13,296 research outputs found

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    An agent system to support student teams working online

    Get PDF
    Online learning is now a reality, with distributed learning and blended learning becoming more widely used in Higher Education. Novel ways in which undergraduate and postgraduate learning material can be presented are being developed, and methods for helping students to learn online are needed, especially if we require them to collaborate with each other on learning activities. Agents to provide a supporting role for students have evolved from Artificial Intelligence research, and their strength lies in their ease of operation over networks as well as their ability to act in response to stimuli. In this paper an application of a software agent is described, aimed at supporting students working on team projects in the online learning environment. Online teamwork is problematical for a number of reasons, such as getting acquainted with team members, finding out about other team members’ abilities, agreeing who should do which tasks, communications between team members and keeping up to date with progress that has been made on the project. Software agents have the ability to monitor progress and to offer advice by operating in the background, acting autonomously when the need arises. An agent prototype has been developed in Prolog to perform a limited set of functions to support students. Team projects have a planning, doing and completing stage, all of which require them to have some sort of agent support. This agent at present supports part of the planning stage, by prompting the students to input their likes, dislikes and abilities for a selection of task areas defined for the project. The agent then allocates the various tasks to the students according to predetermined rules. The results of a trial carried out using teams working on projects, on campus, indicate that students like the idea of using this agent to help with allocating tasks. They also agreed that agent support of this type would probably be helpful to both students working on team projects with face to face contact, as well as for teams working solely online. Work is ongoing to add more functionality to the agent and to evaluate the agent more widely

    Agent-supported cooperative learning environments

    Get PDF
    We survey our research on (3D) virtual environments inhabited by agents that help visitors to get information and to get a tusk done. The main ideas and designs can be tuned to different applications, including information und transaction services (e-commerce), collaborative work and educational domains

    Distributed, cooperating knowledge-based systems

    Get PDF
    Some current research in the development and application of distributed, cooperating knowledge-based systems technology is addressed. The focus of the current research is the spacecraft ground operations environment. The underlying hypothesis is that, because of the increasing size, complexity, and cost of planned systems, conventional procedural approaches to the architecture of automated systems will give way to a more comprehensive knowledge-based approach. A hallmark of these future systems will be the integration of multiple knowledge-based agents which understand the operational goals of the system and cooperate with each other and the humans in the loop to attain the goals. The current work includes the development of a reference model for knowledge-base management, the development of a formal model of cooperating knowledge-based agents, the use of testbed for prototyping and evaluating various knowledge-based concepts, and beginning work on the establishment of an object-oriented model of an intelligent end-to-end (spacecraft to user) system. An introductory discussion of these activities is presented, the major concepts and principles being investigated are highlighted, and their potential use in other application domains is indicated

    Prediction of intent in robotics and multi-agent systems.

    Get PDF
    Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches

    PACMAS: A Personalized, Adaptive, and Cooperative MultiAgent System Architecture

    Get PDF
    In this paper, a generic architecture, designed to support the implementation of applications aimed at managing information among different and heterogeneous sources, is presented. Information is filtered and organized according to personal interests explicitly stated by the user. User pro- files are improved and refined throughout time by suitable adaptation techniques. The overall architecture has been called PACMAS, being a support for implementing Personalized, Adaptive, and Cooperative MultiAgent Systems. PACMAS agents are autonomous and flexible, and can be made personal, adaptive and cooperative, depending on the given application. The peculiarities of the architecture are highlighted by illustrating three relevant case studies focused on giving a support to undergraduate and graduate students, on predicting protein secondary structure, and on classifying newspaper articles, respectively

    Supporting peer interaction in online learning environments

    Get PDF
    This paper reports two studies into the efficacy of sentence openers to foster online peer-to-peer interaction. Sentence openers are pre-defined ways to start an utterance that are implemented in communication facilities as menu’s or buttons. In the first study, typical opening phrases were derived from naturally occurring online dialogues. The resulting set of sentence openers was implemented in a semi-structured chat tool that allowed students to compose messages in a freetext area or via sentence openers. In the second study, this tool was used to explore the students’ appreciation and unprompted use of sentence openers. Results indicate that students hardly used sentence openers and were skeptical of their usefulness. Because both measures were negatively correlated with students’ prior chat experience, optional use of sentence openers may not be the best way to support students’ online interaction. Based on these findings, alternative ways of using sentence openers are discussed and topics for further research are advanced

    Intelligent training in control centres based on an ambient intelligence paradigm

    Get PDF
    This article describes a new approach in the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances

    Designing Adaptive Instruction for Teams: a Meta-Analysis

    Get PDF
    The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or educational experience tailored by artificially-intelligent, computer-based tutors with the goal of optimizing learner outcomes (e.g., knowledge and skill acquisition, performance, enhanced retention, accelerated learning, or transfer of skills from instructional environments to work environments). The core contribution of this research was the identification of behavioral markers associated with the antecedents of team performance and learning thus enabling the development and refinement of teamwork models in ITS architectures. Teamwork focuses on the coordination, cooperation, and communication among individuals to achieve a shared goal. For ITSs to optimally tailor team instruction, tutors must have key insights about both the team and the learners on that team. To aid the modeling of teams, we examined the literature to evaluate the relationship of teamwork behaviors (e.g., communication, cooperation, coordination, cognition, leadership/coaching, and conflict) with team outcomes (learning, performance, satisfaction, and viability) as part of a large-scale meta-analysis of the ITS, team training, and team performance literature. While ITSs have been used infrequently to instruct teams, the goal of this meta-analysis make team tutoring more ubiquitous by: identifying significant relationships between team behaviors and effective performance and learning outcomes; developing instructional guidelines for team tutoring based on these relationships; and applying these team tutoring guidelines to the Generalized Intelligent Framework for Tutoring (GIFT), an open source architecture for authoring, delivering, managing, and evaluating adaptive instructional tools and methods. In doing this, we have designed a domain-independent framework for the adaptive instruction of teams
    • …
    corecore