6,004 research outputs found

    Humans do not always act selfishly: social identity and helping in emergency evacuation simulation

    Get PDF
    To monitor and predict the behaviour of a crowd, it is imperative that the technology used is based on an accurate understanding of crowd psychology. However, most simulations of evacuation scenarios rely on outdated assumptions about the way people behave or only consider the locomotion of pedestrian movement. We present a social model for pedestrian simulation based on self-categorisation processes during an emergency evacuation. We demonstrate the impact of this new model on the behaviour of pedestrians and on evacuation times. In addition to the Optimal Steps Model for locomotion, we add a realistic social model of collective behaviour

    Optimising Pedestrian Flow Around Large Stadiums

    Get PDF
    This study proposes a method that combines the cellular automaton model and the differential evolution algorithm for optimising pedestrian flow around large stadiums. A miniature version of a large stadium and its surrounding areas is constructed via the cellular automaton model. Special mechanisms are applied to influence the behaviour of an agent that leaves from a certain stadium gate. The agent may be attracted to a nearby business facility and/or guided to uncongested areas. The differential evolution algorithm is then used to determine the optimal probabilities of the influencing agents for each stadium gate. The main goal is to reduce the evacuation time, and other goals such as reducing the costs for the influencing agents’ behaviours and the individual evacuation time are also considered. We found that, although they worked differently in different scenarios, the attraction and guidance of agents significantly reduced the evacuation time. The optimal evacuation time was achieved with moderate attraction to the business facilities and strong guidance to the detouring route. The results demonstrate that the proposed method can provide a goal-dependent, exit-specific strategy that is otherwise hard to acquire for optimising pedestrian flow

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    CellEVAC: an adaptive guidance system for crowd evacuation through behavioral optimization

    Get PDF
    A critical aspect of crowds' evacuation processes is the dynamism of individual decision making. Identifying optimal strategies at an individual level may improve both evacuation time and safety, which is essential for developing efficient evacuation systems. Here, we investigate how to favor a coordinated group dynamic through optimal exit-choice instructions using behavioral strategy optimization. We propose and evaluate an adaptive guidance system (Cell-based Crowd Evacuation, CellEVAC) that dynamically allocates colors to cells in a cellbased pedestrian positioning infrastructure, to provide efficient exit-choice indications. The operational module of CellEVAC implements an optimized discrete-choice model that integrates the influential factors that would make evacuees adapt their exit choice. To optimize the model, we used a simulation?optimization modeling framework that integrates microscopic pedestrian simulation based on the classical Social Force Model. In the majority of studies, the objective has been to optimize evacuation time. In contrast, we paid particular attention to safety by using Pedestrian Fundamental Diagrams that model the dynamics of the exit gates. CellEVAC has been tested in a simulated real scenario (Madrid Arena) under different external pedestrian flow patterns that simulate complex pedestrian interactions. Results showed that CellEVAC outperforms evacuation processes in which the system is not used, with an exponential improvement as interactions become complex. We compared our system with an existing approach based on Cartesian Genetic Programming. Our system exhibited a better overall performance in terms of safety, evacuation time, and the number of revisions of exit-choice decisions. Further analyses also revealed that Cartesian Genetic Programming generates less natural pedestrian reactions and movements than CellEVAC. The fact that the decision logic module is built upon a behavioral model seems to favor a more natural and effective response. We also found that our proposal has a positive influence on evacuations even for a low compliance rate (40%).Ministerio de Economía y Competitivida

    Adaptive cell-based evacuation systems for leader-follower crowd evacuation

    Get PDF
    The challenge of controlling crowd movement at large events expands not only to the realm of emergency evacuations but also to improving non-critical conditions related to operational efficiency and comfort. In both cases, it becomes necessary to develop adaptive crowd motion control systems. In particular, adaptive cell-based crowd evacuation systems dynamically generate exit-choice recommendations favoring a coordinated group dynamic that improves safety and evacuation time. We investigate the viability of using this mechanism to develop a ‘‘leader-follower’’ evacuation system in which a trained evacuation staff guides evacuees safely to the exit gates. To validate the proposal, we use a simulation–optimization framework integrating microscopic simulation. Evacuees’ behavior has been modeled using a three-layered architecture that includes eligibility, exit-choice changing, and exit-choice models, calibrated with hypothetical-choice experiments. As a significant contribution of this work, the proposed behavior models capture the influence of leaders on evacuees, which is translated into exitchoice decisions and the adaptation of speed. This influence can be easily modulated to evaluate the evacuation efficiency under different evacuation scenarios and evacuees’ behavior profiles. When measuring the efficiency of the evacuation processes, particular attention has been paid to safety by using pedestrian Macroscopic Fundamental Diagrams (p-MFD), which model the crowd movement dynamics from a macroscopic perspective. The spatiotemporal view of the evacuation performance in the form of crowd-pressure vs. density values allowed us to evaluate and compare safety in different evacuation scenarios reasonably and consistently. Experimental results confirm the viability of using adaptive cell-based crowd evacuation systems as a guidance tool to be used by evacuation staff to guide evacuees. Interestingly, we found that evacuation staff motion speed plays a crucial role in balancing egress time and safety. Thus, it is expected that by instructing evacuation staff to move at a predefined speed, we can reach the desired balance between evacuation time, accident probability, and comfort

    Ped-Air: A Simulator for Loading, Unloading, and Evacuating Aircraft

    Get PDF
    AbstractWe present Ped-Air, a pedestrian simulation system to model the loading, unloading, and evacuation of commercial aircraft. We address the challenge of simulating passenger movement in constrained spaces (e.g., aisles and rows), along with complex, coordinating behaviors between the passengers. Ped-Air models different categories of passengers and flight crew, capturing their unique behaviors and complex interactions. We exhibit Ped-Airs capabilities by simulating passenger movements on two representative aircraft: a single-aisle Boeing 737, and a double-aisle Boeing 777. We are able to simulate the following behaviors: stress, luggage placement, flight staff assisting passengers, obstructed exits for evacuation
    corecore