8 research outputs found

    Interactive Perception for Cluttered Environments

    Get PDF
    Robotics research tends to focus upon either non-contact sensing or machine manipulation, but not both. This paper explores the benefits of combining the two by addressing the problem of extracting and classifying unknown objects within a cluttered environment, such as found in recycling and service robot applications. In the proposed approach, a pile of objects lies on a flat background, and the goal of the robot is to sift through the pile and classify each object so that it can be studied further. One object should be removed at a time with minimal disturbance to the other objects. We propose an algorithm, based upon graph-based segmentation and stereo matching, that automatically computes a desired grasp point that enables the objects to be removed one at a time. The algorithm then isolates each object to be classified by color, shape and flexibility. Experiments on a number of different objects demonstrate the ability of classifying each item through interaction and labeling them for further use and study

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    A Survey of Knowledge Representation in Service Robotics

    Full text link
    Within the realm of service robotics, researchers have placed a great amount of effort into learning, understanding, and representing motions as manipulations for task execution by robots. The task of robot learning and problem-solving is very broad, as it integrates a variety of tasks such as object detection, activity recognition, task/motion planning, localization, knowledge representation and retrieval, and the intertwining of perception/vision and machine learning techniques. In this paper, we solely focus on knowledge representations and notably how knowledge is typically gathered, represented, and reproduced to solve problems as done by researchers in the past decades. In accordance with the definition of knowledge representations, we discuss the key distinction between such representations and useful learning models that have extensively been introduced and studied in recent years, such as machine learning, deep learning, probabilistic modelling, and semantic graphical structures. Along with an overview of such tools, we discuss the problems which have existed in robot learning and how they have been built and used as solutions, technologies or developments (if any) which have contributed to solving them. Finally, we discuss key principles that should be considered when designing an effective knowledge representation.Comment: Accepted for RAS Special Issue on Semantic Policy and Action Representations for Autonomous Robots - 22 Page

    Alternative Object Use in Adults and Children: Embodied Cognitive Bases of Creativity

    Get PDF
    Why does one need creativity? On a personal level, improvisation with available resources is needed for online coping with unforeseen environmental stimuli when existing knowledge and apparent action strategies do not work. On a cultural level, the exploitation of existing cultural means and norms for the deliberate production of novel and valuable artifacts is a basis for cultural and technological development and extension of human action possibilities across various domains. It is less clear, however, how creativity develops and how exactly one arrives at generating new action possibilities and producing multiple alternative action strategies using familiar objects. In this theoretical paper, we first consider existing accounts of the creative process in the Alternative Uses Task and then present an alternative interpretation, drawing on sociocultural views and an embodied cognition approach. We explore similarities between the psychological processes underlying the generation of new uses in the Alternative Uses Task and children’s pretend play. We discuss possible cognitive mechanisms and speculate how the generation of new action possibilities for common objects in pretend play can be related to adults’ ability to generate new action strategies associated with object use. Implications for creativity development in humans and embodied artificial agents are discussed
    corecore