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A B S T R A C T   

A critical aspect of crowds’ evacuation processes is the dynamism of individual decision making. Identifying 
optimal strategies at an individual level may improve both evacuation time and safety, which is essential for 
developing efficient evacuation systems. Here, we investigate how to favor a coordinated group dynamic through 
optimal exit-choice instructions using behavioral strategy optimization. We propose and evaluate an adaptive 
guidance system (Cell-based Crowd Evacuation, CellEVAC) that dynamically allocates colors to cells in a cell- 
based pedestrian positioning infrastructure, to provide efficient exit-choice indications. The operational mod
ule of CellEVAC implements an optimized discrete-choice model that integrates the influential factors that would 
make evacuees adapt their exit choice. To optimize the model, we used a simulation–optimization modeling 
framework that integrates microscopic pedestrian simulation based on the classical Social Force Model. In the 
majority of studies, the objective has been to optimize evacuation time. In contrast, we paid particular attention 
to safety by using Pedestrian Fundamental Diagrams that model the dynamics of the exit gates. CellEVAC has 
been tested in a simulated real scenario (Madrid Arena) under different external pedestrian flow patterns that 
simulate complex pedestrian interactions. Results showed that CellEVAC outperforms evacuation processes in 
which the system is not used, with an exponential improvement as interactions become complex. We compared 
our system with an existing approach based on Cartesian Genetic Programming. Our system exhibited a better 
overall performance in terms of safety, evacuation time, and the number of revisions of exit-choice decisions. 
Further analyses also revealed that Cartesian Genetic Programming generates less natural pedestrian reactions 
and movements than CellEVAC. The fact that the decision logic module is built upon a behavioral model seems to 
favor a more natural and effective response. We also found that our proposal has a positive influence on evac
uations even for a low compliance rate (40%).   

1. Introduction 

Destructive and uncoordinated crowd behaviors such as herding or 
stampede are recognized as being responsible for pedestrians’ death and 
injury in large-scale crowd evacuations during emergencies. Evacuees 
tend to seek their safety and exhibit selfish attitudes that may go against 
the collective benefit. An efficient evacuation plan is of paramount 
importance to coordinate and direct evacuees out of dangerous areas in 
a safe and timely manner. This coordination can be achieved by 
deploying guidance systems capable of providing information for each 
user on the exit gate, the path to follow, and possibly the time when 
evacuation should start (Abdelghany et al., 2014). These systems may 
embed real-time routing algorithms that provide adaptive plans or use 
pre-deployed static plans based on prediction and analysis (Bi and 

Gelenbe, 2019). 
It is well known that the performance of evacuation processes can be 

strongly affected by exit-choice decision making at the individual level 
(Haghani and Sarvi, 2019). Research on human responses to multiple 
sources of directional information has shown that directional informa
tion has a significant effect on human exit route choice (Bode et al., 
2014). For instance, (Feliciani et al., 2020) studied how egress time can 
be reduced if wheelchair users are informed on exit type and location. 
Thus, there are research efforts in the area of real-time routing for crowd 
evacuations that have focused on studying mechanisms for providing 
optimal exit-choice information. These mechanisms have been mainly 
implemented using optimal static plans obtained through simu
lation–optimization methods (Abdelghany et al., 2014; Guo, 2018). 
However, since the dynamics of the environment change over time in 

* Corresponding author. 
E-mail addresses: miguelangel.lopez@uah.es (M.A. Lopez-Carmona), alvaro.paricio@uah.es (A. Paricio Garcia).  

Contents lists available at ScienceDirect 

Safety Science 

journal homepage: www.elsevier.com/locate/safety 

https://doi.org/10.1016/j.ssci.2021.105215 
Received 2 September 2020; Received in revised form 11 January 2021; Accepted 13 February 2021   

mailto:miguelangel.lopez@uah.es
mailto:alvaro.paricio@uah.es
www.sciencedirect.com/science/journal/09257535
https://www.elsevier.com/locate/safety
https://doi.org/10.1016/j.ssci.2021.105215
https://doi.org/10.1016/j.ssci.2021.105215
https://doi.org/10.1016/j.ssci.2021.105215
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssci.2021.105215&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Safety Science 139 (2021) 105215

2

unpredictable ways during emergency evacuations, adaptive strategies 
appear more appealing (Zhong et al., 2016). 

Developing evacuation systems based on adaptive exit-choice in
formation is challenging. For example, human response to information 
given by the system during emergencies should be easy to understand 
and follow, but most existing research addresses the algorithmic 
perspective and overlook the systemic view and usability. We consider 
this aspect as essential if we want to take these systems to real envi
ronments. When optimizing evacuation plans in general, the overall 
objective has been minimizing the total evacuation time, average 
evacuation time, or maximizing the cumulative exit throughput within a 
given period. Surprisingly, the safety dimension has not been explicitly 
considered, being considered a consequence of applying different opti
mization objectives on the facility configuration and demand profiles. 
We believe that safety should be an explicit objective when optimizing 
evacuation plans because evacuation time and safety dimensions are 
closely related to each other in emergency evacuations and under 
extreme conditions. Finally, though it is widely accepted that the 
modeling of evacuation behavior is essential for developing efficient 
evacuation systems, the primary attention has been being paid to 
investigate the problem from architectural or path-planning optimiza
tion perspectives (Duives et al., 2013; Vermuyten et al., 2016; Zhao 
et al., 2017). The potential of behavioral strategy optimization for 
improving both evacuation time and safety has been overlooked in the 
design of adaptive evacuation systems. 

We are interested in quantifying the benefits of using evacuation 
behavior models to implement adaptive evacuation systems’ decision 
logic. Another central question of this study concerns the topic of safety. 
We would like to quantify how important it is to explicitly model safety, 
and which could be a reasonable safety metric. 

With the purposes mentioned above, this paper proposes an adaptive 
guidance system (Cell-based Crowd Evacuation, CellEVAC) that 
dynamically maps exit-choice indications in a cell-based positioning 
infrastructure. During the evacuation process, colors (indications, in
structions) corresponding to an exit gate are dynamically displayed in 
pedestrians’ wearable or personal handheld devices depending on the 
current pedestrian cell-position. The kernel of the system is a Multino
mial Logit Model (MLM) taken from discrete choice theory, which has 
been widely used to model human behavior in evacuations and many 
other areas such as economics or transportation (Press, 1985; Duives and 
Mahmassani, 2012). In our study, we use it to implement the decision 
logic module that dynamically allocates colors to cells. This module 
embodies the influential primary factors that would operate on indi
vidual exit-choice decision making within the context of descriptive 
behavior modeling. These factors include the (i) group size of pedes
trians along a path, (ii) congestion at exits, (iii) width of exit gates, (iv) 
distance, and (v) personal attitude to maintaining previous decisions. 

Haghani and Sarvi (2019), authorities in evacuation behavior 
modeling, report that most research has been focused on modeling 
directional decision making, while the decision adaptation phenomenon 
has been largely overlooked. For example, exit-choice decisions at the 
beginning and end of evacuations may be completely different. An 
explicit factor is needed to model the variation in personal attitude to
wards exit-choice changing. Thus, we include the ’personal attitude’ 
factor to model uncertainty and adaptation in exit-choice decision 
making and study its influence on evacuation performance. Another 
factor that plays a leading role in our MLM model is ’congestion at exits’, 
which is known to have a strong influence on pedestrians’ evacuation 
behaviors (Liu et al., 2009). Typically, this factor models the number of 
pedestrians at exits. However, this approach neglects the exit gates’ 
evacuation dynamics, which is crucial to optimize the available capacity 
and to improve safety. For this purpose, a method is proposed to char
acterize exit gates’ evacuation dynamics. This method is based on 
obtaining the Pedestrian Fundamental Diagrams (i.e., the relationship 
between pedestrian flow and density) (Hoogendoorn et al., 2017), and 
then applying a curve fitting function to parameterize each exit gate in 

terms of congestion levels. Using these congestion levels, we can define a 
safety metric and use it in the MLM simulation–optimization process. 

A simulation–optimization modeling framework has been developed 
to determine the optimal configuration of the MLM and obtain a near- 
optimal adaptive evacuation plan. This framework integrates a micro
scopic pedestrian simulation based on the classical Social Force Model 
(SFM) (Helbing and Molnár, 1995). The simulation–optimization pro
cess adopts a Tabu-Search algorithm (TS) (Glover, 1997), which itera
tively searches for the near-optimal evacuation plan (optimal 
configuration of the MLM). At the same time, the microscopic crowd 
simulation guides the search by evaluating the evacuation time and 
safety of the solutions generated by the TS algorithm. The proposed 
system is tested in a simulated real scenario (Madrid Arena) under 
different external pedestrian flow patterns that simulate complex 
pedestrian interactions. The research also presents a comparison be
tween traditional nearest-gate evacuation strategies and an existing 
approach based on Cartesian Genetic Programming (CGP) (Zhong et al., 
2016) that we adapted to include the input factors used in our MLM. 

The rest of the paper is organized as follows. Section 2 surveys the 
works related to crowd evacuation modeling. Section 3 outlines our 
modeling framework, which includes the evacuation scenario, a pro
posal of system architecture for CellEVAC, the MLM used to build the 
decision logic module of CellEVAC, and the microscopic simulation 
framework to perform the simulation–optimization processes. The 
modeling of exit gates’ evacuation dynamics and safety are described in 
Section 4. Section 5 presents the experimental evaluation, results, and 
discussion. The last section provides concluding comments and possible 
research extensions. 

2. Related work 

In this section we offer a summary of the previous work in the 
context of crowd behavior modeling in evacuation scenarios, simulation 
modeling and evacuation wayfinding algorithms. 

2.1. Exit-choice behavior modeling 

It is widely accepted that understanding the influence factors on 
pedestrian behavior is fundamental in the design of large-scale public 
facilities and evacuation planning. To capture the influence of these 
factors and understand pedestrian behavior avoiding the potentially 
dangerous real simulations, researchers have to rely on, for instance, 
simulated environments (Bode et al., 2014; Bode et al., 2015) or 
decision-making models built upon revealed and stated preferences 
(Haghani et al., 2014). 

The exit-choice strategies play a main role in the behavioral 
dimension of evacuations (Hoogendoorn and Bovy, 2004; Kinateder 
et al., 2018; Chen et al., 2018; Duives and Mahmassani, 2012). The 
existing research has identified numerous factors that explain exit- 
choice decision making including the pedestrian emotion, distance to 
exits, visibility, size of the queue, cooperation, route length and capac
ity, illumination, or route familiarity (Duives and Mahmassani, 2012; 
Cuesta et al., 2015; Lovreglio et al., 2016b; Haghani and Sarvi, 2016b; 
Kinateder et al., 2018). Assumptions about how an individual decides on 
an exit route, have a significant influence on the overall evacuation 
effectiveness (Duives and Mahmassani, 2012; Haghani et al., 2014; Zhou 
et al., 2019). Some models assume that the exit-choice is only based on 
shortest distance optimization (Hoogendoorn and Bovy, 2004; Klüpfel 
et al., 2005). (Kinateder et al., 2018) also found that exit-choice was 
influenced by exit familiarity and neighbor behavior. Using a virtual 
crowd evacuation environment, (Bode and Codling, 2013) showed that 
individuals preferred routes with which they were familiar only when 
they were presented with motivational messages. Also, they found an 
evident influence of age and gender on reaction times. (Guo et al., 2012) 
revealed several behavior patterns related to preference for a destina
tion, effect of capacity, interaction between pedestrians, following 
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behavior, and evacuation efficiency. The trade-offs associated with these 
interactions (Duives and Mahmassani, 2012; Augustijn-Beckers et al., 
2010; Shi et al., 2009) are present especially connected to the exit- 
choice decision. In (Liao et al., 2017), the authors studied how time- 
independent and time-dependent information affects subsequent 
changes in route choices and builds a simulation model to illustrate 
simple behavioral mechanisms are sufficient to describe the evacuation 
dynamics. They found evidence that dynamic route choice behavior was 
comparatively rare. 

A growing body of literature has investigated how to model different 
exit-choice behaviors in crowd evacuation simulations. Various ap
proaches have been proposed to solve this issue using discrete choice 
models (Press, 1985; Ben-Akiva and Bierlaire, 1999). These models have 
been frequently used to define safety measures based on guidelines 
discussing variables such as the exit door locations, or the maximum 
density of people (Ronchi et al., 2016; Gao et al., 2020). Research in this 
field has focused primarily on the Multinomial Logit Model (MLM) (Ben- 
Akiva and Bierlaire, 1999), mainly used to model the likelihood of in
dividual choices from a discrete set of alternatives. 

In (Duives and Mahmassani, 2012) the authors investigated an MLM 
to evaluate different exit-choice strategies. Their results suggest that 
group following behavior has a significant impact on evacuation. 
(Haghani et al., 2014; Haghani et al., 2015; Haghani and Sarvi, 2016a; 
Haghani and Sarvi, 2016b; Haghani and Sarvi, 2017a; Haghani and 
Sarvi, 2017b; Haghani and Sarvi, 2017c; Haghani and Sarvi, 2018) re
ported on different methods to estimate random-utility models of 
pedestrian exit-choice, and investigate crowd choice behavior during 
evacuations of built environments. They propose a mixed (random-co
efficient) nested logit framework in (Haghani et al., 2015) and investi
gate underlying behavioral differences between normal egress and 
emergency evacuations in (Haghani and Sarvi, 2016a) using error- 
component mixed logit model of discrete choice analysis. (Lovreglio 
et al., 2016a) investigate the effect of environmental and social factors 
on local exit-choice. They use an online stated preference survey using 
non-immersive virtual reality, and a mixed logit model is calibrated.. 
More recently (Haghani and Sarvi, 2017a; Haghani and Sarvi, 2017b) 
report on wayfinding decision experiments that simulated the escape 
from multi-exit spaces, and conclude that the assumption of herd-like 
behavior does not necessarily apply to all contexts of evacuations. 

Above mentioned studies have mainly dealt with the development of 
descriptive models of evacuation behavior that simulate the real 
movement of crowds (Duives et al., 2013; Ronchi et al., 2016). These 
models allow studying the influence of different behavior strategies on 
evacuation performance (Zhou et al., 2019). However, behavioral 
strategy optimization is neglected to great degrees (Berseth et al., 2015; 
Noh et al., 2016; Ding et al., 2017). Among the body of studies on 
optimization, the majority have investigated the problem from a path- 
planning (Vermuyten et al., 2016; Noh et al., 2016) or architectural 
perspective (Zhao et al., 2017). Exit-choice behavioral optimization for 
designing evacuation guidance systems remains a major knowledge gap 
that we address in this paper. 

Recently, (Haghani and Sarvi, 2019) quantitatively investigate the 
importance of including a decision changing module for modeling 
adaptive decision-making in exit choices. They propose a two-layered 
model with an exit-choice changing module and an exit-choice mod
ule. The exit-choice changing module is a simple binary logit formula 
that decides if pedestrians change their chosen exits. This formula de
pends on directional attributes and a prefixed parameter that calibrates 
the inertia to exit-choice changing. In case of change, the exit-choice 
module, which implements a classical MLM, chooses a new exit. Re
sults showed a substantial difference in enhancing the accuracy of the 
simulation outputs. They conclude that an intermediate degree of de
cision changing is the most beneficial strategy. 

We have also explicitly paid particular attention to the exit-choice 
changing phenomenon by modeling the pedestrians’ attitude towards 
changing their previous decisions. Instead of using a two-layered model 

(Haghani and Sarvi, 2019), our approach uses a single-layered MLM that 
embeds both the directional and exit-choice changing decision making 
components. This approach shortens the number of parameters of the 
model, simplifying the optimization process. Moreover, exit-choice de
cision changing is modeled as a time-dependent personal attribute. It 
allows us to adapt the inertia to exit-choice changing during the evac
uation process, whereas in (Haghani and Sarvi, 2019) the inertia is an 
immutable parameter. For instance, this approach may be useful to 
reflect that confusion level changes during the evacuation process, and 
therefore the level of inertia to decision changing. 

2.2. Simulation modeling 

Much of the related work on crowd behavior and evacuations must 
rely on detailed simulations. In their recent survey of algorithms and 
systems for evacuation, (Bi and Gelenbe, 2019) offer state-of-the-art 
knowledge on emergency evacuation and wayfinding. According to 
their work, crowd behavior simulation models for evacuation way
finding can be classified into cellular automata models (Pelechano and 
Malkawi, 2008; Feliciani and Nishinari, 2016), social force models 
(Helbing and Molnár, 1995), fluid-dynamics models (Henderson, 1971), 
lattice gas models (Takimoto and Nagatani, 2003), game theoretic 
models (Hoogendoorn and Bovy, 2003) and computer agent-based 
models (Pan et al., 2007). 

Many studies have been published using cellular automata models, 
which discretize a given space into uniform “cells” where each cell holds 
a person or vehicle (Cruz-Piris et al., 2019). However, as mentioned by 
(Bi and Gelenbe, 2019), these models are ineffective at depicting 
movement speed and direction, making it relatively challenging to 
customize physical attributes or heterogeneous individuals with 
different characteristics. Social force models (SFM) overcome these is
sues. These argue that pedestrians’ motion is mainly affected by the 
destination, the repulsive forces from pedestrians and obstacles, and the 
attractive forces from other objects (e.g., signals). Fluid-dynamics and 
lattice gas model-based algorithms are better at simulating the move
ment of large crowds under normal situations. Because of these ap
proaches’ macroscopic nature, the modeling of complex interactions and 
individual behaviors such as panic or uncertainty is difficult. Game- 
theoretic approaches (Fudenberg and Tirole, 1991) model the cooper
ative and competitive behaviors during the evacuation process, which is 
useful for mimicking the interactive decision-making and strategy- 
adapting among evacuees. However, these approaches have difficulty 
in capturing the dynamics of an evacuation process. Hence, the agent- 
based models representing an environment with autonomous decision- 
making agents, have drawn considerable attention in recent years 
(Lopez-Carmona et al., 2017). Agents have the ability to evolve, learn, 
and interact, which can lead to unanticipated behaviors during 
simulations. 

In our research, we opted for a multi-agent microscopic simulation 
framework based on SFM due to its flexibility and ease of integration of 
complex behavior and interaction models. This approach integrates the 
potential of SFM to mimic physical interactions among evacuees, and of 
multi-agent systems to simulate complex behaviors and interactions, 
learn and evolve. 

2.3. Evacuation wayfinding algorithms 

Many algorithms have been proposed (Bi and Gelenbe, 2019) for the 
development of evacuation wayfinding systems. Network flow-based 
algorithms consider evacuation planning as a minimum cost network 
flow problem (Ford and Fulkerson, 1962). The main downside of 
network flow-based algorithms is that evacuees must follow the paths 
accurately and reach every node on schedule. Various approaches have 
been put forward to solve this issue using geometric graphs (Li et al., 
2003b). For instance, in (Chen et al., 2008) a wireless sensor network is 
partitioned into triangular areas based on the average detected 
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temperature of the associated sensors and safe egress paths are calcu
lated. A change of the topology induces redeployment and re- 
calibration. More recently, (Guo, 2018) proposed a potential-based dy
namic pedestrian flow assignment model to optimize evacuation time. 
Optimization is performed by employing a space potential formulation 
and solving a proportional swapping process between cells. Though the 
model is potentially applicable during evacuation time, this work fo
cuses only on obtaining an assignment of pedestrians’ exit choices at the 
beginning of the evacuation. Besides, they propose two classes of guide 
sign systems that can guide pedestrians to the corresponding exit. 

Following this trend, queuing models (Newell, 2013) transfer 
building graphs to a queuing network to estimate congestion and 
evacuation delays. In (Chalmet et al., 1982, Yuhaski and Smith, 1989, 
MacGregor Smith, 1991, Wang et al., 2008, Lino et al., 2011) we may 
find studies in this area which are mainly focused on predicting and 
optimizing the probabilistic choices in evacuations. Various approaches 
dynamically develop navigation paths by assigning artificial potential 
fields to the exits and hazards (Koditschek, 1989; Hill et al., 2000; Li 
et al., 2003a). Unfortunately, this mechanism suffers from several 

pitfalls, among which is the convergence time for network stabilization, 
and the fact that multiple exits may affect its search efficiency. 

There is a vast amount of literature on biologically-inspired algo
rithms that employ heuristics to search for optimal routes or recommend 
exits. In (Li et al., 2010) a multiobjective evacuation route assignment 
model based on genetic algorithm (Holland, 1992; Gelenbe et al., 2006) 
is proposed. This approach resembles the well known dynamic traffic 
assignment (DTA) problem from the field of transport modeling (Bazzan 
and Klügl, 2013). In a similar approach, (Abdelghany et al., 2014) 
employed a simulation–optimization framework that integrates a ge
netic algorithm and a microscopic pedestrian simulation-assignment 
model. Evacuees are assumed to receive exit-choice indications that 
may include the optimal start time of evacuation. Its major drawback is 
that the calculated plan does not allow an adaptive response. In 
(Samadzadegan and Yadegari, 2010) bee colony optimization is used to 
displace evacuees to safe areas. Its main drawback is the relatively high 
communication overhead. (Ferscha and Zia, 2010) developed a wear
able device named LifeBelt that recommends exits to individuals based 
on the sensed environment. 

Fig. 1. Madrid Arena layout (ground floor).  
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Similarly, in (Zhong et al., 2014) the idea is to use a gene expression 
programming to find a heuristic rule. This rule is used to indicate people 
in the same sub-region to move towards the same exit. The main 
drawback of this solution is that it does not consider the dynamic 
environment features in the evacuation planning process. Later in 
(Zhong et al., 2016), they propose a heuristic rule that considers the 
distance and width of exit doors as fixed input parameters and density 
around a given subregion as a dynamic parameter. The crowd evacua
tion planning problem is converted to finding the optimal heuristic rule 
that minimizes the total evacuation time. To solve this problem, the 
authors adopt the Cartesian Genetic Programming (CGP) (Miller, 2011). 
As we will show, the learning process using CGP is complicated, and the 
control actions derived generate abnormal behaviors. Moreover, they 
ignore the safety performance indicators in the optimization process. 
Finally, in (Wong et al., 2017) a shortest path algorithm is used to 
compute routes by iteratively partitioning graph edges at critical divi
sion points. Routes are iteratively refined offline until an optimal state is 
achieved. This approach assumes that a crowd distribution is known in 
advance, not considering safety or dynamic changes during evacuation. 

As in (Abdelghany et al., 2014), our work develops a simu
lation–optimization modeling framework that searches for the optimal 
evacuation plan through meta-heuristic optimization methodology. 
However, we obtain adaptive evacuation plans capable of responding to 
changing environmental conditions. The CGP based crowd evacuation 
planning developed by (Zhong et al., 2016) adapts to changing condi
tions, but its formulation is complex and challenging to interpret. As 
mentioned above, the optimization process is complex and difficult to 
configure and does not consider safety. Moreover, the obtained evacu
ation heuristics functions for exit-choice selection generate unnatural 
pedestrian movements. In contrast, the CellEVAC system is easier to 
configure and optimize, and experiments suggest a much more natural 
behavior. Also, we include a safety metric in the optimization process. 
As far as we know, there are no studies on how to include a safety metric 
in the simulation–optimization processes to obtain evacuation plans. 

3. Simulation–optimization modeling framework 

3.1. Evacuation scenario 

Our investigation focused on Madrid Arena, an indoor arena located 
in Madrid (Spain). The pavilion was designed to host sports events, 

commercial, cultural and leisure activities. It has three floors (access, 
intermediate, and ground) and 30,000 m2, with a maximum capacity of 
10,248 spectators for basketball. Its central court has three retractable 
bleachers, allowing the surface to change depending on the type of 
event. On November 1, 2012, a stampede at a Halloween party resulted 
in the death of five girls by crushing (BBC news, 2012). According to the 
police investigation, the cause was the excess of capacity and the 
following errors in the indications of private guards and police. There 
were not any guidance system to help evacuees choose a safe exit gate. 

We studied the evacuation of the ground floor, which has a 
maximum capacity of 3, 400 spectators with the retractable bleachers 
removed. Fig. 1 shows the ground floor layout, with 1,925 m2 and eight 
exit gates (Ex1 to Ex8) with different widths between 2.5 m and 6 m. 
Each exit gate merges with exit corridors from the intermediate floors, 
generating complex interactions between different pedestrian flows. 
Pedestrian flows from intermediate floors were simulated by injecting 
pedestrians at exits 1, 2, 3, 4, and 6 at the entry points highlighted with a 
blue dot. 

3.2. CellEVAC system architecture 

A system architecture was defined to illustrate a realistic deployment 
of our CellEVAC guidance system in Madrid Arena. The architecture 
assumes the utilization of existing off-the-shelf technologies, including 
wearable devices or smartphones. The use of specific technologies and 
its in-depth analysis and evaluation is beyond the scope of this paper and 
is already underway. We aimed to conceive a generic architecture 
focusing on the functional aspects of the system rather than on the 
intrinsic elements of a specific technology. Although we include exam
ples of concrete technologies for some of the components of the archi
tecture, these are not claimed to be necessarily the only or best 
alternatives. However, we believe that this proposal is generic enough to 
leave room for exploring different technological alternatives. 

For the specific case of Madrid Arena, the ground floor was divided 
into 42 regular hexagonal cells of 9 m2 and 6 m width (Fig. 1). These 
dimensions were chosen to provide a reasonable balance between con
trol capability, wireless coverage, and computational efficiency. Fig. 2 
presents the system architecture, where a controller node embeds three 
functional blocks: pedestrian flow estimation, control logic, and Radio 
Frequency (RF) transmitter. The pedestrian flow estimation block takes 
as input periodically sampled images that are preprocessed to estimate 

Fig. 2. CellEVAC System Architecture.  
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pedestrian density at each cell. Obtained densities feed the decision logic 
block to compute the optimal allocation of colors to cells. With eight 
exits and 42 cells, we have a space of 2126 control actions at each control 
step. The RF transmitter broadcasts messages periodically containing 42 
tuples {Cell,Color} that assign a color to each cell. 

Each cell node is equipped with an active Radio Frequency Identi
fication (RFID) tag that periodically transmits a cell identification signal 
to personal devices embedding an RFID Reader, whose purpose is to 
provide location-aware capability. One real possibility to improve cell 
detection accuracy is to implement a received signal strength RFID- 
based indoor location mechanism (Alvarez Lopez et al., 2017). The 
other module in the personal device is the RF Receiver. It periodically 
receives the broadcast messages from the controller node. By matching 
the pedestrian’s cell-position and cell-color tuples, the personal device 
lights up with the corresponding exit gate color. 

From an implementation point of view, the most critical part of this 
architecture is the positioning functionality. The RFID subsystem that 
connects cells and personal devices have to cope with a complex signal 
propagation environment and highly populated communication chan
nels. The RF channel is defined as a broadcast communication channel, 
and consequently, it presents fewer problems. Finally, pedestrian 
counting technology to estimate pedestrian density is widely available 
in the market, though it should be tested and analyzed to assess its ad
equacy depending on the specific application scenario. 

3.3. Pedestrian behavior modeling 

The first step in the development of the CellEVAC guidance system 
was to model pedestrians’ exit-choice decisions using a discrete choice 
model. This choice was aimed at using the most widely applied theo
retical framework to model behavior in crowd evacuations. However, in 
contrast to most existing research, our aim was not to calibrate the 
model with real or survey data but to study the critical factors in exit- 
choice decision making and then explore optimal pedestrian behavior 
strategies. Furthermore, as mentioned in Section 2, in an attempt to 
simplify the model optimization, it was decided to use a single-layered 
discrete choice model avoiding a separate structure for exit-choice 
changing and exit-choice behaviors. For those readers interested in an 
example of calibrated exit-choice decision model, (Duives and Mah
massani, 2012) reported a comprehensive model calibrated using re
sponses to an Internet questionnaire conducted in the Netherlands and 
United States. 

The most common theoretical framework for generating discrete 
choice models is random utility theory (Antonini et al., 2006; Ben-Akiva 
and Bierlaire, 1999; Press, 1985; Ortúzar and Willumsen, 2011) which 
postulates that: 

1. Individuals belong to a homogeneous population P, own perfect in
formation and act rationally.  

2. There is a set E = {E1,…,Ej,…EN} of alternatives and a set X of 
vectors of attributes of the individuals and their alternatives. A given 
individual p is provided with a particular set of attributes x ∈ X and 
will face a choice set E(p) ∈ E.  

3. Each option Ej ∈ E has associated a utility Upj for individual p. It is 
assumed that Upj can be represented by two components: 
(a) a systematic part Vpj which is a function of the measured attri

butes x; and 
(b) a random part εpj which reflects the idiosyncrasies of each indi

vidual and any observational error made. 
Thus, we may postulate that: 

Upj = Vpj + εpj  

V carries the subscript p because it is a function of the attributes x 
and this may vary from individual to individual. It can be assumed 

that the residuals ε are random variables with mean 0 and a certain 
probability distribution to be specified. A simple and popular 
expression for V is: 

Vpj =
∑

k
βjkxpjk  

where the parameters (coefficients) β may vary across alternatives 
but are assumed to be constant for all individuals.  

4. The individual p selects the maximum-utility alternative Ej if and 
only if: 

Vpj − Vpi⩾εpi − εpj  

Thus, the probability of choosing Ej is: 

Ppj = Prob
{

εpi⩽εpj +
(
Vpj − Vqi

)
,∀Ei ∈ E

(
p
)}

and as the joint distribution of the residuals is not known, different 
model forms may be generated. 

In this research, we modeled exit-choice behavior using the simplest and 
most popular practical discrete choice model, the Multinomial Logit 
Model (MLM) (Duives and Mahmassani, 2012; Ortúzar and Willumsen, 
2011). The model is derived under the assumption that the error terms 
are independent and identically distributed (IID) Gumbel (also called 
Weibull or, more generally, Extreme Vale Type I). With this assumption, 
the choice probabilities of exit j by pedestrian p are: 

Ppj =
exp
(
Vpj
)

∑

Ei∈E(p)
exp

(

Vpi

) (1)  

The next step was to choose the attributes x of the model (i.e., the factors 
that affect exit-choice decisions). The existing research on exit-choice 
behavior has identified a broad range of influential attributes 
(Haghani and Sarvi, 2019): congestion at exits, distance to exits, angular 
displacement, social influence, visibility, exit width, and exit familiarity 
as well as personal characteristics (Duives and Mahmassani, 2012; 
Lovreglio et al., 2014; Kinateder et al., 2018). 

Several criteria were considered in choosing the attributes and 
structure of the exit-choice model. The first criterion was the relevance 
of the attributes informed by the literature and their relevance for our 
specific evacuation scenario. The second criterion was considerations 
about the number of attributes to include in the model. As stated in 
(Haghani and Sarvi, 2019) for the specific case of decision adaptation 
modeling, a long list of attributes poses significant challenges to the 
problem of model calibration and optimization. It imposes a limit on the 
number of attributes that the model can reasonably include. The third 
consideration was the necessity of embedding the directional and exit- 
choice changing decision making in a single-layered modeling struc
ture to simplify the optimization processes. Our approach contrasts with 
the two-layered approach proposed in (Haghani and Sarvi, 2019), which 
would roughly double the number of parameters to optimize. The final 
consideration was the necessity of modeling the pedestrians’ response to 
indications given by evacuation guidance systems in general and the 
CellEVAC system in particular. 

After these considerations, we assumed that exit-choice decisions 
were mainly motivated by the distance, congestion at exits, width of exit 
gates, and the number of pedestrians along the path to each exit gate 
(this is named ’group size of pedestrians’). It was decided not to include 
visibility or angular displacement attributes because the studied sce
nario had no obstacles. The primary purpose of differentiating between 
congestion at exits and group size, was to model with more precision the 
pedestrian flow dynamics in critical points. We aim to model and opti
mize safety and capacity at exits using pedestrian fundamental dia
grams, and so, it makes sense to include in the guidance systems a factor 
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that evaluates congestion at the exits exclusively, while group size 
measures congestion at inner areas. Note that both the group size and 
congestion factors inherently model the tendency to imitate behaviors. 

The current literature informs us that individuals tend to keep their 
choices as much as possible (Liao et al., 2017). We reflected this in the 
model through a decision change attribute, which captures the tendency 
to maintain the current exit-choice decision. In (Haghani and Sarvi, 
2019) this attribute is included in the exit-choice changing model as a 
constant inertia parameter. It implies that the tendency to change de
cisions is kept constant during evacuation. Here, we chose a more gen
eral approach by making the decision change factor time-dependent. It 
was reasonable to assume that uncertainty in decision making evolves as 
evacuation progresses, and so, the tendency to maintain the current 
decisions. Finally, we reflected the influence of indications of the Cel
lEVAC system through a specific attribute that takes into account the 
exit-choice indications given to each pedestrian. 

Thus, the model for exit-choice is a Multinomial Logit Model based 
on six attributes and as many alternatives as exit gates. The systematic 
utility function for pedestrian p and exit gate j is given by: 

Vpj = βD ×
DISTANCEpj

max(DISTANCE)
+ βW ×

WIDTHj

max(WIDTH)
(2)  

+βG ×
GROUPpj − GROUPmin

GROUPpj
+ βE ×

EXCONj

criticalDensityj

+βP
(
t
)
× PERSONALpj + βSYS × SYSTEMpj 

The first attribute is the distance from pedestrian or cell center p to 
exit gate j, which is normalized in the range of 0–1 using the maximum 
distance in the evacuation scenario, while the second attribute repre
sents the width of each exit gate, which is normalized in the range of 0–1 
using the maximum width. 

The third attribute is the GROUP ratio which estimates the conges
tion level along a path from a pedestrian to an exit gate j, relative to the 
congestion level at the least congested path. This estimate is converted 
into a unitless attribute and confined within a fixed interval 0–1, 
dividing it by the chosen path’s congestion level. A group ratio value of 
0 would indicate that the chosen path is the least congested path among 
the paths to the different exits. When the value of the group ratio tends 
towards 1 for a given exit, it means that the emptiest path’s imbalance 
becomes large. Therefore, the parameter βG is expected to be positive if 
pedestrians tend to follow other pedestrians and is negative otherwise. 
Note that with this type of normalization, the distribution of attribute 
values does not exhibit a priori increasing or decreasing evolution over 
time. Thus, we assumed that the relevance of the attribute in the sys
tematic utility function was kept constant throughout the evacuation 
process. 

The fourth attribute EXCON accommodates the congestion at exit 
gates. It was found reasonable to assume that pedestrians were able to 
perceive both the density and flow of pedestrians to estimate the 
congestion value. For a given density value, perceived congestion is 
higher if the pedestrian flow is low. We reflect this effect through critical 
density values obtained from the fundamental diagrams of each exit gate 
(see Section 4). This criticalDensityj value reflects the density value at 
which the exit gate’s maximum capacity is reached. Therefore, the 
EXCONj value representing density at exit gate j is normalized by the 
corresponding criticalDensityj value. This normalization converts EXCON 
into a unitless attribute around 1. When the value of EXCON is above 1, 
it means that exit is highly congested. A value close to 0 would indicate 
that the exit gate is almost empty. In contrast to the normalization 
procedure used for the GROUP attribute, the distribution of EXCON 
values exhibits a decreasing evolution as the number of pedestrians in 
the evacuation scenario decreases. It seems reasonable to assume that 
the relevance of congestion at exits as a discriminant factor for exit- 
choice decreases when the overall number of pedestrians is low, and 
so EXCON is close to 0 at all exits. We recall that the GROUP attribute’s 

relevance is kept constant during the evacuation process, which is in 
charge of capturing the imitation behaviors, avoiding duplication of 
functions with EXCON. 

The fifth attribute is the PERSONAL value associated with person p 
and exit j, which captures how individuals are likely to revise their 
previous exit-choice decision. We treat this attribute as a binary cate
gorical 0–1 value that equals 1 if the current exit-choice of pedestrian p 
is j, and is 0 otherwise (PERSONAL = 0∀k ∕= j ). Therefore, in a general 
context, the parameter βP(t) is expected to be positive if pedestrians tend 
to maintain the previous exit-choice, and is negative otherwise. How
ever, we aimed to modulate the tendency to maintain previous de
cisions, and so, βP(t) is always positive. As was noted above, we assumed 
that exit-choice changing behavior evolves as evacuation progresses, 
and therefore the parameter that modulates PERSONAL is time- 
dependent. By observing the pattern of behavior under various simula
tion settings, and considering the optimization of the model, it was 
found reasonable that the tendency to maintain decisions increased 
linearly depending on the current number of pedestrians as follows: 

βP

(

t
)

= βP ×

(

1 −
numOfPeds(t)

numOfPeds(t = 0)

)

(3) 

According to Eq. (3), at the beginning of the evacuation, the 
parameter βP(t→0) tends to 0, and so, the tendency to revise decisions is 
higher. As the number of pedestrians to evacuate decreases, the 
parameter βP(t) tends to βP, and the tendency is to maintain previous 
decisions proportionally to parameter βP value. 

Finally, the SYSTEM attribute measures pedestrians’ attitude to
wards the exit-choice indications of the CellEVAC system. We treat this 
attribute as a binary categorical 0–1 variable such that SYSTEMpj equals 
1 if pedestrian p receives an indication to choose exit j (e.g., pedestrians 
see the color corresponding to exit j in their wearable devices), and is 
0 otherwise. 

It is important to emphasize that we do not claim that the set of at
tributes is comprehensive, nor is the model using these attributes 
claimed to be necessarily the fittest form. The model was kept as simple 
as possible for two reasons. Firstly, to make model optimization possible 
in a complex non-linear environment like this, it is important not to face 
too many degrees of freedom. Otherwise, the search process might be 
unmanageable. Secondly, to keep computational efficiency to an 
acceptable level when simulating large crowds. Moreover, we followed 
the recommendation stated in (Haghani and Sarvi, 2019) to use unit-less 
attributes that help keep the model’s generalizability level. Note also 
that alternative specifications could potentially be proposed even with 
the same attributes used in our model. For instance, EXCON relevance in 
the systematic utility function decreases during the evacuation process, 
while GROUP relevance is maintained constant. Other alternatives could 
be possible depending on previous assumptions about pedestrian 
behavior. 

Another important aspect of modeling exit-choice decisions that has 
been reported in (Haghani and Sarvi, 2019) is to mitigate decision 
changes that are not physically feasible. This aspect mainly includes 
pedestrians confined by a crowded jam. In their work, two measures are 
proposed to embody the decision-change eligibility in the simulation 
model, based on measures of the local crowd density and velocity 
experienced by pedestrians and on the definition of a set of thresholds. 
This strategy could have been used in our model by applying the same 
eligibility mechanisms and then apply or not the probabilistic stage of 
the exit-choice process. However, we preferred not to include this filter 
in our proposal for two reasons. Firstly, to not increase the degrees of 
freedom and computational burden. Setting the thresholds of eligibility 
to predefined values could bias the exploration of optimal solutions. 
Secondly, for the specific case of using the model to implement the de
cision logic of CellEVAC, our experiments suggest that the movement is 
much more coordinated and homogeneous. So the probability of having 
’trapped’ pedestrians is lower. 
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Another aspect that impacts on the performance of the exit-choice 
model, when applied to model pedestrian behavior or to implement 
the decision logic of a guidance system, is the frequency at which the 
pedestrians or the system revise their decisions. In the simulation setting 
used in this work, we used an update cycle of 5 s. We keep this frequency 
constant and control the frequency of the changes at optimal levels using 
the explicit coefficient βP in the model. 

It is also important to note that the model allows us to establish a 
clear distinction between environmental factors (distance, group, width, 
and congestion), attitudinal factor (personal) and an exogenous factor 
(system). Thus, the systematic utility function allows us to model many 
different behaviors by trading off the different parameters. For example, 
we may have a pedestrian who changes from making decisions based on 
the indications received from CellEVAC to making decisions based on 
environmental factors. However, it seems reasonable to assume that a 
pedestrian following the indications is committed throughout the entire 
evacuation process. Therefore, we focused on evacuation scenarios in 
which a proportion of individuals (from 0% to 100%) were committed to 
following indications, while the rest of the individuals made their de
cisions based on environmental and attitudinal factors. Given the 
extreme nature of emergency evacuations, we assumed that individual 
characteristics tend to be reduced, and so all parameters β are defined as 
homogeneous values for each population group throughout the evacu
ation time. 

3.4. Microscopic simulation–optimization framework 

A simulation–optimization software framework was developed 
embedding agent-based simulation and discrete event simulation. The 
aim was to simulate the CellEVAC system architecture integrating 
pedestrian behavior modeling, SFM for pedestrian motion, control logic 
of exit gate indications, and optimization features. We used as a basis the 
commercially available programming, modeling and simulation 

software packages AnyLogic 1 and Matlab 2. The kernel of the simu
lation–optimization software framework is AnyLogic, which provides 
multi-paradigm simulation, integrating three different modeling 
methods: discrete event simulation, agent-based simulation, and system 
dynamics, built on top of a Java-based software development frame
work. We used extensively the AnyLogic pedestrian library, which im
plements the Social Force Model (SFM) for simulating realistic 
pedestrian motion (Helbing and Molnár, 1995). Thus, with some par
ticularities described below, the evacuation scenario layout, pedestrian 
motion, and evacuation measurements run in AnyLogic, while exit- 
choice decisions and control logic of exit gate indications are imple
mented in Matlab. AnyLogic and Matlab are interconnected in a mas
ter–slave configuration through the interface with external Java 
libraries provided by AnyLogic and the Matlab Java API engine (see 
details below). To study our CellEVAC system based on MLM, and 
compare it with a Cartesian Genetic Programming (CGP) approach, two 
simulation–optimization software environments were developed: (a) 
simulation–optimization with MLM, and (b) simulation–optimization 
with CGP, which are described in the following subsections. 

It is worth noting that we do not mean that this combination of 
AnyLogic and Matlab is the best possible simulation–optimization soft
ware framework. Many different pedestrian evacuation simulators could 
be used individually or combined with Matlab to build the models 
developed in this paper. Our motivation to choose AnyLogic has been: 
the same development platform can be used in different environments: 
supply chains, manufacturing, transportation, rail logistics, warehouse 
operations; it provides industry-specific libraries as pedestrian, rail, or 
road traffic libraries, which eases the development work significantly; 
provides multimethod simulation modeling: discrete event, agent-based, 
and system dynamics; we can include discrete event processes, a multi- 
agent system, and system dynamics in the same model; it is intuitive to 
build models using graphical elements, leaving room to program at a 
very detailed level; it provides gis maps integration, and it provides 

Fig. 3. Simulation–optimization software framework of CellEVAC with control logic based on Multinomial Logit Model (MLM).  

1 https://www.anylogic.com/ Accessed 19 June 2020.  
2 https://www.mathworks.com/ Accessed 19 June 2020. 
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native capabilities to develop simulations based on cellular automata or 
SFM. For the interested reader, in (Lovreglio et al., 2020), an online 
survey of pedestrian evacuation model usage is presented that studies 
the main trends in using pedestrian evacuation models and simulators. 

3.4.1. Simulation–optimization of MLM 
The CellEVAC simulation model with MLM control logic is shown in 

Fig. 3. The evacuation scenario layout, visualization features, and all the 
functionality regarding the SFM based pedestrian motion were imple
mented within AnyLogic. 

During a simulation, the first step is to send from AnyLogic to Matlab 
the set of parameters that configure the Pedestrians’ MLM and CellEVAC 
MLM modules, including the set of distances from the cell centers to the 
exit gates. Next, the pedestrian positioning and densities at exit gates 
and cells are periodically measured and then transformed into the set of 
attributes: pedestrian positions, density at each exit gate, and group of 
pedestrians along the path to each exit. To obtain the number of pe
destrians along a path, we used for convenience the structure of cells 
defined for CellEVAC in Madrid Arena. For each pedestrian within a 
given cell, group size is calculated by adding the pedestrians in the cells 
that are closer to each exit. All these attributes feed the CellEVAC MLM 
module in Matlab that implements the decision logic to allocate colors 
(exit gates) to cells. This mapping is sent back to AnyLogic for visuali
zation purposes, and to the Pedestrians’ MLM module within Matlab to 
generate the individual exit-choice decisions. 

Note that there is one MLM model (CellEVAC MLM) to generate exit 
gate indications and a different MLM model (Pedestrians’ MLM) used by 
pedestrians to make exit-choice decisions. These decisions may follow 
the exit gate indications through the SYSTEM attribute of the Pedes
trians’ MLM model. At one extreme, if we make βSYS = 0, pedestrians 
will not follow exit gate indications from CellEVAC MLM. At the other 
extreme, we could make all parameters β = 0 except for βSYS = 1, so 
that all pedestrians strictly follow the exit gate indications. Also note 
that these two modules’ systematic utility functions will generally differ 
in the parameter values β and in that the CellEVAC MLM module does 
not include a SYSTEM attribute. Moreover, the DISTANCE attribute in 

the CellEVAC MLM module corresponds to the distance from a cell 
center to an exit gate, while in the Pedestrians’ MLM module it corre
sponds to the distance from a pedestrian to an exit gate. 

Finally, while individual exit-choice decisions in the Pedestrians’ 
MLM model are probabilistic (see Eq. (1)), the exit gate indications for a 
given cell in the CellEVAC MLM model are based on a deterministic 
selection, corresponding to the exit gate with the highest utility. The 
deterministic selection prevents oscillations in the decision logic of 
CellEVAC. 

As far as we know, this is the first time this simulation architecture 
interconnecting AnyLogic and Matlab has been implemented. Although 
AnyLogic is very valuable in the modeling of multiagent systems and 
discrete event processes at a high level of abstraction, when developing 
algorithms in very specialized domains (e.g., Control Systems, Fuzzy 
Logic, Optimization, Deep Learning, …) or when performing highly 
intensive computational tasks (i.e., matrix computing), in our experi
ence, Matlab is a more productive computing environment. Fortunately, 
Matlab provides flexible two-way integration with other programming 
languages. With AnyLogic, we used the Matlab Engine API for Java, 
which enables Java programs to use Matlab as a computational engine. 
AnyLogic imports the Java Engine API library to enable two-way in
teractions with Matlab synchronously or asynchronously. We found that 
this implementation dramatically increased productivity in model 
development and experimentation, facilitating the exploration of new 
decision making algorithms. For example, evacuation simulations 
execute exit-choice decisions and calculation of pedestrian distances to 
exit gates every few seconds and for thousands of pedestrians. While in 
AnyLogic these tasks would imply programming for-loops, Matlab built- 
in capabilities allow matrix computation at a higher speed and with only 
a few code lines. 

To search for an optimal configuration of the CellEVAC MLM or 
pedestrians’ MLM models, we used a simulation–optimization process 
that adopts a Tabu-Search algorithm (TS) (Glover, 1997), which itera
tively searches for the near-optimal evacuation plan (optimal configu
ration of the MLM at the pedestrian level or system level). At the same 
time, the microscopic crowd simulation guides the search by evaluating 

Fig. 4. Simulation–optimization software framework with control logic based on CGP.  
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the evacuation time and safety of the solutions generated by the TS al
gorithm. The optimization process is built on top of the OptQuest 3 

optimization engine provided by AnyLogic. Fig. 3 shows the optimiza
tion module on a green background. The parameters of the CellEVAC 
MLM or pedestrians’ MLM models are the “MLM candidates” generated 
by the TS algorithm. Thus, each candidate is defined by a tentative set of 
parameters β sent to the MATLAB Engine at each iteration of the opti
mization process. The simulations results are sent back to the optimi
zation module for its evaluation and thus guide the optimization 
process. 

3.4.2. Simulation–optimization of CGP 
Fig. 4 illustrates the simulation–optimization software framework 

that replaces the CellEVAC MLM module with heuristic rules (programs) 
based on Cartesian Genetic Programming (CGP) (Miller, 2011). A heu
ristic rule in CGP is a program represented in the form of a directed 
acyclic graph as a two-dimensional grid of computational nodes, which 
include input and output nodes. In our application scenario, the input 
nodes receive the attribute values of each pair cell-exit gate (i.e., dis
tance from cell center to exit gate, density at the exit gate, group size, 
width, and tendency to maintain decisions), and a single output node 
returns the score of each pair. As in the CellEVAC MLM model, selecting 
an exit gate for a given cell is deterministic, corresponding to the exit 
gate with the highest score. 

Each node in CGP contains a set of integers that represents what 
operations the node performs on the data and where a node gets its data. 
This set of node values make up the genotype in the CGP. When the 
genotype is decoded, some nodes may be excluded when they are not 
used to calculate the output data. Thus, while the genotype in CGP has a 
fixed length, the phenotype’s size will be an intermediate value from 0 to 
the size of the genotype. 

To obtain an optimal program, we used a variant on a simple 
evolutionary algorithm known as a 1+λ evolutionary algorithm (Beyer 
and Schwefel, 2002), widely used for CGP. Although this algorithm 
could be implemented using the Matlab Global Optimization Toolbox, 
the algorithms for decoding or evaluating a CGP genotype must be 
implemented from scratch. It was decided that the best procedure to 
implement the evaluation and learning processes was to use the ECJ4 

Java-based Evolutionary Computation Research System together with 
the contribution package provided by David Oranchak5 for CGP. ECJ is 
an evolutionary computation (EC) framework written in Java. It pro
vides tools that implement many popular EC algorithms and conventions 
of EC algorithms but with a particular emphasis on genetic program
ming. ECJ is free open-source with a BSD-style academic license (AFL 
3.0). 

We were able to integrate ECJ into AnyLogic and then use its full 
potential as an open-source general-purpose evolutionary computation 
framework. ECJ was imported as an external library within AnyLogic, 
and some ECJ callback functions and AnyLogic functions were 
customized to suit all simulation model requirements. As shown in 
Fig. 3, the only difference compared to the CellEVAC framework is the 
processing of the attributes to score the pairs cell-exit gate. In the CGP 
model, attributes are processed by a CGP heuristic rule in Java within 
AnyLogic, and the results are periodically sent to Matlab. To the best of 
our knowledge, no other authors have developed this integration. 

To learn an optimal heuristic rule using CGP, we launch the ECJ 
evolutionary process within a master AnyLogic experiment by calling an 
ECJ ’Evolve’ method (see the evolutionary optimization process module 
on a green background in Fig. 4). This method invokes an AnyLogic 
simulation experiment with CGP control logic for each candidate heu
ristic rule within the population (see the CGP Heuristic Rule module on 

blue background in Fig. 4). The simulation results of each experiment 
are then sent back to the evolutionary process in ECJ to evolve the 
population using a fitness function (e.g., evacuation time and safety). 
This process is repeated until the algorithm converges to an optimal 
heuristic rule. 

4. Modeling pedestrian flows and safety 

It is well known that competition between agents at exit gates slow 
down the evacuation processes. In the faster-is-slower effect described 
by (Helbing et al., 2000), waiting is seen to help coordinate activities of 
competing agents and speed up the process, whereas more speed and 
pressure slow the overall process. Increasing time-pressure causes a se
vere reduction in the capacity of exits and a phase transition from effi
cient free flow to congested flow. The main cause of capacity drop for 
pedestrians is arc formation due to high pressure. Moreover, when 
density becomes too large, the dynamics of flow are governed by 
physical interactions generating hazardous situations. 

Evacuation systems should maintain density at exits under a critical 
value to reduce this effect. Hence, to evaluate evacuation processes and 
design effective evacuation systems, it should be deemed to characterize 
flow dynamics at exits and consider both evacuation time and safety 
metrics. To this end, the pedestrian Macroscopic Fundamental Diagram 
(MFD) has proven to be a powerful concept in understanding and con
trolling pedestrian flow dynamics. Similar to MFD for vehicular net
works, a relation exists between pedestrians’ density and the average 
flow (number of pedestrians per meter and per second) in an area. 
(Hoogendoorn et al., 2017) provides results showing theoretically and 
empirically the existence of pedestrian MFDs and the impact of density 
spatial variation on MFDs. They conclude that the spatial density vari
ation on flow is likely to be dependent on the flow configuration. In 
general, decreasing the spatial density variation will increase capacity. 
This fact has implications in the construction of MFDs using microscopic 
simulation. The shape of the MFDs will depend on the simulated flows’ 
directions, levels and time profiles. 

In our proposal to derive an MFD for each exit gate, we used 
microscopic simulation. Being our aim to obtain a safety metric using 
the fundamental diagrams, we took a conservative approach. Each 
simulation entailed pedestrians from four different directions heading to 
an exit to induce a significative variation in spatial density and model 
complex interactions. Thus, for each exit, four pedestrian flows were 
injected at four cells around. Pedestrians had a preferred evacuation 
speed obtained from a uniform distribution between 1.24 and 1.48 m/s. 
Each flow was linearly increased for 10 min leading to exceeding ca
pacity and then linearly decreased to 0 for 10 min. This sequence was 
repeated three more times to simulate queue build-up and recuperation 
phases until a simulation interval of one hour was completed. At minute 
50, the exit was locked to characterize pedestrian dynamics in the event 
of a fall. This repeating pattern and locking phase was based on exper
imentation, aiming to generate shockwaves and a representative num
ber of points in the fundamental diagram. 

Depending on the exit, peak flows ranged from 4 to 8 peds/s to 
exceed each particular critical density. With a two-second sampling 
period, density was measured in an area defined by the four closest cells 
to each exit while we took pedestrian flow measurements at each exit 
gate. 

By following the procedure described above, we were able to obtain 
the MFDs shown in Fig. 5. In blue are represented the Flow vs. Density 
measurements during the first 50 min of simulation, while the red dots 
show the exit blocking phase. We fitted curves to data using regression 
to characterize all the points of interest in the MFDs homogeneously. We 
found the polynomial model as the ideal candidate after exploring 
different alternatives of curve fitting, such as smoothing splines, rational 
polynomials, or gaussian models. Firstly, polynomials are often used 
when a simple empirical model is required to obtain critical parameters. 
Furthermore, we were able to easily parameterize the different phases of 

3 https://www.opttek.com/ Accessed 22 June 2020.  
4 https://cs.gmu.edu/̃eclab/projects/ecj/ Accessed 3 March 2020.  
5 http://www.oranchak.com/cgp/doc/ Accessed 3 March 2020. 
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pedestrian flow, looking at the fitted curve, and judging the reasonable 
values for the critical densities. In all the cases, we used the bisquare 
weights method for robust linear least-squares fitting and a sixth-order 
polynomial. 

In the MFD of Exit 1, it can be observed the different phases of 
pedestrian flow during evacuation. Each phase is delimited by the 
density value at which there is a flow peak. The critical density ρcrit 
delimits the free-flow region. During the simulations, we observed that 
once the capacity value was reached, a fast backpropagation shockwave 
was formed that rapidly carried the density value to ρover. This state 
around ρover is stable until flow decreases, and a hysteresis path moves 
density to lower values. We observed that this stable state maintained as 
long as the arc formation due to high pressure was present. During the 
locking phase, the density value increased beyond ρover up to ρlock due to 
queue accumulation. When comparing the different MFDs, we found 
only slight differences between the first seven exits, which is an expected 
result considering that the evacuation scenario’s geometry is quite 
regular, without obstacles, and widths are similar. However, during 
simulations, we observed a faster transition from ρcrit to ρover at Exits 1 
and 2 due to their funnel shape, which may contribute to more 
dangerous situations at these exits. Exit 8 shows higher density values 
but lower flow values. The only explanation for this is that it is located in 

a corner. Note that lower flow values do not mean, in this case, lower 
evacuation capacity. For instance, while at its maximum capacity Exit 8 
is able to evacuate 0.75 *6 = 4.5 peds/s, Exit 1 evacuates 2.5 peds/s. 

These density thresholds were used to build our safety metric for 
evacuation. Firstly, the safety value at each exit gate j is given by the 
following equation: 

Sf j =
(
− ρj − γ⋅σ2

j

)
× 100, (4)  

such that 

ρj =
1
N
∑N

n=1

ρ′

j

(
n
)
− ρsf j

ρlocki
− ρsf j

, (5)  

σ2
j =

1
N
∑N

n=1

(ρ′
(

n
)
− ρsf j

ρlockj
− ρsf j

− ρj

)2

, (6)  

with 

Fig. 5. Fundamental Diagrams of exit gates. The lower and upper bounds represent the 90% confidence intervals.  
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ρ′

j

(

n
)

=

{ ρj

(
n
)

ρj

(
n
)

⩾ρsf j

ρsf j
ρj

(
n
)
< ρsf j

, (7)  

ρsf j
= f
(

ρcritj , ρoverj
, ρlockj

)
(8) 

Given a set of N density values measured periodically at exit gate j, 
Eqs. (5) and (6) represent the time-mean density and density time- 
variation values in the safety Eq. (4) respectively, which are weighted 
by a configuration parameter γ. Density time-variation measures the 
negative impact of variations of pedestrian flow, as explained above. 
Both terms are normalized to 1 using the range defined by ρlockj 

and a 
predefined threshold ρsf j

. In Eq. (7), those values below ρsf j 
are equal to 

ρsf j 
to make safety metric independent of the evacuation periods that are 

considered safe. Thus, in a worst-case scenario in which exit gate j is 
locked, Sf j = − 100, while in a safe scenario where densities are always 
below ρsf j

, Sf j equals 0. 
The value given to ρsf j 

(see Eq. (8)) is defined as a function of ρcritj ,

ρoverj 
and ρlockj

. This function will depend on the specific scenario and the 
availability of calibration data. Since in our study Sf j is used primarily 
for comparison purposes and not for its calibration with real data, f(.)
was defined merely as the following weighted-average function: 

ρsf j
= 0.9⋅ρcritj + 0.1⋅ρoverj  

Moreover, we decided to make γ equal to 5 to strengthen the influence of 
density time-variations. 

Finally, to characterize the overall safety value of the evacuation 
process, we used the average safety (Eq. (9)) and and variance of the 
safety (Eq. (10)) values at the exit gates: 

Sf =
1
|E|

∑|E|

j=1
Sf j , (9)  

Sf var =
1
|E|

∑|E|

j=1

(
Sf j − Sf

)2 (10) 

The variance of safety Sfvar was used to estimate the imbalance of 
safety between the exit gates. Note that in contrast to the time-based 
measurements used to calculate safety values at exit gates, safety 
values to characterize the overall evacuation process are spatial-based 
measurements. 

5. Simulation–optimization experiments and results 

In this section, the experimental results are shown and discussed. The 
performance measurements in all the experiments were the total evac
uation time, average and variance of safety values (Eqs. (9) and (10)), 
and the average number of decision changes. The users’ average evac
uation time would be an alternative to total evacuation time, which 
could be more suitable for evacuation scenarios where time to evacuate 
is homogeneous, and there are no areas that need excessive time to 
evacuate. However, our evacuation scenarios include external pedes
trian flows that increase the variance of evacuation times between exit 
gates. 

We conducted three main types of experiments: (i) sensitivity anal
ysis of exit-choice changing strategies, (ii) simulation–optimization of 
pedestrians’ behavior, CellEVAC and CGP systems, and (iii) performance 
analysis of optimal configurations. In all the simulation setups, the 
evacuee population consisted of 3400 pedestrians on the ground floor, 
who had a preferred evacuation speed obtained from a uniform distri
bution between 1.24 and 1.48 m/s. We considered an evacuation sce
nario with external flows (i.e., with pedestrians coming from the upper 
floors) to simulate complex pedestrian flow interactions. Therefore, 
three exit gates were chosen at random at each simulation iteration. Two 
of these exit gates received an incoming pedestrian flow rate of 
120 peds/min, while the third exit gate was blocked. We have chosen 
120 peds/min by visual inspection, increasing the external pedestrian 
flows by hand until we found a flow at the corresponding exits, creating 

Fig. 6. Sensitivity analysis of the distance βD attribute without the guidance system active. The box-plots on the first row show the sensitivity of evacuation time and 
average safety to the βD attribute. The second-row plots show the sensitivity of the number of decision changes to the βD attribute, and the box-plots with the number 
of pedestrians evacuated by each exit gate. 
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significant congestion, close to the exit’s maximum capacity. 
In the sensitivity analysis experiments, each experiment ran the 

evacuation simulation model multiple times varying one of the param
eters, showing how the simulation output (i.e., the performance mea
surements) depended on it. Due to the stochastic nature of the 
evacuation processes, we used a replication algorithm to obtain repre
sentative results for a given parameter setting and a specific simulation 
output. This algorithm defines a minimum and a maximum number of 
experimental runs per parameter setting (replications of a simulation), a 
confidence level for the sample mean of replications (simulation output 
average), and an error percent. The minimum number guarantees the 
minimum number of replications, while the confidence level and error 
percent determine if more replications are needed. Simulation for a 
given parameter configuration stops when the maximum number of 
replications has been run or when the confidence level is within the 
given percentage of the mean of the replications to date. In our exper
imental setup, evacuation time was used as an output parameter to 
control the number of replications between 3 and 10. The confidence 
level was fixed to 80%, and the error percent to 0.5. 

In the simulation–optimization experiments, the goal was to find the 
combination of parameters of the MLM or CGP models that resulted in 
the optimization of evacuation time and average safety through the 
fitness function (objective function) min(evacTime − Sf). We used the 
Tabu-search optimization algorithm or the 1+λ genetic algorithm 
depending on the model MLM or CGP to optimize. As in the sensitivity 
analysis experiments, we used a replication algorithm with the same 
basic setup. For each simulation–optimization process iteration (i.e., for 

the model parameter setting to simulate and evaluate at a given itera
tion), a minimum of 3 and a maximum of 10 simulations were run for a 
total of 200 iterations. However, while in the sensitivity analysis, the 
number of replicas was limited by the evacuation time value, in simu
lation–optimizations, the stop condition was controlled by the fitness 
function (objective function). 

Finally, in the performance analysis experiments, the goal was to 
evaluate the performance of a given model parameter setting. For 
instance, for an optimal parameter setting found in a simu
lation–optimization experiment, a performance analysis experiment ran 
the optimal setting 50 times for gaining statistical significance. 

To analyze and compare the results of different experiments or 
configurations we performed one-way analysis of variance (Mont
gomery and Runger, 1996) and Tukey–Kramer multiple comparison 
tests (Läuter et al., 1989). For most of our experimental results, 
regardless of the type of performance variables, the normality tests 
rejected the null hypothesis at 5% significance level. Thus, to provide a 
robust analysis of the results, the Kruskal–Wallis test was used (Mont
gomery and Runger, 1996). 

5.1. Sensitivity analysis of exit-choice changing strategies 

We first investigated how evacuation performance could be influ
enced by exit-choice changing strategies in an evacuation scenario 
without external flows, with the guidance system disabled (i.e., 
parameter βSYS equals 0 in the pedestrians’ MLM behavior model). 

In these experiments, the only criterion for pedestrians’ exit-choice 

Fig. 7. Sensitivity analysis of βD and βP without external pedestrian flows and the guidance system inactive. The box-plots on the first and second rows show the 
sensitivity of evacuation time and average safety to the βD and βP attributes. The plots on the third row show the sensitivity of the number of decision changes to the 
βD attribute, and the number of pedestrians evacuated by each exit gate. 
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decision making was the distance. Parameter βD was varied from − 40 to 
− 1 at discrete steps to perform a sensitivity analysis. Evacuation time 
and safety results revealed pedestrians’ irregular behavior, with an un
realistic number of decision changes (see lower box-plots in Fig. 6). The 
visualization of simulations confirmed that the movement of pedestrians 
was unnatural. As expected, as βD increased (i.e., the distance criterion 
was less critical) uncertainty in decision making was higher, the number 
of decision changes increased exponentially, and the safety and evacu
ation time worsened (Fig. 6). When βD was close to − 1, pedestrians were 
not able to escape from the evacuation scenario, and so the performance 
measurements were distorted. Being the distance the only criterion for 
evacuation, the number of pedestrians evacuated through the exit doors 
was unbalanced (see box-plot of the number of peds over exits in Fig. 6). 
For instance, exit gate 8 evacuated the least number of pedestrians, 
though it is the exit with the highest capacity. Overall, these results 
revealed the necessity of including an exit-choice changing attribute in 
the MLM model to modulate the number of decision changes. 

The next experiments extended the previous sensitivity analysis to 
include the PERSONAL attribute, which models exit-choice changing 
behavior. Parameter βP was varied in the range 1 to 29 at discrete steps 
to modulate the tendency to maintain the current exit-choice decision. 
Fig. 7 presents the results of the sensitivity analysis. The first row shows 
the results of the experiments, in which for a given βD value, βP is varied 
in the range 1 to 29 (i.e., for a given βD value, we performed 29 evac
uation experiments with a different βP value). In the second row, the 
box-plots show for a given βP the results of 40 evacuation experiments 
with a different βD value. In the decision changes box-plot (third row), 
for each βD value, we perform four experiments with βP equal to 0, 1, 15 
and 29. 

The results obtained confirmed the hypothesis of a much more stable 
and realistic pedestrians’ behavior. For a wide range of values of both 
parameters βD and βP, evacuation time and safety values were confined 
within a small range of values. Moreover, evacuation time significantly 
improved when compared to not using the PERSONAL attribute. For 
instance, for a value of βD = − 22, median evacuation time was around 
4.8 minutes, while without the PERSONAL attribute, it varied in the 
range 6–12 min. 

In contrast, the safety value worsened from − 14 to − 19 with the 
PERSONAL attribute. These results suggest that there is a correlation 
between safety and the number of decision changes. Uncoordinated 
movement of pedestrians far from the exit gates made the evacuation 
time increase, density at exit gates decrease, and so safety at exits 
improve. As regards the results for the number of decision changes, these 
revealed a significant reduction in the number of decision changes as βP 
increased. When combined with the evacuation time and safety results, 
it can be seen that the optimal strategy is to make very few exit-choice 
changing decisions (βP = 29) based on a highly influential distance 
criterion (βD = − 40). Finally, as in the previous experiment, there was 
not a fair balance between the different outflows. We replicated the 
experiments in an evacuation scenario with external flows. The results 
obtained are similar to those outlined above, except for the magnitude of 
the evacuation performance results. 

These experiments are consistent with previous findings (Haghani 
and Sarvi, 2019). According to our results, it is evident that the inclusion 
of the decision change PERSONAL attribute made a very substantial 
difference in terms of the efficiency of evacuations. Moreover, the ex
periments confirmed the viability of including the modeling of exit- 
choice changing behavior in a single-layered MLM structure. 

5.2. Simulation–optimization of pedestrians’ behavior (OPTIMAL), the 
CellEVAC and CGP systems 

Here we investigated the optimal individual behavior of pedestrians 
(OPTIMAL), and the optimal configurations of the CellEVAC and CGP 
guidance systems. In Appendix A are described in detail the conducted 
optimization processes. 

The optimal settings found for OPTIMAL and CellEVAC have been 
summarized in Table 1. The STANDARD parameter setting in Table 1 
models typical pedestrian behavior in which exit-choice decisions are 
based mainly on distance, and to a lesser extent, on imitation and visual 
perception of the exit gates’ width. These values are based on the 
parameter setting obtained in (Duives and Mahmassani, 2012) for a 
calibrated model. However, these values are not claimed to be neces
sarily the fittest form of standard behavior, but a typical behavior 
strategy to compare. Finally, we found the following heuristic rule for 
the CGP system: 

score
(
celli∈{1,…,42}, exit − gatej={1,…,8}

)
=

*( − ( − ( − WW)G)( − P( + G( − PD))))

( + ( + ( − ( − (/(/P( − PD))(/(/P( − PD))

( − PD)))( − WW))

( − P(/P( + G( − PD)))))

(*(/(/P( − PD))

(/(/P( − PD))( − PD)))E))
( + (/( − PD)( + (/P( − PD))( − ( − WW)G)))E))

where D = DISTANCE,E = EXCON,G = GROUP,W = WIDTH and P =

PERSONAL. 
The obtained parameter values for OPTIMAL revealed that the most 

influential factor was the distance. Interestingly, we found that group 
imitation behavior (βG = 9.909) had a positive effect. Our interpreta
tion, corroborated by visual inspection, is that collective intelligence 
contributes to a better balance in exit gate sharing in the presence of 
complex pedestrian flow interactions. 

The negative sign of βE (congestion at exit gate) highlighted the 
benefit of avoiding congested exit gates. However, the exit gate’s width 
was found irrelevant in scenarios with external flows. These results are 
in line with our hypothesis of a better evacuation performance in com
plex environments when using adaptive strategies. Finally, the value 
obtained for exit-choice changing parameter βP confirmed the positive 
effect of gradually smoothing the number of decision changes during the 
evacuation process. 

For CellEVAC, the parameter values also revealed that the most 
influential factor was the distance. Remarkably, we found that in 
contrast to OPTIMAL (i.e., assuming that individuals behave optimally 
at an individual level), the group parameter βG had a negative sign. Our 
interpretation is that the group imitation effect is implicit in the cell- 
based control of pedestrian movements, so a positive value of this 
parameter negatively influences an excessive uniformity in the exit gate 
indications. Therefore, the βG parameter compensates for the implicit 
grouping effect of CellEVAC. We also observed significant differences in 
magnitude in the exit gate width and decision changing parameters. The 
tendency to maintain previous cell indications by the CellEVAC system 
was significantly lower than to main previous exit-choice decisions at 
the individual level (2.594 vs. 8.515). The width of the exit gate, which 
was not considered at the individual level, appeared at system level. 

The interpretation of the heuristic rule for the CGP system is not 
straightforward, and we would need to apply partial derivatives to 
extract information regarding the influence of the different attributes. 
Also, due to the simulation processes’ stochastic nature in CGP, each 
optimization trial may obtain different heuristic rules, making gener
alization difficult. 

Table 1 
Optimal and standard configurations of the parameters of the pedestrians’ MLM 
behavior model.   

βD  βG  βE  βW  βP  

STANDARD − 28 0.6 − 0.5 0.6 0 
OPTIMAL − 28.863 9.909 − 2.801 0 8.515 
CellEVAC − 17.723 − 2.181 − 1.671 1.064 2.594  
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5.3. Performance results 

The performance analysis results have been summarized in Figs. 8 
and 9. As expected, the experiments revealed significantly better overall 
performance in the optimized models than the STANDARD behavior. 
When using the CellEVAC system, the results were very similar to those 
obtained when pedestrians followed the ideal individual strategy 
defined by the OPTIMAL configuration. The median evacuation time 
was around 8 min with CellEVAC, only 30 s above OPTIMAL. It is 
interesting to note that the number of decision changes decreased 
dramatically with CellEVAC due to the high degree of coordination 
imposed by the CellEVAC system through the exit gate indications. 
When comparing CellEVAC and CGP, the results showed a significantly 
better performance of CellEVAC in terms of safety variance and the 
number of decision changes. It confirmed that CellEVAC balances 
pedestrian flows significantly better than CGP. 

The outcomes of single run simulations are shown in Fig. 10. For 
comparison, external flows in all simulations were injected at exits 2 and 

4, while the entry at exit gate 8 was blocked. Pedestrians’ speed was 
artificially reduced by a factor of 100 in a restricted area at the entrance 
of the exit gate 8 to simulate that an external event blocked the exit. 

The density and safety plots for the STANDARD strategies showed 
highly unbalanced pedestrian flows at the exit gates. Exit 8, which was 
the exit with the highest capacity, was underutilized. Also, we observed 
low safety levels at exit gates 2 and 4 due to external flows. In contrast, 
CellEVAC exhibited balanced pedestrian flows at the exit gates and 
significantly lower decision change values compared to the other con
figurations. The CGP system showed highly unbalanced pedestrian flows 
at the exit gates and significant oscillations in the density curves. In the 
same scenario, CellEVAC presented a much more homogeneous and 
stable evolution of pedestrian flows. Notably, the distribution of deci
sion change values showed an inferior performance in CGP, significantly 
skewed to the right. 

Still images of the single run simulation experiment for the STAN
DARD configuration in Fig. 11 showed the accumulation of pedestrians 
at both exits. With STANDARD, it can be observed how exits 2 and 4 (red 
and yellow) are still collapsed at minute 6, while with OPTIMAL exits 1 
and 5 share their capacity to discharge exits 2 and 4 respectively 
(Fig. 12). Contrary to expectations, safety at exit 8 was high, but the 
explanation is that its capacity doubles the capacity of the remaining 
exit gates. It is crucial to note that with the optimal strategy the balance 
of the pedestrians flows at the exit gates is significantly improved, and so 
the safety and evacuation time. These results exemplify the importance 
of the right balance of pedestrian flows in the improvement of evacua
tion processes. The simulations revealed that OPTIMAL provided a much 
better balance between the exit gates at the cost of significantly higher 
decision changes (histograms in Fig. 10). 

In Fig. 13, still images of the evacuation experiment when using 
CellEVAC showed how exits 1, 5, and 7 (blue, magenta, and pink) shared 
their capacity to discharge the congested exits 2, 4 and 8 (red, yellow 
and green) respectively. It is important to note that pedestrians’ move
ment is more homogeneous when using the CellEVAC guidance system, 
compared to pedestrians making decisions at the individual level 
without following indications (see Fig. 11). Overall, these results have 
further strengthened our confidence in the CellEVAC MLM system as an 
effective adaptive guidance system. 

Finally, still images for the CGP single run experiment in Fig. 14 
showed how different exit gates discharged the congested exit gates 2 
and 8 (red and green) at different moments. However, exit gate 4 (yel
low) remained congested during the evacuation process. In contrast, 
with CellEVAC, the three congested exit gates were discharged by 
adjacent exit gates with available capacity, exhibiting a much more 
stable behavior. It is important to note that pedestrians’ movement 
suffered from large oscillations, showing a highly unnatural behavior. 

Using an optimized behavior model to implement the decision logic 
of a guidance system, as hypothesized, helps to provide adequate control 
actions (indications) more similar to human behavior. We believe that 
this kind of indication will be easier to follow by pedestrians in evacu
ation scenarios characterized by high uncertainty, stress, and panic. 

5.4. How the compliance rate of CellEVAC influences evacuation 
efficiency 

The outcomes of the CellEVAC sensitivity analyses to compliance 
rate are presented in Fig. 15. Compliance rate ranged from 0% (STAN
DARD) to 100% (CellEVAC) in increments of 20%. The percentage of 
users using CellEVAC were committed to follow indications during all 
the evacuation process, while the remaining users followed the STAN
DARD behavior. 

Based on sensitivity analyses to evacuation time, the system required 
60% of people to use CellEVAC to achieve the best value of evacuation 
time. As regards average safety and safety variance, results showed a 
linear improvement. Finally, the number of decision changes also 
exhibited a linear improvement with an increasing compliance rate. 

Fig. 8. Box-plots of the performance measurements for the STANDARD, 
OPTIMAL, CellEVAC and CGP configurations. 

Fig. 9. Multiple comparison tests of the performance measurements for the 
STANDARD, OPTIMAL, CellEVAC and CGP configurations. 
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Fig. 10. Results of single run simulations. Each sub-figure shows the evolution of the pedestrian densities, safety values and evacuation curves at each exit gate, and 
the histogram (probability density function) of the number of decision changes. 

Fig. 11. Still images from the single run simulation experiments of the STANDARD behavior.  
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Fig. 12. Still images from the single run simulation experiments of the OPTIMAL individual behavior.  

Fig. 13. Still images from the single run simulation experiments of the CellEVAC system with external flows at exit gates 2 and 4, and exit gate 8 blocked. Each cell 
shows the color corresponding to the recommended exit gate. 
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Overall, the most remarkable result of the sensitivity analyses is that the 
system is highly effective, even at low compliance rates. 

5.5. Discussion 

Our use of an optimized exit-choice behavior model to implement the 
control logic of an adaptive guidance system of exit-choice has proven to 
be very efficient in terms of the evacuation time, safety, and the number 
of decision changes. This technique improves existing non-adaptive 
approaches, which are very efficient in evacuation time but generate 
fixed plans incapable of responding to unexpected conditions (Abdel
ghany et al., 2014; Zhong et al., 2014; Wong et al., 2017). The experi
mental evaluation confirms that CellEVAC performs better than 
adaptive proposals based on heuristic rules (CGP) (Zhong et al., 2016). 
Moreover, our experimentation with CGP was challenging concerning 
the optimization process. 

The operation of CellEVAC confirms the hypothesis of a much more 
natural response to exit-choice indications than those obtained with 
heuristic rules. In evacuation scenarios, characterized by high levels of 
stress, uncertainty, and panic, receiving instructions that are optimal 
and closer to human behavior patterns are particularly important for a 
much higher utilization rate and efficiency. Significantly, CellEVAC 
proves to be effective even in scenarios with a utilization rate of 40%. 
Imitation behavior seems to be crucial in its effectiveness in this regard. 

Up to our knowledge, this is the first evacuation guidance system 
architecture based on color codes for the adaptive recommendation of 
exit gates. We strongly believe that this architecture has a high potential 
for its simplicity. From the physical deployment perspective, its cost and 
complexity may be small, as explained in the architecture description. 
Besides, the human–machine interface provides clear and simple in
structions that are easy to follow. This latter aspect complements the 
natural behavior patterns generated by the exit indications given by 
CellEVAC. 

Another of our main goals was to include the safety measure as a 
performance objective. The result is that the optimization processes 
search for the right balance of the pedestrian flows using the modeled 
dynamic response of the exit gates throughout pedestrian fundamental 
diagrams. This approach has allowed improving the evacuation pro
cesses significantly. Note, however, that the measurement of safety in 
our research depends on arbitrary density thresholds for comparison 
purposes. Depending on the specific scenario, and the forecast of ca
pacity and flows, it would be necessary to apply some calibration 
technique to set the adequate thresholds in the pedestrian fundamental 
diagrams. 

We are aware that the average and variance of safety at the exit 
gates, could be replaced by other statistics depending on the specific 
application, and the analysis and calibration based on real experiments. 
For example, instead of using the average value, we could be more 

Fig. 14. Still images from the single run simulation experiments of the CGP system with external flows at exit gates 2 and 4, and exit gate 8 blocked. Each cell shows 
the color corresponding to the recommended exit gate. 
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conservative using a maxi-min objective function. Finally, we have 
considered safety at exit gates, ignoring the analysis of safety in other 
areas. In an evacuation scenario with a relatively small size as the one 
addressed in our work, it seems reasonable to focus the study at the exit 
gates, which are typically the most dangerous zones. However, in larger 
scenarios, it would be interesting to extend the safety measurements to 
the entire evacuation area. 

In line with (Haghani and Sarvi, 2019), modeling the exit-choice 
change has proven to be a critical parameter in modeling optimal in
dividual behavior and modeling and optimizing the CellEVAC decision 
control module. The integration of exit-choice changing behavior and 
the remaining attributes of exit-choice decision making, allowed us to 
significantly reduce the number of degrees of freedom of the model and 
simplify the optimization process. However, this does not exclude the 
study of alternatives based on a two-layered model. 

Interestingly, the results highlight the importance of imitation pat
terns in individual behavior, which are nevertheless of sign negative in 
the CellEVAC system. The grouping effect of CellEVAC indications seems 
to inherently incorporate the imitation pattern, which has to be 
compensated by the negative value of the parameter βP. 

Although the simulation–optimization modeling framework pro
posed in this paper is extensible to scenarios different from Madrid 
Arena, some aspects are specific and restrict its direct application. For 
instance, a different facility will require a different cell structure 
depending on its size and shape, maybe with cells of different sizes. 
Moreover, we will need to compute the fundamental diagrams of the exit 
gates and calibrate their density thresholds. The direct vision to all the 
exit gates and the absence of obstacles simplified the design of the exit- 
choice models and the infrastructure of light indicator panels. In sce
narios without direct vision and obstacles, we would need intermediate 
light indicator panels, in addition to those located at the exit gates. This 
fact represents a significant challenge to investigate. 

Regarding the simulation–optimization processes, we have followed 
a cross-validation method, in which two different models, for scenarios 
with and without external flows, are validated in scenarios with and 
without external flows. Another possibility would have been to generate 
a single optimal model by using many different pedestrian flow patterns. 
However, our objective was not to generalize but to investigate the 

influence of different factors on evacuation processes (e.g., different 
fitness functions or different expected pedestrian flows). According to 
the experimental results, it seems reasonable that by following the same 
procedures, it is possible to configure CellEVAC in very different 
scenarios. 

6. Conclusions 

We have proposed an adaptive guidance system named CellEVAC for 
crowd evacuations based on exit-choice indications. These indications 
have the form of colors displayed in personal or wearable devices that 
allow evacuees to find the exit gate with the corresponding colored light 
indicator panel. This type of indication simplifies greatly its interpre
tation, which is particularly important in stressful situations found 
typically in evacuation scenarios. 

Our research focused on Madrid Arena, an indoor arena located in 
the city of Madrid (Spain). We have defined a system architecture that 
divides the facility into homogeneous cells such that evacuees in the 
same cell receive the same indications. The architecture assumes an 
indoor or outdoor positioning system that provides pedestrians location- 
aware capabilities. The core of the system is the controller module 
(decision logic module) that monitors the environment, decides on the 
allocation of exit gates (colors) to cells, and sends this allocation to 
sensor nodes located in the center of the cells. This information is 
transmitted periodically throughout a broadcast communication 
channel. 

The first aim of our study was to assess the use of a pedestrians’ exit- 
choice behavior model to implement the decision logic module. We built 
this module upon the simplest and most popular practical discrete 
choice model, the Multinomial Logit Model (MLM). Our goal was to find 
the optimal configuration of the model to optimize evacuation time and 
safety. Thus, the procedure for conducting the optimization processes 
was to adopt a simulation–optimization approach in which heuristic 
search algorithms integrate with a microscopic pedestrian simulation 
based on the Social Force Model. 

We built two different simulation–optimization frameworks inte
grating pedestrian behavior modeling, social force model for pedestrian 
motion, control logic of exit gate indications, and optimization features. 

Fig. 15. Box-plots of the sensitivity analyses of the performance measurements to the compliance rate of CellEVAC. Horizontal axes categorize the compliance rate 
from 0% (STANDARD) to 100% (CellEVAC). 
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In the first framework, AnyLogic simulation software interconnected 
with a Matlab engine. We used this software framework to perform 
Tabu-search optimization of the MLM model and perform sensitivity and 
performance analyses. The second software framework interconnected 
AnyLogic with a Matlab engine and ECJ (Evolutionary Java Computa
tion Framework). This configuration was used to optimize, evaluate, and 
compare an existing control logic based on Cartesian Genetic Pro
gramming. With the interconnection of these programming, simulation, 
and optimization software applications, we have found a cutting-edge 
solution for developing simulation–optimization in the field of pedes
trian evacuation. 

The second aim of our research was about defining a safety metric for 
evacuation processes to be used in the optimization processes as an 
explicit objective. Something neglected in the existing literature. We 
have introduced a method in which we first calculate the pedestrian 
fundamental diagrams of the exit gates to capture their dynamics. Based 
on the fundamental diagrams, the next step is to establish specific 
density thresholds for each exit gate that determine what is considered 
safe. Following this procedure, we have described overall statistics that 
define performance safety values systematically and objectively. 

With these two main objectives in mind, we first investigated how 
evacuation performance could be influenced by different individual 
behaviors, paying attention to exit-choice changing strategies. The 
sensitivity analyses and optimization results have underlined the 
importance of imitation behaviors and exit-choice changing modeling in 
the performance of evacuation processes. In contrast to existing 
research, we incorporated the modeling of exit-choice changing 
behavior in the exit-choice decision model. We have confirmed the 
viability of this integration and the simplification of the optimization 
processes. 

Next, we moved on to the optimization tasks at a system level. Our 
goal here was to optimize the MLM behavior model used in the decision 
logic module of CellEVAC. We obtained the best results when the opti
mization objective was defined explicitly in terms of evacuation time 
and safety, and the evacuation scenario included complex pedestrian 
flows. The performance analyses of the model obtained, confirmed a 
balanced pedestrian flow and a natural movement to the exit gates, in 
addition to a similar performance when compared to the optimal 

behavior at an individual level. Interestingly, imitation behavior dis
appeared from the optimal MLM model in CellEVAC due to the grouping 
effect inherent to the CellEVAC indications. 

We compared the MLM behavior model with an existing Cartesian 
Genetic Programming approach based on the optimization of heuristic 
rules. The results confirmed the advantage of using a behavior model to 
control the indications of exit-gates. The use of heuristic rules exhibited 
a worst overall performance, with unnatural movements and an exces
sive number of decision changes. Moreover, we found it quite prob
lematic to configure the optimization process. 

The evidence from this study suggests the viability of CellEVAC as an 
effective adaptive guidance system based on exit-choice indications. 
Taken together, the results confirm that optimized pedestrian behavior 
models can be effectively used to develop decision logic modules in 
adaptive guidance systems for crowd evacuations. 

Several extensions are considered for this research. We are in the 
process of investigating specific technologies to implement and deploy 
the CellEVAC. Also, we will examine the differences between a single- 
layered decision model and a two-layered model with separate func
tions for exit-choice changing and exit-choice decision. We will need to 
investigate how to reduce the complexity of the optimization processes 
with two-layered models. Effort is also underway to study the use of 
CellEVAC in different evacuation scenarios with obstacles and dynamic 
conditions in the facility. Another research extension is related to the 
calibration with real data of the safety model. In a deployment of Cel
lEVAC in real scenarios, we will need to determine the optimal density 
thresholds to improve safety. Finally, in mega facilities such as grand 
stadiums, developing a safety metric that includes the pedestrian flow 
dynamics of all the facility and not the exit gates only, will need to be 
undertaken. 
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Appendix A. Optimization processes 

Fig. A.1 illustrates the progress of the simulation–optimization processes to obtain the optimal configurations for the OPTIMAL, CellEVAC and CGP 
models. We imposed an arbitrary simulation stop-limit of 15 min to evacuation time, after which the simulation iteration stopped. The aim was to 
avoid the consumption of simulation time in non-viable solutions during the optimization process. 

In the optimization of the individual pedestrian behavior (i.e., OPTIMAL configuration) and the CellEVAC system, a restriction to the viability of 
solutions was incorporated in the Tabu-search algorithm, removing solutions in which there were pedestrians pending evacuation. We discovered that 
the search process could find solutions in which pedestrians did not move, artificially increasing the objective value due to an average safety close to 0. 

For the CellEVAC guidance system, we assumed that the entire population of evacuees followed the indications of the CellEVAC system, and 

Fig. A.1. Progress of the simulation–optimization processes. For OPTIMAL and CellEVAC the blue dots below the current best-solution line represent the non-viable 
solutions obtained during the Tabu-search optimization process. 

M.A. Lopez-Carmona and A. Paricio Garcia                                                                                                                                                                                              



Safety Science 139 (2021) 105215

21

therefore in the pedestrians’ MLM behavior model, all the parameters were equal to 0, except for βSYS = 1. 
The simulation–optimization process of the CGP model was configured following the recommendations of (Miller, 2011) as follows: population of 

1+λ = 5 (i.e., population of 5 candidate solutions per iteration of the genetic algorithm), a mutation rate μr = 0.75%,4000 nodes, 5 input nodes, and 1 
output node. We found that the algorithm did not converge to viable solutions even with short genotypes. The solution was to include in the fitness 
function, the number of people waiting to be evacuated at the end of the simulation deadline (15 minutes): min(evacTime − Sf + numberOfWaitPeds). 
Thus, at the first iterations of the optimization process the search was directed towards minimizing pedestrians’ number. Once the search process 
found solutions that were able to evacuate all the population, the next iterations were automatically focused on improving evacuation time and safety. 
In addition to this modification of the fitness function, we had to progressively increase the length of the chromosome from 50 to 4000 nodes until we 
finally found viable solutions. 

The best solution curve shows how fitness values progressively decreased from 3000 to 20. As in the optimization of CellEVAC, we assumed that the 
entire population of evacuees followed the indications of the CGP module. 
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