849 research outputs found

    Age of Information in Multicast Networks with Multiple Update Streams

    Get PDF
    We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to nn receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experienced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest k1k_1 and k2k_2 transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of nn. In particular, the source node transmits each type I update packet to the earliest k1k_1 and each type II update packet to the earliest k2k_2 of nn receiver nodes. We determine the optimum k1k_1 and k2k_2 stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages

    Usability of legacy p2p multicast in multihop ad hoc networks: an experimental study

    Get PDF
    There has recently been an increasing interest in convergence of p2p and ad hoc network research. Actually, p2p systems and multihop ad hoc networks share similar features, such as self-organisation, decentralisation, self-healing, and so forth. It is thus interesting to understand if p2p systems designed for the wired Internet are suitable also for ad hoc networks and, if they are not, in which direction they should be improved. In this paper, we report our experience in running p2p applications in real multihop ad hoc network testbeds. Specifically, we used group-communication applications that require p2p systems made up of an overlay network and a p2p multicast protocol. In this paper, we present experimental results specifically related to the performance of a well-known p2p shared-tree multicast protocol (Scribe). Our results show that such a solution is far from being efficient on ad hoc networks. We emphasize that the structured multicast approach is one of the main causes of inefficiency, and suggest that stateless solutions could be preferable

    A New Architecture for Application-aware Cognitive Multihop Wireless Networks

    Get PDF
    In this article, we propose a new architecture for AC-MWN. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low-cost way. A multihop wireless network can be deployed quickly and flexibly without fixed infrastructure. In our proposed new architecture, we study backbone routing schemes with network cognition, and a routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the proposed schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the proposed AC-MWN architecture using cognitive radios. Preliminary results demonstrate that the proposed AC-MWN is applicable, and is valuable for future low-cost and flexible communication networks

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version
    • …
    corecore