18 research outputs found

    More on Descriptive Complexity of Second-Order HORN Logics

    Full text link
    This paper concerns Gradel's question asked in 1992: whether all problems which are in PTIME and closed under substructures are definable in second-order HORN logic SO-HORN. We introduce revisions of SO-HORN and DATALOG by adding first-order universal quantifiers over the second-order atoms in the bodies of HORN clauses and DATALOG rules. We show that both logics are as expressive as FO(LFP), the least fixed point logic. We also prove that FO(LFP) can not define all of the problems that are in PTIME and closed under substructures. As a corollary, we answer Gradel's question negatively

    Definability of linear equation systems over groups and rings

    Get PDF
    Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    Quantum and non-signalling graph isomorphisms

    Get PDF
    We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can win with certainty iff the graphs G and H are isomorphic. We then define quantum and non-signalling isomorphisms by considering perfect quantum and non-signalling strategies for this game. We prove that non-signalling isomorphism coincides with fractional isomorphism, giving the latter an operational interpretation. We show that quantum isomorphism is equivalent to the feasibility of two polynomial systems obtained by relaxing standard integer programs for graph isomorphism to Hermitian variables. Finally, we provide a reduction from linear binary constraint system games to isomorphism games. This reduction provides examples of quantum isomorphic graphs that are not isomorphic, implies that the tensor product and commuting operator frameworks result in different notions of quantum isomorphism, and proves that both relations are undecidable.Peer ReviewedPostprint (author's final draft

    Fractional homomorphism, Weisfeiler-Leman invariance, and the Sherali-Adams hierarchy for the Constraint Satisfaction Problem

    Full text link
    Given a pair of graphs A\textbf{A} and B\textbf{B}, the problems of deciding whether there exists either a homomorphism or an isomorphism from A\textbf{A} to B\textbf{B} have received a lot of attention. While graph homomorphism is known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood. A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together with its higher order variants. On the other hand, both problems can be reformulated as integer programs and various LP methods can be applied to obtain high-quality relaxations that can still be solved efficiently. We study so-called fractional relaxations of these programs in the more general context where A\textbf{A} and B\textbf{B} are not graphs but arbitrary relational structures. We give a combinatorial characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to give a characterization of the notion of fractional isomorphism for relational structures in terms of the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result, we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy.Comment: Full version of a MFCS'21 pape
    corecore