3,546 research outputs found

    "So go downtown": simulating pedestrian movement in town centres

    Get PDF
    Pedestrian movement models have been developed since the 1970s. A review of the literature shows that such models have been developed to explain and predict macro, meso, and micro movement patterns. However, recent developments in modelling techniques, and especially advances in agent-based simulation, open up the possibility of developing integrative and complex models which use existing models as 'building blocks'. In this paper we describe such integrative, modular approach to simulating pedestrian movement behaviour. The STREETS model, developed by using Swarm and GIS, is an agent-based model that focuses on the simulation of the behavioural aspects of pedestrian movement. The modular structure of the simulation is described in detail. This is followed by a discussion of the lessons learned from the development of STREETS, especially the advantages of adopting a modular approach and other aspects of using the agent-based paradigm for modelling

    Agent architecture for simulating pedestrians in the built environment

    Get PDF
    The paper discusses an agent architecture for investigating visualized simulated pedestrian activity and behavior affecting pedestrian flows within the built environment. The approach will lead to a system that may serve as a decision support tool in the design process for predicting the likely impact of design parameters on pedestrian flows. UML diagrams are used to communicate about the interpretation of the agent architecture

    Modelling public transport accessibility with Monte Carlo stochastic simulations: A case study of Ostrava

    Get PDF
    Activity-based micro-scale simulation models for transport modelling provide better evaluations of public transport accessibility, enabling researchers to overcome the shortage of reliable real-world data. Current simulation systems face simplifications of personal behaviour, zonal patterns, non-optimisation of public transport trips (choice of the fastest option only), and do not work with real targets and their characteristics. The new TRAMsim system uses a Monte Carlo approach, which evaluates all possible public transport and walking origin-destination (O-D) trips for k-nearest stops within a given time interval, and selects appropriate variants according to the expected scenarios and parameters derived from local surveys. For the city of Ostrava, Czechia, two commuting models were compared based on simulated movements to reach (a) randomly selected large employers and (b) proportionally selected employers using an appropriate distance-decay impedance function derived from various combinations of conditions. The validation of these models confirms the relevance of the proportional gravity-based model. Multidimensional evaluation of the potential accessibility of employers elucidates issues in several localities, including a high number of transfers, high total commuting time, low variety of accessible employers and high pedestrian mode usage. The transport accessibility evaluation based on synthetic trips offers an improved understanding of local situations and helps to assess the impact of planned changes.Web of Science1124art. no. 709

    Local movement: agent-based models of pedestrian flows

    Get PDF
    Modelling movement within the built environment has hitherto been focused on rather coarse spatial scales where the emphasis has been upon simulating flows of traffic between origins and destinations. Models of pedestrian movement have been sporadic, based largely on finding statistical relationships between volumes and the accessibility of streets, with no sustained efforts at improving such theories. The development of object-orientated computing and agent-based models which have followed in this wake, promise to change this picture radically. It is now possible to develop models simulating the geometric motion of individual agents in small-scale environments using theories of traffic flow to underpin their logic. In this paper, we outline such a model which we adapt to simulate flows of pedestrians between fixed points of entry - gateways - into complex environments such as city centres, and points of attraction based on the location of retail and leisure facilities which represent the focus of such movements. The model simulates the movement of each individual in terms of five components; these are based on motion in the direction of the most attractive locations, forward movement, the avoidance of local geometric obstacles, thresholds which constrain congestion, and movement which is influenced by those already moving towards various locations. The model has elements which enable walkers to self-organise as well as learn from their geometric experiences so far. We first outline the structure of the model, present a computable form, and illustrate how it can be programmed as a variant of cellular automata. We illustrate it using three examples: its application to an idealised mall where we show how two key components - local navigation of obstacles and movement towards points of global locational attraction - can be parameterised, an application to the more complex town centre of Wolverhampton (in the UK West Midlands) where the paths of individual walkers are used to explore the veracity of the model, and finally it application to the Tate Gallery complex in central London where the focus is on calibrating the model by letting individual agents learn from their experience of walking within the environment

    Bounded rationality and spatio-temporal pedestrian shopping behavior

    Get PDF

    Agent based approach to land use mix

    Get PDF
    Modelling and simulating the dynamics of crowd movement within the complex built environment such as a city centre is an evolutionary, processing research task. Recent methodological and theoretical advances have provided the opportunity to explore and provide answers to various crucial problems on land use mix. Daily in our urban settlements we seek for resources and attractions. Our search behaviour is complex and emergent, related to urban morphology and land use patterns as this is generated by our daily movement and activities. This report discusses a pedestrian movement study which examines the ways pedestrian behaviour and flows affect and are affected by the formation of the built environment and the land uses. The focus is in retailing uses and especially shopping. For the formulation of the model, an agent based simulation approach is adapted based on object oriented analysis and programming. Agents are given long distance vision and direct their movement and behaviour in response to the information retreat from their vision field, morphology of the local environment, and their individual desire for retail or exploration of the area. The simulations are used to extract meaningful conclusions on the pedestrian behaviour and factors that have an impact on it. Various formations of retail location patterns in a 7 x 7 grid are explored and three different approaches of agents’ behaviour are used in order to get meaningful conclusions

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Balancing operating revenues and occupied refurbishment costs 1: problems of defining project success factors and selecting site planning methods

    Get PDF
    In planning the refurbishment of railway stations the spatial needs of the contractor and of the ongoing business stakeholders have to be balanced. A particular concern is the disruptive effect of construction works upon pedestrian movement. RaCMIT (Refurbishment and Customer Movement Integration Tool) was a research project aimed at addressing this problem. The objective of the research was to develop a decision protocol facilitating optimisation of overall project value to the client's business. This paper (the first of two) presents a framework for considering public disruption in occupied refurbishment using two case studies in large railway stations as examples. It briefly describes new tools which (combined with existing techniques) assist decision making in the management of disruption. It links strategic with sitebased decision making and suggests how public disruption may be treated as a variable to be jointly optimised along with traditional criteria such as time, cost and quality. Research observations as well as current literature suggest that for overall decision-making, opportunities may be lost (under current practice) for minimising joint project cost/revenue disruption, and, for spatio-temporal site decision-making, effective and efficient tools now exist to model both sides of the construction site boundary

    Agent Street: An Environment for Exploring Agent-Based Models in Second Life

    Get PDF
    Urban models can be seen on a continuum between iconic and symbolic. Generally speaking, iconic models are physical versions of the real world at some scaled down representation, while symbolic models represent the system in terms of the way they function replacing the physical or material system by some logical and/or mathematical formulae. Traditionally iconic and symbolic models were distinct classes of model but due to the rise of digital computing the distinction between the two is becoming blurred, with symbolic models being embedded into iconic models. However, such models tend to be single user. This paper demonstrates how 3D symbolic models in the form of agent-based simulations can be embedded into iconic models using the multi-user virtual world of Second Life. Furthermore, the paper demonstrates Second Life\'s potential for social science simulation. To demonstrate this, we first introduce Second Life and provide two exemplar models; Conway\'s Game of Life, and Schelling\'s Segregation Model which highlight how symbolic models can be viewed in an iconic environment. We then present a simple pedestrian evacuation model which merges the iconic and symbolic together and extends the model to directly incorporate avatars and agents in the same environment illustrating how \'real\' participants can influence simulation outcomes. Such examples demonstrate the potential for creating highly visual, immersive, interactive agent-based models for social scientists in multi-user real time virtual worlds. The paper concludes with some final comments on problems with representing models in current virtual worlds and future avenues of research.Agent-Based Modelling, Pedestrian Evacuation, Segregation, Virtual Worlds, Second Life
    • 

    corecore