1,170 research outputs found

    Aerial Base Station Deployment for Post-Disaster Public Safety Applications

    Get PDF
    Earthquakes and floods are constant threats to most of the countries in the world. After such catastrophes, a rapid response is needed, which includes communications not only for first responders but also for local civilians. Even though there are technologies and specialized personnel for rapid deployment, it is common that external factors will hinder the arrival of help while communication requirements are urgently required. Such communication technologies would aid tasks regarding organization and information dissemination from authorities to the civilians and vice-versa. This necessity is due to protocols and applications to allocate the number of emergency resources per location and to locate missing people. In this thesis, we investigate the deployment problem of Mobile Aerial Base Stations (MABS). Our main objective is to ensure periodic wireless communication for geographically spread User Equipment (UE) based on LTE technology. First, we establish a precedent of emergency situations where MABS would be useful. We also provide an introduction to the study and work conducted in this thesis. Second, we provide a literature review of existing solutions was made to determine the advantages and disadvantages of certain technologies regarding the described necessity. Third, we determine how MABS, such as gliders or light tactical balloons that are assumed to be moving at an average speed of 50 km/h, will be deployed. These MABS would visit different cluster centroids determined by an Affinity Propagation Clustering algorithm. Additionally, a combination of graph theory and Genetic Algorithm (GA) is implemented through mutators and fitness functions to obtain best flyable paths through an evolution pool of 100. Additionally, Poisson, Normal, and Uniform distributions are utilized to determine the amount of Base Stations and UEs. Then, for every distribution combination, a set of simulations is conducted to obtain the best flyable paths. Serviced UE performance indicators of algorithm efficiency are analyzed to determine whether the applied algorithm is effective in providing a solution to the presented problem. Finally, in Chapter 5, we conclude our work by supporting that the proposed model would suffice the needs of mobile users given the proposed emergency scenario. Adviser: Yi Qia

    Strategies for Scaleable Communication and Coordination in Multi-Agent (UAV) Systems

    Get PDF
    A system is considered in which agents (UAVs) must cooperatively discover interest-points (i.e., burning trees, geographical features) evolving over a grid. The objective is to locate as many interest-points as possible in the shortest possible time frame. There are two main problems: a control problem, where agents must collectively determine the optimal action, and a communication problem, where agents must share their local states and infer a common global state. Both problems become intractable when the number of agents is large. This survey/concept paper curates a broad selection of work in the literature pointing to a possible solution; a unified control/communication architecture within the framework of reinforcement learning. Two components of this architecture are locally interactive structure in the state-space, and hierarchical multi-level clustering for system-wide communication. The former mitigates the complexity of the control problem and the latter adapts to fundamental throughput constraints in wireless networks. The challenges of applying reinforcement learning to multi-agent systems are discussed. The role of clustering is explored in multi-agent communication. Research directions are suggested to unify these components

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Smart System for Future Generation based on the Internet of Things Employing Machine Learning, Deep Learning, and Artificial Intelligence : Comprehensive Survey

    Get PDF
    The Internet of Things (IoT) is a networked system including interconnected things, devices, and networks that utilize the internet for communication and data exchange. The entity engages in interactions with both its internal and external surroundings. The IoT is capable of seeing the surrounding environment and responding in a way that is appropriate and adaptive. The utilization of advanced technology in this context enhances the environment and thus enhances the overall well-being of humanity. The IoT facilitates inter-device communication, whether through physical or virtual means. The IoT facilitates the enhancement of environmental intelligence, enabling seamless connectivity across many devices at any given moment. The concepts centred on the IoT, such as augmented reality, high-resolution video streaming, autonomous vehicles, intelligent environments, and electronic healthcare, have become pervasive in contemporary society. These applications have requirements for faster data rates, larger bandwidths, enhanced capacities, decreased latencies, and increased throughputs. IoT and Machine learning (ML) are among the fields of research that have shown significant potential for advancement. ML and IoT are used to build intelligent systems. Those networks will modify the ways in which worldwide entities exchange information. This article gives a comprehensive survey of the upcoming 5G-IoT situation, as well as a study of IoT smart system applications and usages. In addition to covering the latest developments in ML and deep learning (DL) and their impact on 5G-IoT, this article describes a comprehensive study of these important enabling technologies and the developing use cases of 5G-IoT

    인프라가 없는 환경에서의 재난 통신망을 위한 동기화 및 그룹 형성 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 이광복.A public safety network (PSN) has been developed as a special class of wireless communication network that aims to save lives and prevent property damage. PSNs have evolved separately from commercial wireless networks satisfying various requirements and regulatory issues associated with them. With growing needs for the transmission of multimedia data, existing voice-centric PSN technologies are facing hurdles in fulllfilling the demand for high capacity and different types of services. Mission-critical requirements for PSNs include the guaranteed dissemination of emergency information such as alarm texts, images, and videos of disasters even in the absence (or destruction) of cellular infrastructure. Many research projects have been launched to meet the mission-critical requirement of PSN, e.g., Aerial Base Station with Opportunistic Links for Unexpected & TEmporary events (ABSOLUTE), Alert for All (Alert4All), Mobile Alert InformAtion system using satellites (MAIA), and so on. The research projects include the emergency communications using satellite communications, aerial eNodeBs, and terrestrial radio access technologies. The approaches take advantages of inherent broadcasting and resilience with respect to Earth damages for disseminations of alert messages. In this dissertation, we limit our interests to terrestrial radio access technologies, e.g., LTE, TETRA, TETRAPOL, and DMR, because PSNs should be operational even in the low-class user equipments (UEs) that are lack of satellite communication functionalities. In Chapter 2 of this dissertation, we propose a distributed synchronization algorithm for infrastructure-less public safety networks. The proposed algorithm aims to minimize the number of out-of-sync user equipments by efficiently forming synchronization groups and selecting synchronization reference UEs in a distributed manner. For the purpose, we introduce a novel affinity propagation technique which enables an autonomous decision at each UE based on local message-passing among neighboring UEs. Our simulation results show that the proposed algorithm reduces the number of out-of-sync UEs by up to 40% compared to the conventional scan-and-select strategy. In Chapter 3 of this dissertation, we study an infrastructure-less public safety network where energy efficiency and reliability are critical requirements in the absence of cellular infrastructure, i.e., base stations and wired backbone lines. We formulate the IPSN group formation as a clustering problem. A subset of user equipments, called group owners (GOs), are chosen to serve as virtual base stations, and each non-GO UE, referred to as group member, is associated with a GO as its member. We propose a novel clustering algorithm in the framework of affinity propagation, which is a state- of-the-art message-passing technique with a graphical model approach developed in the machine learning field. Unlike conventional clustering approaches, the proposed clustering algorithm minimizes the total energy consumption while guaranteeing link reliability by adjusting the number of GOs. Simulation results verify that the IPSN optimized by the proposed clustering algorithm reduces the total energy consumption of the network by up to 31% compared to the conventional clustering approaches.Chapter 1 INTRODUCTION 1 1.1 Distributed Synchronization Algorithm for Infrastructure-less Public Safety Networks 2 1.2 Reliable Low-Energy Group Formation for Infrastructure-less Public Safety Networks 3 1.3 Outline of Dissertation 8 1.4 Notations 8 Chapter 2 Distributed Synchronization Algorithm for Infrastructure-less Public Safety Networks 10 2.1 System Model and Problem Formulation 10 2.2 Distributed Synchronization Algorithm based on Message-passing 17 2.2.1 Preliminaries: affinity propagation 17 2.2.2 Distributed Synchronization Algorithm 19 2.3 Distributed Synchronization Procedures 20 2.4 Simulation Results 25 Chapter 3 Reliable Low-Energy Group Formation for Infrastructure-less Public Safety Networks 42 3.1 System Model and Problem Formulation 42 3.1.1 Channel Model and Network Structure 42 3.1.2 ProblemFormulation 44 3.2 Constrained Clustering Algorithm for IPSN 47 3.2.1 Similarity Modeling 47 3.2.2 Proposed Clustering Algorithm 47 3.3 Determination of initial point 51 3.4 Simulation Results 56 Chapter 4 Conclusion and Future Work 72 4.1 Conclusion 72 4.2 Future Work 73 Bibliography 74 Abstract (In Korean) 82Docto

    UAVs for Enhanced Communication and Computation

    Get PDF
    corecore