
PACMAS: A Personalized, Adaptive, and
Cooperative MultiAgent System Architecture

Giuliano Armano, Giancarlo Cherchi, Andrea Manconi, and Eloisa Vargiu
University of Cagliari

Piazza d’Armi
I-09123, Cagliari, Italy

Email: {armano,cherchi,manconi,vargiu}@diee.unica.it

Abstract— In this paper, a generic architecture, designed to
support the implementation of applications aimed at manag-
ing information among different and heterogeneous sources,
is presented. Information is filtered and organized according
to personal interests explicitly stated by the user. User pro-
files are improved and refined throughout time by suitable
adaptation techniques. The overall architecture has been called
PACMAS, being a support for implementing Personalized, Adap-
tive, and Cooperative MultiAgent Systems. PACMAS agents are
autonomous and flexible, and can be made personal, adaptive and
cooperative, depending on the given application. The peculiarities
of the architecture are highlighted by illustrating three relevant
case studies focused on giving a support to undergraduate and
graduate students, on predicting protein secondary structure, and
on classifying newspaper articles, respectively.

I. I NTRODUCTION

Accessing the widespread amount of distributed information
resources, such as the World Wide Web (WWW), entails rel-
evant problems (e.g., “information overload” [19]). Moreover,
different users are typically interested in different parts of
the available information, so that personalized and effective
information-filtering procedures are needed. Software agents
have been widely proposed for dealing with this kind of
information retrieval and filtering problems [13] [8] [15] [25].

From our perspective, assuming that information sources
are a primary operational context for software agents, the
following categories can be identified focusing on their specific
role: (i) information agents, able to access to information
sources and to collect and manipulate such information [19],
(ii) filter agents, able to transform information according to
user preferences [18], (iii)task agents, able to help users to
perform tasks by solving problems and exchanging informa-
tion with other agents [10], (iv)interface agents, in charge
of interacting with the user such that she/he interacts with
other agents throughout them [17], and (v)middle agents,
devised to establish communication among requesters and
providers [7]. Although this taxonomy is focused on a quite
general perspective, alternative taxonomies could be defined
focusing on different features. In particular, one may focus on
capabilities rather than roles, a software agent being ableto
embed any subset of the following capabilities: (i)autonomy,
to operate without the intervention of users; (ii)reactivity, to
react to a stimulus of the underlying environment according
to a stimulus/response behaviour; (iii)proactiveness, to exhibit

goal-directed behavior in order to satisfy a design objective;
(iv) social ability, to interact with other agents according to
the syntax and semantics of some selected communication
language; (v)flexibility, to exhibit reactivity, proactiveness, and
social ability simultaneously [24]; (vi)personalization, to per-
sonalize the behavior to fulfill user’s interests and preferences;
(vii) adaptation, to adapt to the underlying environment by
learning how to react and/or interact with it; (viii)cooperation,
to interact with other agents in order to achieve a common
goal; (ix) deliberative capability, to reason about the world
model and to engage planning and negotiation, possibly in
coordination with other agents; (x)mobility, to migrate from
node to node in a local- or wide-area network.

In this paper, we present a generic multiagent architecture
designed to support the implementation of applications aimed
at: (i) retrieving heterogeneous data spread among different
sources (i.e., generic html pages, news, blogs, forums, and
databases), (ii) filtering and organizing them according toper-
sonal interests explicitly stated by each user, and (iii) providing
adaptation techniques to improve and refine throughout time
the profile of each selected user.

Each agent is autonomous and flexible, and may implement
(one or more of) the following capabilities: personalization,
adaptation, and cooperation. The overall architecture hasbeen
called PACMAS, being designed to support the implementa-
tion of Personalized, Adaptive, and Cooperative MultiAgent
Systems. The PACMAS architecture can easily give rise to
specific systems by (1) identifying the characteristics of the
dataflow that occurs from information sources to users (and
vice versa), and (2) customizing each involved agent according
to its actual role and capabilities.

The remainder of this paper is organized as follows: In
Section 2 the Personalized, Adaptive, and Cooperative ar-
chitecture, called PACMAS, is depicted. In Section 3, three
case studies are presented, each one customized for a specific
application. Section 4 draws conclusions and future work.

II. T HE PACMAS ARCHITECTURE

PACMAS is a generic multiagent architecture aimed at
retrieving, filtering and reorganizing information according
to users’ interests. PACMAS agents can be personalized,
adaptive, and cooperative, depending on their specific role.

WOA 2005 54

Information Sources

MID-SPAN LEVELS

INFORMATION LEVEL

FILTER LEVEL

TASK LEVEL

INTERFACE LEVEL

User

Fig. 1. The PACMAS Architecture.

PACMAS Macro-Architecture

The overall architecture (depicted in Figure 1) encompasses
four main levels (i.e., information, filter, task, and interface),
each being associated to a specific role. The communication
between adjacent levels is achieved through suitable middle
agents, which form a corresponding mid-span level.

Each level is populated by a society of agents, so that com-
munication may occur both horizontally and vertically. The
former kind of communication supports cooperation among
agents belonging to a specific level, whereas the latter supports
the flow of information and/or control between adjacent levels
through suitable middle-agents.

At the information level, agents are entrusted with extracting
data from the information sources. Each information agent
is associated to one information source, playing the role
of wrapper. Upon extraction, the information is then made
available to the underlying filter level.

At the filter level, agents are aimed at selecting information
deemed relevant to the users, and cooperate to prevent infor-
mation from being overloaded and redundant. Two filtering
strategies can be adopted: generic and personal. The former
applies the same rules to all users; whereas the latter is cus-
tomised for a specific user. Each strategy can be implemented
through a pipeline of filters, since data undergo an incremental
refinement process. The information filtered so far is then
made available to the task level.

At the task level, agents arrange data according to users’
personal needs and preferences. In a sense, they can be con-
sidered as the core of the architecture. In fact, they are devoted
to achieve users’ goals by cooperating together and adapting
themselves to the changes of the underlying environment. In
general, they can be combined together according to different
connection modes, depending on the specific application.

At the interface level, a suitable interface agent is associated
to each different user interface. In fact, a user can generally
interact with an application through several interfaces and
devices (e.g., pc, pda, mobile phones, etc.). Interface agents
usually act individually without cooperation. On the other
hand, they can be personalized to display only the information
deemed relevant to a specific user. Moreover, in complex ap-
plications, they can adapt themselves to progressively improve
their ability in supplying information to the user.

a.
Nwana’s taxonomy

b.
PAC taxonomy

Learn ing

Cooperation

Autonomy Personalization Adaptation

Cooperation

Fig. 2. Agents taxonomies.

At the mid-span level, agents are aimed at establishing com-
munication among requesters and providers. In the literature,
several solutions have been proposed: e.g., blackboard agents,
matchmaker or yellow page agents, and broker agents (see
[7] for further details). In the PACMAS architecture, agents
at the mid-span level can be implemented as matchmakers or
brokers, depending on the specific application.

PACMAS Micro-Architecture

Keeping in mind that agents may be classified along several
ideal and primary capabilities that they should embed, let
us first recall the agent taxonomy proposed in [20]. In such
taxonomy, three primary capabilities have been identified:
autonomy, learning, and cooperation (see Figure 2-a). In our
view, agents are always autonomous and flexible, hence we
deem that autonomy should not be explicitly listed in a
diagram. On the contrary, we claim that personalization should
be taken into account as a primary feature while depicting the
characteristics of software agents, the resulting taxonomy is
depicted in Figure 2-b.

As for personalization, an initial user profile is provided
in form of a list of keywords, representing users’ interests.
The information about the user profile is stored by agents
belonging to the interface level. It is worth noting that,
to exhibit personalization, filter and task agents may need
information about the user profile. This flows up from the
interface level to the other levels through the middle-span
levels. In particular, agents belonging to mid-span levels(i.e.,
middle agents) take care of handling synchronization and
avoiding potential inconsistencies. Moreover, the user behavior
is tracked during the execution of the application to support
explicit feedback, in order to improve her/his profile.

As for adaptation, a model centered on the concept of
“mixtures of experts” has been employed. Each expert is im-
plemented by an agent able to select relevant information ac-
cording to an embedded string of feature-value pairs, features
being selectable from an overall set of relevant features defined
for the given application. The decision of adopting a subset
of the available features has been taken for efficiency reasons,
being conceptually equivalent to the one usually adopted ina
typical GA-based environment [11], which handles also dont-
care symbols. The system starts with an initial population of
experts, during the evolution of the system further experts
are created according to a covering, crossover, or mutation
mechanism.

WOA 2005 55

Fig. 3. Agents Connections.

As for cooperation, agents at the same level exchange
messages and/or data to achieve common goals, according to
the requests made by the user. Cooperation is implemented
in accordance with the following modes: centralized compo-
sition, pipeline, and distributed composition (see Figure3).
In particular: (i) centralized compositions can be used for
integrating different capabilities, so that the resultingbehavior
actually depends on the combination activity; (ii) pipelines can
be used to distribute information at different levels of abstrac-
tion, so that data can be increasingly refined and adapted to the
user’s needs; and (iii) distributed compositions can be used to
model a cooperation among the involved components aimed at
processing interlaced information. The most important form of
cooperation concerns the “horizontal” control flow that occurs
between peer agents. For instance, filter agents can interact
in order to reduce the information overload and redundancy,
whereas task agents can work together to solve problems that
require social interactions to be solved.

III. C ASE STUDIES

In order to highlight the peculiarities of the architecture,
three relevant case studies are presented. The first one is
focused on giving a support to undergraduate and graduate
students; the second one is concerned with the problem of
predicting protein secondary structure; and the third one is
devoted to classify newspaper articles.

All the proposed case studies have been implemented using
Jade [4] as the underlying framework.

PACMAS for Supporting Students in University Activities

This case study is focused on giving a support to under-
graduate and graduate students1.

Motivation: Let us consider a typical University Depart-
ment. It generally makes available the information about
courses, seminars, exams, professors, and students on different
areas: web sites, forums, and news (NNTP) servers. All the
relevant information is spread on the department portal, on
the web site of each course, and on the personal page of each
professor. Furthermore, each professor might activate her/his
news and forum service. Some of the information potentially
interests all students, such as lesson timetables, exam dates,

1This work has been partially funded by the Italian Ministry of University
and Research under the program PRIN 2003Programmi di Ricerca Scientifica
di Rilevante Interesse Nazionale.

taxes, and student tutoring. On the other hand, students be-
longing to different courses are interested in different lessons
and exams. For example, a student attending the MSc in
Computer Science may be interested in theObject Oriented
Programming Languages Icourse rather than in theProcessors
and Embedded Systems Architecturesone. Similarly, a student
attending the MSc in Digital Microelectronics may be inter-
ested in theProcessors and Embedded Systems Architectures
course rather than inObject Oriented Programming Languages
I one. Typically, a student in search of relevant information
about her/his University activities browses web sites, and
reads announcements from forum and news services. This is
a repetitive and boring task that can be automated. From our
perspective, personalization and adaptation represent the added
value of such an automated system.

Implementation:Using PACMAS, we developed a system
devoted to support undergraduate and graduate students in
their University activity at the Department of Electrical and
Electronic Engineering (DIEE) of the University of Cagliari.
Let us note that supporting students involves several activities:
information extraction, information retrieval and filtering, in-
formation processing, and results presentation. Each activity
corresponds to a suitable level of the PACMAS architecture.

Information Extraction.It is carried out at the information
level by information agents that play the role of wrappers,
devised to process information sources. Each wrapper is
specialized for dealing with a specific information source:
e.g., web pages, forums or news services. In the current
implementation, information agents are not personalized,not
adaptive, and not cooperative (PAC). Personalization is not
supported, since information agents are aimed at retrieving
information potentially relevant to all students, regardless of
their personal interests and preferences. Adaptation is also not
supported, being the system mainly concerned with changes
in users needs rather than in the underlying environment2.
Cooperation is also not supported, cause each information
agent is devoted to wrap a different information source.

Information Retrieval and Filtering.It is carried out at the
filter level. In particular, this level contains a set of “redun-
dancy filters” (one for each information source), an anti-spam
filter agent and a population of personal filter agents (one for
each user of the system). Redundancy filters cooperate together
to remove the redundancy of data provided by the informa-
tion sources (throughout the information agents). Redundancy
filters are not personalized, not adaptive, and cooperative
(PAC). Similarly to information agents, personalization and
adaptation are not required. On the other hand, cooperation
is required to prevent the information from being redundant.
The anti-spam filter is not personalized, not adaptive, and not
cooperative (PAC)3. Being not dependent from a specific stu-
dent, it filters the same information by removing undesirable
contents according to a rule-based mechanism. Personal filters

2In this particular case the variability of the information sources
3In the current release of the system anti-spam agents are notpermitted to

implement adaptation, although in principle this property maybe supplied in
a future release.

WOA 2005 56

Fig. 4. JSP graphical interface.

are personalized, adaptive and not cooperative (PAC). As
for personalization, they are sensible to any explicit change
imposed by the corresponding student or to a change that
occurs in the curriculum of the student. As for adaptation,
they are able to progressively adapt their filtering capabilities
according to the choices performed by the corresponding
student during the lifetime of the agent. Cooperation is not
supported; in fact, in the current release of the system, only
a specific support for implementing voting policies according
to the guidelines of GA-based systems is supplied.

Information Processing.It is carried out at the task level,
where agents are devoted to perform different tasks according
to the requirements imposed by the corresponding user. In
particular, each task agent is customized for a specific task
(e.g., lessons timetable, seminars, and exams scheduling).
Agents belonging to the task level exploit a model centered
on the concept of “mixtures of experts”, each expert being
implemented by an agent. The system supports each user with
a specific population of experts, handled in accordance with
the basic guidelines of online systems, expecially the ones
that characterize evolutionary environments. Task agentsare
personalized, adaptive, and cooperative (PAC). Personalization
is required since different behaviors are associated to different
students. Adaptation is required since they adapt themselves
to the needs of the corresponding student through a GA-
based feedback mechanism. Cooperation is required since they
usually need other task agents to successfully achieve their
own goals.

Results Presentation.It is carried out at the interface level,
through agents aimed at interacting with the users. Agents
and users interact through a suitable graphical interface that
can be run on several devices, including mobile phones. A
different interface agent has been associated to each device. In
the current implementation, the system embodies a graphical
interface that runs on several devices, including MIDP 1.0
compliant devices, and JSP web pages (as the one shown in
Figure 4)4.

Interface agents are also devoted to handle user profile and
propagate it by the intervention of middle agents. Furthermore,

4Available at: http://iascw.diee.unica.it/PacmasWWW

any feedback provided by the user can be exploited by the
adaptive mechanism to improve the user profile. Interface
agents are personal, adaptive, and not cooperative (PAC).
Personalization is required to allow each student the cus-
tomization of her/his interface. Adaptation is supported,since
an interface agent must adapt to the changes that occur in
the preferences and interests of the corresponding student.
Cooperation is not supported by agents that belong to this
architectural level.

PACMAS for Predicting Protein Secondary Structures

In this section we briefly describe an application concerned
with the problem of predicting protein secondary structure
using PACMAS (for further details see [2]).

Motivation: Difficulties in predicting protein structure are
mainly due to the complex interactions between different parts
of the same protein, on the one hand, and between the protein
and the surrounding environment, on the other hand. Actually,
some conformational structures are mainly determined by
local interactions between near residues, whereas others are
due to distant interactions in the same protein. Moreover,
notwithstanding the fact that primary sequences are believed to
contain all information necessary to determine the correspond-
ing structure [1], recent studies demostrate that many proteins
fold into their proper three-dimensional structure with the help
of molecular chaperones that act as catalysts [9], [12]. The
problem of identifying protein structures can be simplifiedby
considering only their secondary structure; i.e. a linear labeling
representing the conformation to which each residue belongs
to. Thus, secondary structure is an abstract view of amino
acid chains, in which each residue is mapped into a secondary
alphabet usually composed by three symbols: alpha-helix (α),
beta-sheet (β), and random-coil (c).

Implementation:Keeping in mind that the PACMAS archi-
tecture encompasses several levels, each one hosting a set of
agents, in the following, we illustrate how each level supports
the implementation of the proposed application.

At the information level, agents play the role of wrappers,
which –in our view– can be considered a particular kind of
filters, devised to process information sources. Each wrapper is
associated to one information source: (i) the selected training
set (the TRAIN database), (ii) the test set (the R126 database),
and (iii) a database containing information about the domain
knowledge (the AAindex database). Datasets are briefly sum-
marized in Table I. In the current implementation, information
agents are not personalized, not adaptive, and not cooperative
(shortly PAC). Personalization is not supported at this level,
since information agents are only devoted to wrap the datasets
containing proteins. Adaptation is also not supported, since
information sources are invariant for the system and are not
user-dependent. Cooperation is also not supported by the
information agents, since each agent retrieves information
from different sources, and each information source has a
specific role in the chosen application.

At the filter level, agents embody encoding methods. Let
us briefly recall that encoding methods play an important role

WOA 2005 57

TABLE I

INFORMATION SOURCES FOR PREDICTING PROTEIN SECONDARY

STRUCTURES

Dataset Description
TRAIN It has been derived from a PDB selection obtained by

removing short proteins (less than 30 aminoacids), and with
a resolution of at least 2.5̊A. This dataset underwent a
homology reduction, aimed at excluding sequences with
more than 50% of similarity. The resulting training set
consists of 1180 sequences, corresponding to 282,303 amino
acids.

R126 It has been derived from the historical Rost and Sander’s
protein dataset (RS126) [22], and corresponds to a total of
23,363 amino acids (the overall number has slightly varied
over the years, due to changes and corrections in the PDB.)

AAindex It contains information about hydrophobicity, dimension,
charge and other features required for evaluating the given
metrics. In the current application eight domain-specific
metrics have been devised and implemented. A sample
metrics is: Check whether hydrophobic amino acids occur
in a window of predefined length according to a clear
periodicity, whose underlying rationale is that sometimes
hydrophobic amino acids are regularly distributed along
alpha-helices.

in the prediction of protein secondary structures. In fact,they
describe the chemical-physics properties of aminoacid deemed
more interesting for the prediction. Several populations of filter
agents have been implemented, each of them performing a
different encoding techniques: one-shot, substitution matrices,
multiple alignment algorithms, and a techique that combines
the specificity of the multiple alignment technique with the
generality of the substitution matrices. Personalizationis not
supported by filter agents, since they always embody the
same encoding methods for all users. Adaptation is also not
supported either, since encoding methods do not change during
the application. Cooperation is supported by filter agents,as
some implemented encoding methods brings together several
algorithms (e.g., the encoding method that combines multiple
alignment with substitution matrices).

At the task level, a population of task agents, which are the
core of this case study, perform the protein secondary structure
prediction. The “internals” of each task agent is based on the
micro-architecture proposed for the NXCS-Experts [3]. In its
basic form, each NXCS expertE can be represented by a triple
〈g, h, w〉, where: (i)g is a “guard” devised to check whether
an input x can be processed or not, (ii)h is an embedded
predictor whose activation depends ong(x), and (iii) w is
a weighting function used to perform output combination.
Hence, the output ofE coincides with h(x) for any input
x “acknowledged” (i.e., matched) byg, otherwise it is not
defined. Typically, the guardg of a generic NXCS classifier is
implemented by an XCS-like classifier, able to match inputs
according to a set of selected features deemed relevant for the
given application, whereas the embedded predictorh consists
of a feed forward ANN, trained and activated on the inputs
acknowledged by the corresponding guard. In the caseE
contributes to the final prediction (together with other experts),
its output is modulated by the valuew(x), which represents the

expert strength in the voting mechanism. It may depend on
several features, includingg(x), the overall fitness of the cor-
responding expert, and the reliability of the prediction made by
the embedded predictor. It is worth noting that matching canbe
“flexible”, meaning that the matching activity returns a value
in [0,1] rather than “true” or “false”. In this case, only inputs
such thatg(x) ≥ σ will be processed by the corresponding
embedded predictor (σ being a system parameter). Task agents
are not personalized, adaptive, and cooperative (shortlyPAC).
Personalization is not required, since task agents exhibitthe
same behaviors for all the users. Adaptation is required, since
each expert is suitably trained through a typical evolutionary
behavior. Cooperation is required, since they usually need
other task agents to successfully achieve their own goals.

At the interface level, agents are aimed at interacting with
the user. In the current implementation, this kind of agents
has not been developed. Nevertheless, we are investigating
how to implement a flexible behavior at the user side. In
particular, a suitable web interface is under study. We envision
an interface personalized for each user, in which the user can
input a protein to be predicted also being given the possi-
bility of selecting the encoding technique to be applied. The
resulting information agents will be personalized, adaptive,
and not cooperative (shortlyPAC). Personalization will be
required in order to allow each user to customize the user
interface. Adaptation will be required, since agents couldadapt
themselves to the changes that occur in the user preferences.
Cooperation will not be required by the agents belonging to
this architectural level.

As for the mid-span levels, the corresponding middle agents
exhibit a different behavior depending on the mid-span level
that they belong to. In particular, let us recall that, in the
PACMAS architecture, there are three mid-span levels, one
between information and filter levels (in the following, IF
level), one between filter and task levels (in the following,
FT level), and one between task and interface levels (in the
following, TI level). In this specific application personalization
and adaptation are not supported by middle agents, since
they are only devoted to connect together agents belonging to
adjacent levels. Cooperation is supported by agents belonging
to the IF and the FT levels, since in the training phase they
are used to verify the prediction.

PACMAS for Newspaper Articles Classification

In this section we briefly describe the case study concerned
with the problem of classifying newspaper articles using
PACMAS (see [6] for details).

Motivation: All the information sources belonging to the
WWW make it hard for users to choose the most suitable
according to their interests. Finding useful information of
personal interest has become difficult for Internet users. Ide-
ally, users should be able to take advantage of the wide
range of available information while being able to find the
one she/he is interested in. In particular, manually selecting
newspaper articles is quite difficult or not feasible withinthe
time constraints common for most users also considering that

WOA 2005 58

the results could not perfectly fit with the user interests. Some
systems try to perform that task automatically, performing
content-based filtering. In particular, software agents have been
widely proposed for retrieving information from the web (
[23], [16], and [5]).

Implementation:At the information level, agents play the
role of wrappers, each one being associated to a different
information source. In particular, in the current implementation
a set of agents wraps databases containing italian newspaper
articles5. Furthermore, an agent wraps the proposed taxonomy
that is a subset of the one proposed by the International
Press Telecommunications Council6. Information agents are
not personalized, not adaptive, and not cooperative (shortly
PAC). Personalization is not supported at this level, since
information agents are only devoted to wrap information
sources. Adaptation is also not supported, since we assume
that information sources are invariant for the system and
are not user-dependent. Cooperation is also not supported by
the information agents, since each agent retrieves information
from different sources.

At the filter level, a population of agents manipulates
the information belonging to the information level through
suitable filter strategies. First, a set of agents removes all
non-informative words such as prepositions, conjunctions, pro-
nouns and very common verbs by using a standard stop-word
list. After stop-words removal, a set of agents performs a stem-
ming algorithm [21] to remove the most common morpholog-
ical and inflexional endings from words. Then, for each class,
a set of agents selects the features relevant to the classification
task according to the information gain method7. Filter agents
are not personalized, not adaptive, and cooperative (shortly
PAC). Personalization is not supported at this level, since the
adopted filter strategies are user-independent. Adaptation is
also not supported, since the adopted strategies do not change
during agents activities. Cooperation is supported by the filter
agents, since agents cooperate continously in order to perform
the filtering activity.

At the task level, a population of agents have been devel-
oped, each one embedding ak-NN classifier8. Each agent has
been trained in order to recognize a specific class, and it is
also devoted to measure the classification accuracy according
to the confusion matrix [14]. Task agents are not personalized,
adaptive, and cooperative (shortlyPAC). Personalization is
not supported at this level, since, in the current implementa-
tion, the adopted classification strategies are user-independent.
Adaptation is supported by the task agents since they learn the
classification rules during their life. Cooperation is supported
by the task agents, since agents sometimes have to interact

5In general they may wrap any web sites containing newspaper articles
(e.g., online newspapers).

6http://www.iptc.org/
7It measures the number of bits of information obtained for category

prediction by knowing the presence or absence of a term in a document.
8The k-nearest neighbor is a classification method based upon observable

features. The algorithm selects a set which contains thek nearest neighbours
and assigns the class label to the new data point based upon the most numerous
class with the set.

Fig. 5. Interface for the newspaper articles classifying system.

each other in order to achieve their goals.
At the interface level, agents are aimed at interacting with

the user. In the current implementation, agents and users
interact through a suitable graphical interface that runs on
a pc (see Figure 5). Interface agents are also devoted to
handle user profile and propagate it by the intervention of
middle agents. Interface agents are personal, not adaptive, and
not cooperative (shortlyPAC). Personalization is required
to allow each user the customization of her/his interface. In
the current implementation adaptation is not supported, but
in general an interface agent might adapt to the changes that
occur in the preferences and interests of the corresponding
user. Cooperation is not supported by agents that belong to
this architectural level.

Discussion

The peculiarities of the architecture have been highlighted
by depicting three relevant case studies. Table II shows agents
and their capabilities for the proposed case studies. In particu-
lar, the added value of the proposed approach is that PACMAS
agents are polymorphic in the sense that they can exhibit a
different behavior depending on the specific application in
which they operate.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper a generic architecture designed to support
the implementation of applications aimed at managing infor-
mation among different and heterogeneous sources has been
presented. Information is filtered and organized accordingto
personal interests explicitly stated by the user. User profiles are
improved and refined throughout time by suitable adaptation

WOA 2005 59

TABLE II

AGENTSCAPABILITIES

Agents Case study 1 Case study 2 Case study 3
Information PAC PAC PAC

Redundancy:PAC

Filter Anti-spam:PAC PAC PAC

Personal:PAC

Task PAC PAC PAC

Interface PAC PAC PAC

IF: PAC

Middle PAC FT: PAC PAC

TI: PAC

techniques. The overall architecture has been called PACMAS,
being a support for implementing Personalized, Adaptive,
and Cooperative MultiAgent Systems. PACMAS agents are
autonomous and flexible, and can be personalized, adaptive
and cooperative depending on the implemented application.

As for the future work, we are investigating how to improve
the intelligent capabilities of agents with more complex forms
of personalization, adaptation, and cooperation. Moreover, the
possibility to implement further intelligent applications using
PACMAS is currently under study.

V. ACKNOWLEDEGMENTS

We would like to thank Andrea Addis for participating in
the implementation of the prototype.

REFERENCES

[1] C. Anfinsen. Principles that govern the folding of protein chains.
Science, 181:223–230, 1973.

[2] G. Armano, G. Mancosu, A. Orro, M. Saba, and E. Vargiu. Biopac-
mas: A personalized, adaptive, and cooperative multiagent system for
predicting protein secondary structure. InAI*IA 2005: Advances
in Artificial Intelligence, 9th Congress of the Italian Association for
Artificial Intelligence (AI*IA 2005). LNAI 3673, Springer, September
2005.

[3] G. Armano, A. Murru, and F. Roli. Stock market prediction bya
mixture of genetic-neural experts.Int. Journal of Pattern Recognition
and Artificial Intelligence, 15(16):501–526, 2002.

[4] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with jade. InEventh International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000), 2000.

[5] R. Carreira, J. M. Crato, D. Gonalves, and J. A. Jorge. Evaluating
adaptive user profiles for news classification. InIUI ’04: Proceedings
of the 9th international conference on Intelligent user interface, pages
206–212, New York, NY, USA, 2004. ACM Press.

[6] G. Cherchi, A. Manconi, E. Vargiu, and D. Deledda. Text Categorization
Using a Personalized, Adaptive, and Cooperative MultiAgent System. In
Workshop dagli Oggetti agli Agenti, Simulazione e Analisi Formale di
Sistemi Complessi (WOA 2005), November 2005.

[7] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
internet. InProceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 578–583, 1997.

[8] O. Etzioni and D. Weld. Intelligent agents on the internet: fact, fiction
and forecast.IEEE Expert, 10(4):44–49, 1995.

[9] S. J. Gething, M.J. Protein folding in the cell.Nature, 355:33–45, 1992.
[10] J. Giampapa, K. Sycara, A. Fath, A. Steinfeld, and D. Siewiorek. A

multi-agent system for automatically resolving network interoperability
problems. InProceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1462–1463, 2004.

[11] D. Goldberg.Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[12] F. Hartl. Secrets of a double-doughnut.Nature, 371:557–559, 1994.

[13] C. A. Knoblock, Y. Arens, and C.-N. Hsu. Cooperating agents for infor-
mation retrieval. InProceedings of the Second International Conference
on Cooperative Information Systems, Toronto, Ontario, Canada, 1994.
University of Toronto Press.

[14] R. Kohavi and F. Provost. Glossary of terms.Special issue on
applications of machine learning and the knowledge discovery process,
Machine Learning, 30(2/3):271–274, 1998.

[15] J. Kramer. Agent based personalized information retrieval, 1997.
[16] H. Lieberman. Letizia: An agent that assists web browsing. In C. S.

Mellish, editor,Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95), pages 924–929, Montreal,
Quebec, Canada, 1995. Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA.

[17] H. Lieberman. Autonomous interface agents. InProceedings of the
ACM Conference on Computers and Human Interface (CHI-97), pages
67–74, 1997.

[18] E. Lutz, H. Kleist-Retzow, and K. Hoernig. Mafiaan active mail-filter-
agent for an intelligent document processing support.ACM SIGOIS
Bulletin, 11(4):16–32, 1990.

[19] P. Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):31–40, 1994.

[20] H. Nwana. Software agents: An overview.Knowledge Engineering
Review, 11(3):205–244, 1996.

[21] M. Porter. An algorithm for suffix stripping.Program, 14(3):130–137,
1980.

[22] B. Rost and C. Sander. Prediction of protein secondary structure at better
than 70% accuracy.Journal Molecular Biology, 232:584–599, 1993.

[23] B. Sheth and P. Maes. Evolving agents for personalized information
filtering. In I. Press, editor,9th Conference on Artificial Intelligence for
Applications (CAIA-93), pages 345–352, 2003.

[24] M. Wooldridge and N. Jennings.Intelligent Agents, chapter Agent
Theories, Architectures, and Languages: a Survey, pages 1–22. Berlin:
Springer-Verlag, 1995.

[25] J. Yang, V. Honavar, L. Miller, and J. Wong. Intelligentmobile agents
for information retrieval and knowledge discovery from distributed data
and knowledge sources. InIEEE Information Technology Conference.
Syracuse, NY, 1998.

WOA 2005 60

