16 research outputs found

    Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review

    Full text link
    [EN] The increase in the complexity of supply chains requires greater efforts to align the activities of all its members in order to improve the creation of value of their products or services offered to customers. In general, the information is asymmetric; each member has its own objective and limitations that may be in conflict with other members. Operations managements face the challenge of coordinating activities in such a way that the supply chain as a whole remains competitive, while each member improves by cooperating. This document aims to offer a systematic review of the collaborative planning in the last decade on the mechanisms of coordination in mathematical programming models that allow us to position existing concepts and identify areas where more research is needed.Rius-Sorolla, G.; Maheut, J.; Estelles Miguel, S.; GarcĂ­a Sabater, JP. (2020). Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review. Central European Journal of Operations Research. 28(1):61-104. https://doi.org/10.1007/s10100-018-0594-zS61104281Acar Y, Atadeniz SN (2015) Comparison of integrated and local planning approaches for the supply network of a globally-dispersed enterprise. Int J Prod Econ 167:204–219. https://doi.org/10.1016/j.ijpe.2015.05.028Agnetis A, Hall NG, Pacciarelli D (2006) Supply chain scheduling: sequence coordination. Discrete Appl Math 154(15):2044–2063. https://doi.org/10.1016/j.dam.2005.04.019Agnetis A, Aloulou MA, Fu LL (2016) Production and interplant batch delivery scheduling: Dominance and cooperation. Int J Prod Econ 182:38–49. https://doi.org/10.1016/j.ijpe.2016.08.007Albrecht M (2010) Supply chain coordination mechanisms Lecture notes in economics and mathematical systems, vol 628. Springer, Berlin. https://doi.org/10.1007/978-3-642-02833-5Albrecht M, Stadtler H (2015) Coordinating decentralized linear programs by exchange of primal information. Eur J Oper Res 247(3):788–796. https://doi.org/10.1016/j.ejor.2015.06.045Arkan A, Hejazi SR (2012) Coordinating orders in a two echelon supply chain with controllable lead time and ordering cost using the credit period. Comput Ind Eng 62(1):56–69. https://doi.org/10.1016/j.cie.2011.08.016Arshinder, Kanda A, Deshmukh SG (2008) Supply chain coordination: perspectives, empirical studies and research directions. Int J Prod Econ 115(2):316–335. https://doi.org/10.1016/j.ijpe.2008.05.011Attanasio A, Ghiani G, Grandinetti L, Guerriero F (2006) Auction algorithms for decentralized parallel machine scheduling. Parallel Comput 32(9):701–709. https://doi.org/10.1016/j.parco.2006.03.002Badole CM, Jain R, Rathore APS, Nepal B (2012) Research and opportunities in supply chain modeling: a review. Int J Supply Chain Manag 1(3):63–86Bajgiran OS, Zanjani MK, Nourelfath M (2016) The value of integrated tactical planning optimization in the lumber supply chain. Int J Prod Econ 171:22–33. https://doi.org/10.1016/j.ijpe.2015.10.021Behnamian J (2014) Multi-cut Benders decomposition approach to collaborative scheduling. Int J Comput Integr Manuf 28(11):1–11. https://doi.org/10.1080/0951192X.2014.961963Ben-Daya M, Darwish M, Ertogral K (2008) The joint economic lot sizing problem: review and extensions. Eur J Oper Res 185(2):726–742. https://doi.org/10.1016/j.ejor.2006.12.026Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252. https://doi.org/10.1007/BF01386316Bhatnagar R, Chandra P, Goyal SK (1993) Models for multi-plant coordination. Eur J Oper Res 67(2):141–160. https://doi.org/10.1016/0377-2217(93)90058-UBuer T, Homberger JJ, Gehring H (2013) A collaborative ant colony metaheuristic for distributed multi-level uncapacitated lot-sizing. Int J Prod Res 51(17):5253–5270. https://doi.org/10.1080/00207543.2013.802822Buer T, Ziebuhr M, Kopfer H (2015) A coordination mechanism for a collaborative lot-sizing problem with rivaling agents. In: Mattfeld D, Spengler T, Brinkmann J, Grunewald M (eds) Logistics management. Springer, Cham. https://doi.org/10.1007/978-3-319-13177-1_26Buxmann P, Ahsen A Von, DĂ­az LM (2008) Economic evaluation of cooperation scenarios in supply chains. J Enterp Inf Manag 21(3):247–262. https://doi.org/10.1108/17410390810866628Chakraborty A, Chatterjee AK (2015) A surcharge pricing scheme for supply chain coordination under JIT environment. Eur J Oper Res 253(1):14–24. https://doi.org/10.1016/j.ejor.2016.02.001Chen IJ, Paulraj A, Lado AA (2004) Strategic purchasing, supply management, and firm performance. J Oper Manag 22(5):505–523. https://doi.org/10.1016/j.jom.2004.06.002Cheng JH (2011) Inter-organizational relationships and information sharing in supply chains. Int J Inf Manag 31(4):374–384. https://doi.org/10.1016/j.ijinfomgt.2010.09.004Cheng R, Forbes JF, San Yip W, Fraser Forbes J, Yip WS (2008) Dantzig–Wolfe decomposition and plant-wide MPC coordination. Comput Chem Eng 32(7):1507–1522. https://doi.org/10.1016/j.compchemeng.2007.07.003Cooper MC, Lambert DM, Pagh JD (1997) Supply chain management: more than a new name for logistics. Int J Logist Manag 8(1):1–14. https://doi.org/10.1108/09574099710805556Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111. https://doi.org/10.1287/opre.8.1.101Dash RK, Vytelingum P, Rogers A, David E, Jennings NR (2007) Market-based task allocation mechanisms for limited-capacity suppliers. IEEE Trans Syst Man Cybern Part A Syst Hum 37(3):391–405. https://doi.org/10.1109/TSMCA.2007.893474Dudek G, Stadtler H (2005) Negotiation-based collaborative planning between supply chains partners. Eur J Operat Res 163(3):668–687. https://doi.org/10.1016/j.ejor.2004.01.014Dudek G, Stadtler H (2007) Negotiation-based collaborative planning in divergent two-tier supply chains. Int J Prod Res 45(2):465–484Ertogral K, David Wu S (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940. https://doi.org/10.1080/07408170008967451Eslikizi S, Ziebuhr M, Kopfer H, Buer T (2015) Shapley-based side payments and simulated annealing for distributed lot-sizing. IFAC-PapersOnLine 48(3):1592–1597. https://doi.org/10.1016/j.ifacol.2015.06.313Fan M, Stallaert J, Whinston AB (2003) Decentralized mechanism design for supply chain organizations using an auction market. Inf Syst Res 14(1):1–22. https://doi.org/10.1287/isre.14.1.1.14763Feng Y, D’Amours S, Beauregard R (2008) The value of sales and operations planning in oriented strand board industry with make-to-order manufacturing system: cross functional integration under deterministic demand and spot market recourse. Int J Prod Econ 115(1):189–209. https://doi.org/10.1016/j.ijpe.2008.06.002Fisher ML (1985) An applications oriented guide to Lagrangian relaxation. Interfaces 15(2):10–21. https://doi.org/10.1287/inte.15.2.10Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 Supplement):1861–1871. https://doi.org/10.1287/mnsc.1040.0263Frazzon E, Makuschewits T, Scholz-Reiter B, Novaes AGN (2010) Assessing the integrated scheduling of manufacturing and transportation systems along global supply chains. In: World conference on transport research, LisbonGaudreault J, Forget P, Frayret JMJ, Rousseau A, Lemieux S, D’Amours S (2010) Distributed operations planning in the softwood lumber supply chain: models and coordination. Int J Ind Eng Theory Appl Pract 17(3):168–189Gunnerud V, Foss B (2010) Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput Chem Eng 34(11):1803–1812. https://doi.org/10.1016/j.compchemeng.2009.10.019Harb H, Paprott JN, Matthes P, SchĂŒtz T, Streblow R, Mueller D (2015) Decentralized scheduling strategy of heating systems for balancing the residual load. Build Environ 86:132–140. https://doi.org/10.1016/j.buildenv.2014.12.015Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18(6):1138–1162. https://doi.org/10.1287/opre.18.6.1138Held M, Karp RM (1971) The traveling-salesman problem and minimum spanning trees: part II. Math Program 1(1):6–25. https://doi.org/10.1007/BF01584070Homberger J (2010) Decentralized multi-level uncapacitated lot-sizing by automated negotiation. 4OR 8(2):155–180. https://doi.org/10.1007/s10288-009-0104-1Homberger J (2011) A generic coordination mechanism for lot-sizing in supply chains. Electron Commer Res 11(2):123–149. https://doi.org/10.1007/s10660-010-9053-1Homberger J, Gehring H (2010) A pheromone-based negotiation mechanism for lot-sizing in supply chains. In: 2010 43rd Hawaii international conference on system sciences. IEEE, pp 1–10. https://doi.org/10.1109/hicss.2010.26Homberger J, Gehring H (2011) An ant colony optimization-based negotiation approach for lot-sizing in supply chains. Int J Inf Process Manag 2(3):86–99. https://doi.org/10.4156/ijipm.vol2.issue3.10Homberger J, Gehring H, Buer T (2015) Integrating side payments into collaborative planning for the distributed multi-level unconstrained lot sizing problem. In: Bui TX, Sprague RH (eds) 2015 48th Hawaii international conference on system sciences, vol 2015. IEEE, pp 1068–1077. https://doi.org/10.1109/hicss.2015.131Huang GQ, Lau JSK, Mak KL (2003) The impacts of sharing production information on supply chain dynamics: a review of the literature. Int J Prod Res 41(7):1483–1517. https://doi.org/10.1080/0020754031000069625Jeong I-J (2012) A centralized/decentralized design of a full return contract for a risk-free manufacturer and a risk-neutral retailer under partial information sharing. Int J Prod Econ 136(1):110–115. https://doi.org/10.1016/j.ijpe.2011.09.019Jeong IJ, Leon VJ (2002) Decision-making and cooperative interaction via coupling agents in organizationally distributed systems. IIE Trans (Inst Ind Eng) 34(9):789–802. https://doi.org/10.1023/A:1015548705266Jeong IJ, Yim SB (2009) A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time. Int J Prod Res 47(24):6783–6805. https://doi.org/10.1080/00207540701824217Jia ZZ, Deschamps JC, Dupas R (2016) A negotiation protocol to improve planning coordination in transport-driven supply chains. J Manuf Syst 38:13–26. https://doi.org/10.1016/j.jmsy.2015.10.003Jung H, Chen FF, Jeong B (2008) Decentralized supply chain planning framework for third party logistics partnership. Comput Ind Eng 55(2):348–364. https://doi.org/10.1016/j.cie.2007.12.017Katok E, Pavlov V (2013) Fairness in supply chain contracts: a laboratory study. J Oper Manag 31(3):129–137. https://doi.org/10.1016/j.jom.2013.01.001Kelly JD, Zyngier D (2008) Hierarchical decomposition heuristic for scheduling: coordinated reasoning for decentralized and distributed decision-making problems. Comput Chem Eng 32(11):2684–2705. https://doi.org/10.1016/j.compchemeng.2007.08.007Kong J, Rönnqvist M (2014) Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. Int Trans Oper Res 21(5):703–735. https://doi.org/10.1111/itor.12089KovĂĄcs A, Egri P, Kis T, VĂĄncza J (2013) Inventory control in supply chains: alternative approaches to a two-stage lot-sizing problem. Int J Prod Econ 143(2):385–394. https://doi.org/10.1016/j.ijpe.2012.01.001Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938Kutanoglu E, David Wu S (1999) On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans 31(9):813–826. https://doi.org/10.1080/07408179908969883Lau HC, Zhao ZJ, Ge SS, Lee TH (2011) Allocating resources in multiagent flowshops with adaptive auctions. IEEE Trans Autom Sci Eng 8(4):732–743. https://doi.org/10.1109/TASE.2011.2160536Lee DJ, Jeong IJ (2010) A distributed coordination for a single warehouse-multiple retailer problem under private information. Int J Prod Econ 125(1):190–199. https://doi.org/10.1016/j.ijpe.2010.02.001Lehoux N, D’Amours S, Frein Y, Langevin A, Penz B (2010a) Collaboration for a two-echelon supply chain in the pulp and paper industry: the use of incentives to increase profit. J Oper Res Soc 62(4):581–592. https://doi.org/10.1057/jors.2009.167Lehoux N, D’Amours S, Langevin A (2010b) A win–win collaboration approach for a two-echelon supply chain: a case study in the pulp and paper industry. Eur J Ind Eng 4(4):493. https://doi.org/10.1504/EJIE.2010.035656Lehoux N, D’Amours S, Langevin A (2014) Inter-firm collaborations and supply chain coordination: review of key elements and case study. Prod Plan Control 25(10):858–872. https://doi.org/10.1080/09537287.2013.771413Li X, Wang Q (2007) Coordination mechanisms of supply chain systems. Eur J Oper Res 179(1):1–16. https://doi.org/10.1016/j.ejor.2006.06.023Lu SYP, Lau HYK, Yiu CKF (2012) A hybrid solution to collaborative decision-making in a decentralized supply-chain. J Eng Technol Manag 29(1):95–111. https://doi.org/10.1016/j.jengtecman.2011.09.008Mahdiraji HA, Zavadskas EK, Hajiagha SHR (2015) Game theoretic approach for coordinating unlimited multi echelon supply chains. Transform Bus Econ 14(2):133–151Maheut J, Besga JM, Uribetxebarria J, Garcia-Sabater JP (2014a) A decision support system for modelling and implementing the supply network configuration and operations scheduling problem in the machine tool industry. Prod Plan Control 25(8):679–697. https://doi.org/10.1080/09537287.2013.798087Maheut J, Garcia-Sabater JP, Garcia-Sabater JJ, Marin-Garcia J (2014b) Coordination mechanism for MILP models to plan operations within an advanced planning and scheduling system in a motor company: a case study. In: Prado-Prado JC, GarcĂ­a-Arca J (eds) Annals of industrial engineering 2012. Springer, London, pp 245–253. https://doi.org/10.1007/978-1-4471-5349-8_29Manrodt KB, Vitasek K (2004) Global process standardization: a case study. J Bus Logist 25(1):1–23. https://doi.org/10.1002/j.2158-1592.2004.tb00168.xMarin-Garcia JA, Ramirez Bayarri L, Atares Huerta L (2015) Protocol: comparing advantages and disadvantages of rating scales, behavior observation scales and paired comparison scales for behavior assessment of competencies in workers. A systematic literature review. Work Pap Oper Manag 6(2):49. https://doi.org/10.4995/wpom.v6i2.4032Mason AN, Villalobos JR (2015) Coordination of perishable crop production using auction mechanisms. Agric Syst 138:18–30. https://doi.org/10.1016/j.agsy.2015.04.008McAfee RP, McMillan J (1987) Auctions and bidding. J Econ Lit 25(2):699–738Medina-Lopez C, Marin-Garcia JA, Alfalla-Luque R (2010) Una propuesta metodolĂłgica para la realizaciĂłn de bĂșsquedas sistemĂĄticas de bibliografĂ­a (A methodological proposal for the systematic literature review). Work Pap Oper Manag. https://doi.org/10.4995/wpom.v1i2.786Mouret S, Grossmann IE, Pestiaux P (2011) A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Comput Chem Eng 35(12):2750–2766. https://doi.org/10.1016/j.compchemeng.2011.03.026Mula J, Peidro D, DĂ­az-Madroñero M, Vicens E (2010) Mathematical programming models for supply chain production and transport planning. Eur J Oper Res 204(3):377–390. https://doi.org/10.1016/j.ejor.2009.09.008Nie L, Xu X, Zhan D (2008) Collaborative planning in supply chains by lagrangian relaxation and genetic algorithms. Int J Inf Technol Decis Mak 7(1):183–197. https://doi.org/10.1142/s0219622008002879Nishi T, Shinozaki R, Konishi M (2008) An augmented Lagrangian approach for distributed supply chain planning for multiple companies. IEEE Trans Autom Sci Eng 5(2):259–274. https://doi.org/10.1109/TASE.2007.894727Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling in manufacturing systems. J Sched 12(4):417–431. https://doi.org/10.1007/s10951-008-0090-8Pibernik R, Sucky E (2007) An approach to inter-domain master planning in supply chains. Int J Prod Econ 108(1–2):200–212. https://doi.org/10.1016/j.ijpe.2006.12.010Pittman SD, Bare BB, Briggs DG (2007) Hierarchical production planning in forestry using price-directed decomposition. Can J For 37(10):2010–2021. https://doi.org/10.1139/X07-026Polyak BT (1969) Minimization of unsmooth functionals. USSR Comput Math Math Phys 9(3):14–29. https://doi.org/10.1016/0041-5553(69)90061-5Pukkala T, Heinonen T, Kurttila M (2009) An application of a reduced cost approach to spatial forest planning. For Sci 55(1):13–22Qu T, Nie DX, Chen X, Chen XD, Dai QY, Huang GQ (2015) Optimal configuration of cluster supply chains with augmented Lagrange coordination. Comput Ind Eng 84(SI):43–55. https://doi.org/10.1016/j.cie.2014.12.026Reiss F, Buer T (2014) A coordination mechanism for capacitated lot-sizing in non-hierarchical n-tier supply chains. In: 2014 IEEE symposium on computational intelligence in production and logistics systems (Cipls), pp 9–15. https://doi.org/10.1109/cipls.2014.7007155Rius-Sorolla G, Maheut J, Estelles-Miguel S, Garcia-Sabater JP (2017) Protocol: systematic literature review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Work Pap Oper Manag 8(2):22. https://doi.org/10.4995/wpom.v8i2.7858Sahin F, Robinson EPP (2002) Flow coordination and information sharing in supply chains: review, implications, and directions for future research. Decis Sci 33(4):505–535. https://doi.org/10.1111/j.1540-5915.2002.tb01654.xSilva CA, Sousa JMC, Runkler TA, SĂĄ da Costa J (2009) Distributed supply chain management using ant colony optimization. Eur J Oper Res 199(2):349–358. https://doi.org/10.1016/j.ejor.2008.11.021Simatupang T, Sridharan R (2006) The collaboration index: a measure for supply chain collaboration. Int J Phys Distrib Logist Manag 35:44–62. https://doi.org/10.1108/09600030510577421Singh G, Ernst A (2011) Resource constraint scheduling with a fractional shared resource. Oper Res Lett 39(5):363–368. https://doi.org/10.1016/j.orl.2011.06.003Singh G, O’Keefe CM (2016) Decentralised scheduling with confidentiality protection. Oper Res Lett 44(4):514–519. https://doi.org/10.1016/j.orl.2016.05.004Sokoler LE, Standardi L, Edlund K, Poulsen NK, Madsen H, JĂžrgensen JB (2014) A Dantzig–Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems. J Process Control 24(8):1225–1236. https://doi.org/10.1016/j.jprocont.2014.05.013Sridharan R, Simatupang TM (2009) Managerial views of supply chain collaboration. Gadjah Mada Int J Bus 11(2):253–273Stadtler H (2007) A framework for collaborative planning and state-of-the-art. OR Spectr 31(1):5–30. https://doi.org/10.1007/s00291-007-0104-5Stadtler H, Kilger C (2008) Supply chain management and advanced planning. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning. Concepts, models, software, and case studies. Springer, BerlinStank TP, Goldsby TJ, Vickery SK (1999) Effect of service supplier performance on satisfaction and loyalty of store managers in the fast food industry. J Oper Manag 17(4):429–447. https://doi.org/10.1016/S0272-6963(98)00052-7Taghipour A, Frayret JM (2013) An algorithm to improve operations planning in decentralized supply chains. In: 2013 international conference on advanced logistics and transport, ICALT 2013, pp 100–103. https://doi.org/10.1109/icadlt.2013.6568442Tang SH, Rahimi I, Karimi H (2016a) Objectives, products and demand requirements in integrated supply chain network design: a review. Int J Ind Syst Eng 23(2):181. https://doi.org/10.1504/IJISE.2016.076399Tang J, Zeng C, Pan Z (2016b) Auction-based cooperation mechanism to parts scheduling for flexible job shop with inter-cells. Appl Soft Comput 49:590–602. https://doi.org/10.1016/j.asoc.2016.08.046Thomas A, Singh G, Krishnamoorthy M, Venkateswaran J (2013) Distributed optimisation method for multi-resource constrained scheduling in coal supply chains. Int J Prod Res 51(9):2740–2759. https://doi.org/10.1080/00207543.2012.737955Thomas A, Venkateswaran J, Singh G, Krishnamoorthy M (2014) A resource constrained scheduling problem with multiple independent producers and a single linking constraint: a coal supply chain example. Eur J Oper Res 236(3):946–956. https://doi.org/10.1016/j.ejor.2013.10.006Thomas A, Krishnamoorthy M, Singh G, Venkateswaran J (2015) Coordination in a multiple producers–distributor supply chain and the value of information. Int J Prod Econ 167:63–73. https://doi.org/10.1016/j.ijpe.2015.05.020VICS (2004) Collaborative planning, forecasting and replenishment. Retrieved January 21, 2017, from https://www.gs1us.org/Vitasek K (2016) Strategic sourcing business models. Strateg Outsour Int J 9(2):126–138. https://doi.org/10.1108/SO-02-2016-0003Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350. https://doi.org/10.1016/j.ijpe.2006.12.069Wang L, Pfohl HC, Berbner U, Keck AK (2016) Supply chain collaboration or conflict? Information sharing and supply chain performance in the automotive industry. In: Clausen U, Friedrich H, Thaller C, Geiger C (eds) Commercial transport. Springer, Cham, pp 303–318. https://doi.org/10.1007/978-3-319-21266-1Wenzel S, Paulen R, KrĂ€mer S, Beisheim B, Engell S (2016a) Shared resource allocation in an integrated petrochemical site by price-based coordination using quadratic approximation. In: 2016 European control conference, ECC 2016, pp 1045–1050. https://doi.org/10.1109/ecc.2016.7810427Wenzel S, Paulen R, Stojanovski G, Kraemer S, Beisheim B, Engell S (2016b) Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. At-Automatisierungstechnik 64(6):428–442. https://doi.org/10.1515/auto-2016-0003Whang S (1995) Coordination in operat

    Operative Planning with Exchangeable and Mandatory Tasks : Applications to Lot Size Planning and Transportation Planning

    Get PDF
    Lot-sizing problems of manufacturers and transportation planning problems of forwarders are presented and analyzed in this thesis. These problems represent crucial planning tasks in supply chain management. Due to high fluctuations and competitive markets, companies within supply chains use internal and external resources for the fulfillment of tasks. The thesis claims to contribute to the following topics: (1) introducing mandatory tasks for the DULR, IOTPP, CTPP, and CIOTPP as well as (2) presenting computational studies that demonstrate how much the costs of companies increase due to mandatory tasks. Mandatory tasks are tasks, which have to be fulfilled by appointed resources due to contractual obligations. A lack of research is identified in terms of this topic. It is usually assumed that a task can be fulfilled by any internal or external resources. The thesis describes how these planning tasks with mandatory tasks can be solved by using operations research. Therefore, existing mathematical models and solution approaches have to be extended. The thesis focuses on the determination of the impact of mandatory tasks based on computational studies

    Protocolo:revisiĂłn sistemĂĄtica de literatura sobre los mecanismos de coordinaciĂłn en los modelos de programaciĂłn matemĂĄtica para la toma de decisiones descentralizadas

    Get PDF
    [EN] The article presents the research protocol for a systematic literature review on the coordination mechanisms in the mathematical programming for decentralized decision making on the planning and scheduling, intra or inter companies from 2006 to 2016.[ES] El artĂ­culo presenta el protocolo de investigaciĂłn para la realizaciĂłn de una revisiĂłn sistemĂĄtica sobre los mecanismos de coordinaciĂłn en los modelos de programaciĂłn matemĂĄ- tica, para la toma de decisiones descentralizadas sobre la planificaciĂłn y la programaciĂłn de la producciĂłn, entre plantas de la misma empresa o entre plantas de diferentes empresas, en el periodo de 2006 a 2016.Rius-Sorolla, G.; Maheut, J.; Estelles-Miguel, S.; Garcia-Sabater, JP. (2017). Protocol: Systematic Literature Review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Working Papers on Operations Management. 8(2):22-43. https://doi.org/10.4995/wpom.v8i2.7858SWORD224382Lehoux, N., D’Amours, S., Frein, Y., Langevin, A., & Penz, B. (2011). Collaboration for a two-echelon supply chain in the pulp and paper industry: the use of incentives to increase profit. Journal of the Operational Research Society, 62(4), 581-592. doi:10.1057/jors.2009.167Lehoux, N., D’Amours, S., & Langevin, A. (2010). A win-win collaboration approach for a two-echelon supply chain: a case study in the pulp and paper industry. European J. of Industrial Engineering, 4(4), 493. doi:10.1504/ejie.2010.035656Li, X., & Wang, Q. (2007). Coordination mechanisms of supply chain systems. European Journal of Operational Research, 179(1), 1-16. doi:10.1016/j.ejor.2006.06.023Lu, S. Y. P., Lau, H. Y. K., & Yiu, C. K. F. (2012). A hybrid solution to collaborative decision-making in a decentralized supply-chain. Journal of Engineering and Technology Management, 29(1), 95-111. doi:10.1016/j.jengtecman.2011.09.008Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing Surveys, 26(1), 87-119. doi:10.1145/174666.174668Mason, A. N., & Villalobos, J. R. (2015). Coordination of perishable crop production using auction mechanisms. Agricultural Systems, 138, 18-30. doi:10.1016/j.agsy.2015.04.008Mejias-Sacaluga, A., & Prado-Prado, J. C. (2003). Implementing buyer-supplier partnerships in retailing channels through continuous improvement. International Journal of Services Technology and Management, 4(2), 181. doi:10.1504/ijstm.2003.002578Mouret, S., Grossmann, I. E., & Pestiaux, P. (2011). A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Computers & Chemical Engineering, 35(12), 2750-2766. doi:10.1016/j.compchemeng.2011.03.026Mula, J., Peidro, D., DĂ­az-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008NIE, L., XU, X., & ZHAN, D. (2008). COLLABORATIVE PLANNING IN SUPPLY CHAINS BY LAGRANGIAN RELAXATION AND GENETIC ALGORITHMS. International Journal of Information Technology & Decision Making, 07(01), 183-197. doi:10.1142/s0219622008002879Nishi, T., Shinozaki, R., & Konishi, M. (2008). An Augmented Lagrangian Approach for Distributed Supply Chain Planning for Multiple Companies. IEEE Transactions on Automation Science and Engineering, 5(2), 259-274. doi:10.1109/tase.2007.894727Peset, F., Ferrer-Sapena, A., VillamĂłn, M., GonzĂĄlez, L.-M., Toca-Herrera, J.-L., & Aleixandre-Benavent, R. (2013). Scientific literature analysis of Judo in Web of ScienceÂź. Archives of Budo, 9, 81-91. doi:10.12659/aob.883883Pibernik, R., & Sucky, E. (2007). An approach to inter-domain master planning in supply chains. International Journal of Production Economics, 108(1-2), 200-212. doi:10.1016/j.ijpe.2006.12.010Pukkala, T., Heinonen, T., & Kurttila, M. (2009). An application of a reduced cost approach to spatial forest planning. Forest Science, 55(1), 13–22. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-68349091651&partnerID=40&md5=e1130a5ca21dcad175d7db89c4bd05edSahin, F., & Robinson, E. P. (2002). Flow Coordination and Information Sharing in Supply Chains: Review, Implications, and Directions for Future Research. Decision Sciences, 33(4), 505-536. doi:10.1111/j.1540-5915.2002.tb01654.xSanei Bajgiran, O., Kazemi Zanjani, M., & Nourelfath, M. (2016). The value of integrated tactical planning optimization in the lumber supply chain. International Journal of Production Economics, 171, 22-33. doi:10.1016/j.ijpe.2015.10.021Silva, C. A., Sousa, J. M. C., Runkler, T. A., & SĂĄ da Costa, J. M. G. (2009). Distributed supply chain management using ant colony optimization. European Journal of Operational Research, 199(2), 349-358. doi:10.1016/j.ejor.2008.11.021Simatupang, T. M., & Sridharan, R. (2005). The collaboration index: a measure for supply chain collaboration. International Journal of Physical Distribution & Logistics Management, 35(1), 44-62. doi:10.1108/09600030510577421Singh, G., & Ernst, A. T. (2011). Resource constraint scheduling with a fractional shared resource. Operations Research Letters. doi:10.1016/j.orl.2011.06.003Singh, G., & O’Keefe, C. M. (2016). Decentralised scheduling with confidentiality protection. Operations Research Letters, 44(4), 514-519. doi:10.1016/j.orl.2016.05.004Sokoler, L. E., Standardi, L., Edlund, K., Poulsen, N. K., Madsen, H., & JĂžrgensen, J. B. (2014). A Dantzig–Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems. Journal of Process Control, 24(8), 1225-1236. doi:10.1016/j.jprocont.2014.05.013Stadtler, H. (2007). A framework for collaborative planning and state-of-the-art. OR Spectrum, 31(1), 5-30. doi:10.1007/s00291-007-0104-5Tang, J., Zeng, C., & Pan, Z. (2016). Auction-based cooperation mechanism to parts scheduling for flexible job shop with inter-cells. Applied Soft Computing, 49, 590-602. doi:10.1016/j.asoc.2016.08.046Tang, S. H., Rahimi, I., & Karimi, H. (2016). Objectives, products and demand requirements in integrated supply chain network design: a review. International Journal of Industrial and Systems Engineering, 23(2), 181. doi:10.1504/ijise.2016.076399Thomas, A., Krishnamoorthy, M., Singh, G., & Venkateswaran, J. (2015). Coordination in a multiple producers–distributor supply chain and the value of information. International Journal of Production Economics, 167, 63-73. doi:10.1016/j.ijpe.2015.05.020Thomas, A., Singh, G., Krishnamoorthy, M., & Venkateswaran, J. (2013). Distributed optimisation method for multi-resource constrained scheduling in coal supply chains. International Journal of Production Research, 51(9), 2740-2759. doi:10.1080/00207543.2012.737955Thomas, A., Venkateswaran, J., Singh, G., & Krishnamoorthy, M. (2014). A resource constrained scheduling problem with multiple independent producers and a single linking constraint: A coal supply chain example. European Journal of Operational Research, 236(3), 946-956. doi:10.1016/j.ejor.2013.10.006Walther, G., Schmid, E., & Spengler, T. S. (2008). Negotiation-based coordination in product recovery networks. International Journal of Production Economics, 111(2), 334-350. doi:10.1016/j.ijpe.2006.12.069Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. doi:10.1016/j.joi.2010.07.002Wang, L., Pfohl, H.-C., Berbner, U., & Keck, A. K. (2015). Supply Chain Collaboration or Conflict? Information Sharing and Supply Chain Performance in the Automotive Industry. Lecture Notes in Logistics, 303-318. doi:10.1007/978-3-319-21266-1_20Zoghlami, N., Taghipour, A., Merlo, C., & Abed, M. (2016). Management of divergent production network using decentralised multi-level capacitated lot-sizing models. International Journal of Shipping and Transport Logistics, 8(5), 590. doi:10.1504/ijstl.2016.07868

    Modelos y Algoritmos de CoordinaciĂłn para la PlanificaciĂłn de Operaciones basadas en el concepto Stroke en Redes de Suministro distribuidas y con alternativas

    Full text link
    [ES] Con la globalizaciĂłn de los mercados y el aumento de la competitividad, la coordinaciĂłn se ha convertido en un punto estratĂ©gico en la gestiĂłn de la cadena de suministro. De hecho, cada actor de la cadena de suministro ya no debe tomar decisiones sin considerar todos los eslabones, sean proveedores, proveedores de proveedores o clientes y estos internos o externos a la organizaciĂłn. Las cadenas de suministro son cada vez mĂĄs complejas y distribuidas, compuestas por mĂșltiples organizaciones con diferentes objetivos y polĂ­ticas. La coordinaciĂłn se puede lograr utilizando uno de estos dos enfoques para la toma de decisiones coordinadas: centralizada o descentralizada con un mecanismo de coordinaciĂłn. Pero, las empresas son reacias a compartir informaciĂłn, ya sea por la confidencialidad de los datos o porque los modelos centralizados resultantes son de gran complejidad que dificultan su manejo y actualizaciĂłn. AdemĂĄs, aquellas empresas que buscan tomar decisiones en tiempo real requieren de modelos ligeros y ĂĄgiles, que, con toda la informaciĂłn local y coordinada con el resto, permitan tomar decisiones rĂĄpidas. Las empresas interesadas en la coordinaciĂłn descentralizada con un mecanismo de coordinaciĂłn esperan obtener mejores resultados con respecto a la no coordinaciĂłn, aunque deberĂ­an asumir tener peores resultados que con la coordinaciĂłn centralizada. Para ello en esta tesis, se han estudiado los distintos mecanismos de coordinaciĂłn para la toma de decisiones descentralizada, dentro de un entorno del procedimiento de horizontes rodantes y con herramienta de planificaciĂłn y programaciĂłn de las operaciones basada en el concepto de stroke, que extiende el concepto de lista de materiales mĂĄs allĂĄ de las estructuras tradicionales. Estos permiten desarrollar la formulaciĂłn de la programaciĂłn matemĂĄtica y los mecanismos de coordinaciĂłn necesarios para resolver los problemas de planificaciĂłn de operaciones. Esta tesis se presenta como una secuencia de capĂ­tulos, con el objeto de analizar y presentar la propuesta de mecanismo de coordinaciĂłn distribuido con unos recursos compartidos. Los distintos capĂ­tulos han servido de base para la preparaciĂłn de artĂ­culos cientĂ­ficos. Estos artĂ­culos han sido presentados en congresos de la materia y remitidos a revistas cientĂ­ficas.[CA] Amb la globalitzaciĂł dels mercats i l'augment de la competitivitat, la coordinaciĂł s'ha convertit en un punt estratĂšgic en la gestiĂł de la cadena de subministrament. De fet, cada actor de la cadena de subministrament ja no ha de prendre decisions sense considerar totes les baules, siguen proveĂŻdors, sub-proveĂŻdors o clients i aquests interns o externs a l'organitzaciĂł. Les cadenes de subministrament sĂłn cada vegada mĂ©s complexes i distribuĂŻdes, compostes per mĂșltiples organitzacions amb diferents objectius i polĂ­tiques. La coordinaciĂł es pot aconseguir utilitzant un d'aquests dos enfocaments per a la presa de decisions coordinades: centralitzat o descentralitzat amb un mecanisme de coordinaciĂł. PerĂČ, les empreses sĂłn poc inclinades a compartir informaciĂł, ja siga per la confidencialitat de les dades o perquĂš els models centralitzats resultants sĂłn de gran complexitat que dificulten el seu maneig i actualitzaciĂł. A mĂ©s, aquelles empresa que busquen prendre decisions en temps real requereixen de models lleugers i Ă gils, que, amb tota la informaciĂł local i coordinada amb la resta, permeten prendre decisions rĂ pides. Les empreses interessades en la coordinaciĂł descentralitzada amb un mecanisme de coordinaciĂł esperen obtindre millors resultats respecte de la no coordinaciĂł encara que haurien d'assumir tindre pitjors resultats que amb la coordinaciĂł centralitzada. Per a aixĂČ en aquesta tesi, s'han estudiat els diferents mecanismes de coordinaciĂł per a la presa de decisions descentralitzada, dins d'un entorn d'horitzons rodant i amb eines de planificaciĂł i programaciĂł de les operacions basada en el concepte de stroke, que estĂ©n el concepte de llista de materials mĂ©s enllĂ  de les estructures tradicionals. Aquests permeten desenvolupar la formulaciĂł de la programaciĂł matemĂ tica i els mecanismes de coordinaciĂł necessaris per a resoldre els problemes de planificaciĂł d'operacions. Aquesta tesi es presenta com una seqĂŒĂšncia de capĂ­tols, a fi d'analitzar i presentar la proposta de mecanisme de coordinaciĂł distribuĂŻt amb uns recursos compartits. Els diferents capĂ­tols han servit de base per a la preparaciĂł d'articles cientĂ­fics. Aquests articles han sigut presentats en congressos de la matĂšria i remesos a revistes cientĂ­fiques.[EN] With the globalization of markets and the increase of competitiveness, coordination has become a strategic point in the management of the supply chain. In fact, each actor in the supply chain must no longer make decisions without considering all the links, whether suppliers, sub-suppliers or customers and those internal or external to the organization. Supply chains are increasingly complex and distributed, composed of multiple organizations with different objectives and policies. Coordination can be achieved using one of these two approaches to coordinate decision making: centralized or decentralized with a coordination mechanism. However, companies are reluctant to share information, either because of the confidentiality of the data or because the resulting centralized models are of great complexity that make their management and update them. In addition, those companies that seek to make decisions in real time require lightweight and agile models, which, with all the local information and coordinated with the rest, allow quick decisions. Companies interested in decentralized coordination with a coordination mechanism expect to obtain better results regarding non-coordination although they should assume to have worse results than with centralized coordination. To this end, in this thesis, the different coordination mechanisms for decentralized decision making have been studied, within an environment of rolling horizons and with tools for planning and scheduling operations based on the concept of stroke, which extends the concept of list of materials beyond traditional structures. These allow to develop the formulation of the mathematical programming and the coordination mechanisms necessary to solve the operations planning problems. This thesis is presented as a sequence of chapters, in order to analyse and present the proposal of distributed coordination mechanism with shared resources. The different chapters have served as the basis for the preparation of scientific articles. These articles have been presented at congresses of the subject and submitted to scientific journals.Rius Sorolla, GV. (2019). Modelos y Algoritmos de CoordinaciĂłn para la PlanificaciĂłn de Operaciones basadas en el concepto Stroke en Redes de Suministro distribuidas y con alternativas [Tesis doctoral no publicada]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/134017TESI

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Technology 2002: The Third National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2002 Conference and Exposition, December 1-3, 1992, Baltimore, MD. Volume 2 features 60 papers presented during 30 concurrent sessions
    corecore