreases the efficiency of the heuristics solutions, although they remain significantly cheaper than the worst case, a shortest delay path tree. This thesis also discusses how the hybrid and the extended heuristic might be applied to multicast routing protocols for the Internet and ATM Networks. Additionally, the behaviour of the heuristics is examined in networks that use a single link metric to calculate multicast trees and concludes one of the heuristics may be of benefit in such networks
    • 

    corecore