15 research outputs found

    Automates à contraintes semilinéaires = Automata with a semilinear constraint

    Full text link
    Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts.This thesis presents a study from the theoretical computer science perspective of computing models combining finite automata and arithmetic constraints. We focus on decidability questions, expressiveness, and closure properties, while opening the study to complexity, logic, algebra, and applications. This thesis is presented through four research articles. The first article, Affine Parikh Automata, continues the study of Klaedtke and Ruess on Parikh automata and defines generalizations and restrictions of this model. The Parikh automaton is one of the starting points of this thesis. We show that this model of computation is equivalent to the constrained automaton that we define as an automaton which accepts a word only if the number of times each transition is taken satisfies a given arithmetic constraint. This model is naturally extended to affine Parikh automata, in which an affine transformation is applied to a set of registers on taking a transition. We also study the Parikh automaton on letters, that is, an automaton which accepts a word only if the number of times each letter appears in the word verifies an arithmetic constraint. The second article, Bounded Parikh Automata, focuses on the bounded languages of Parikh automata. A language is bounded if there are words w_1, w_2, ..., w_k such that every word in the language can be written as w_1...w_1w_2...w_2 ... w_k...w_k. These languages are important in applications and usually display good theoretical properties. We show that, over the bounded languages, determinism does not influence the expressiveness of Parikh automata. The third article, Unambiguous Constrained Automata, introduces the concept of unambiguity in constrained automata. An automaton is unambiguous if there is only one accepting path per word of its language. We show that the unambiguous constrained automaton is an appealing model of computation which combines a better expressiveness and better closure properties than the deterministic constrained automaton. We show that it is decidable whether the language of an unambiguous constrained automaton is regular. The fourth article, Algebra and Complexity Meet Constrained Automata, presents a study of algebraic representations of constrained automata and affine Parikh automata. We deduce expressiveness and complexity results from these characterizations. We also study how classical computational complexity hypotheses help in showing separations and nonclosure properties in affine Parikh automata. The thesis is concluded by a presentation of possible future avenues of research, through several open problems

    Parikh Automata on Infinite Words

    Full text link
    Parikh automata on finite words were first introduced by Klaedtke and Rue{\ss} [Automata, Languages and Programming, 2003]. In this paper, we introduce several variants of Parikh automata on infinite words and study their expressiveness. We show that one of our new models is equivalent to synchronous blind counter machines introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. All our models admit {\epsilon}-elimination, which to the best of our knowledge is an open question for blind counter automata. We then study the classical decision problems of the new automata models

    Parikh One-Counter Automata

    Get PDF
    Counting abilities in finite automata are traditionally provided by two orthogonal extensions: adding a single counter that can be tested for zeroness at any point, or adding ?-valued counters that are tested for equality only at the end of runs. In this paper, finite automata extended with both types of counters are introduced. They are called Parikh One-Counter Automata (POCA): the "Parikh" part referring to the evaluation of counters at the end of runs, and the "One-Counter" part to the single counter that can be tested during runs. Their expressiveness, in the deterministic and nondeterministic variants, is investigated; it is shown in particular that there are deterministic POCA languages that cannot be expressed without nondeterminism in the original models. The natural decision problems are also studied; strikingly, most of them are no harder than in the original models. A parametric version of nonemptiness is also considered

    Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series

    Get PDF
    We investigate the connection between properties of formal languages and properties of their generating series, with a focus on the class of holonomic power series. We first prove a strong version of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent to unambiguous two-way reversal bounded counter machines, and their multivariate generating series are holonomic. We then show that the converse is not true: we construct a language whose generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh automata language. Finally, we prove an effective decidability result for the inclusion problem for weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity

    The Complexity of Reachability in Affine Vector Addition Systems with States

    Get PDF
    Vector addition systems with states (VASS) are widely used for the formal verification of concurrent systems. Given their tremendous computational complexity, practical approaches have relied on techniques such as reachability relaxations, e.g., allowing for negative intermediate counter values. It is natural to question their feasibility for VASS enriched with primitives that typically translate into undecidability. Spurred by this concern, we pinpoint the complexity of integer relaxations with respect to arbitrary classes of affine operations. More specifically, we provide a trichotomy on the complexity of integer reachability in VASS extended with affine operations (affine VASS). Namely, we show that it is NP-complete for VASS with resets, PSPACE-complete for VASS with (pseudo-)transfers and VASS with (pseudo-)copies, and undecidable for any other class. We further present a dichotomy for standard reachability in affine VASS: it is decidable for VASS with permutations, and undecidable for any other class. This yields a complete and unified complexity landscape of reachability in affine VASS. We also consider the reachability problem parameterized by a fixed affine VASS, rather than a class, and we show that the complexity landscape is arbitrary in this setting

    Affine Extensions of Integer Vector Addition Systems with States

    Get PDF
    We study the reachability problem for affine Z\mathbb{Z}-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine Z\mathbb{Z}-VASS with the finite-monoid property (afmp-Z\mathbb{Z}-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-Z\mathbb{Z}-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-Z\mathbb{Z}-VASS reduces to reachability in a Z\mathbb{Z}-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-Z\mathbb{Z}-VASS are semilinear, and in particular enables us to show that reachability in Z\mathbb{Z}-VASS with transfers and Z\mathbb{Z}-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine Z\mathbb{Z}-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine Z\mathbb{Z}-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine Z\mathbb{Z}-VASS with monogenic matrix monoid and undecidable reachability relation

    Remarks on Parikh-recognizable omega-languages

    Full text link
    Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every ω\omega-language recognized by a blind counter machine is of the form iUiViω\bigcup_iU_iV_i^\omega for Parikh recognizable languages Ui,ViU_i, V_i, but blind counter machines fall short of characterizing this class of ω\omega-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of ω\omega-language of the form iUiViω\bigcup_iU_iV_i^\omega for all combinations of languages Ui,ViU_i, V_i being regular or Parikh-recognizable. When both UiU_i and ViV_i are regular, this coincides with B\"uchi's classical theorem. We study the effect of ε\varepsilon-transitions in all variants of Parikh automata and show that almost all of them admit ε\varepsilon-elimination. Finally we study the classical decision problems with applications to model checking.Comment: arXiv admin note: text overlap with arXiv:2302.04087, arXiv:2301.0896

    An Approach to Regular Separability in Vector Addition Systems

    Full text link
    We study the problem of regular separability of languages of vector addition systems with states (VASS). It asks whether for two given VASS languages K and L, there exists a regular language R that includes K and is disjoint from L. While decidability of the problem in full generality remains an open question, there are several subclasses for which decidability has been shown: It is decidable for (i) one-dimensional VASS, (ii) VASS coverability languages, (iii) languages of integer VASS, and (iv) commutative VASS languages. We propose a general approach to deciding regular separability. We use it to decide regular separability of an arbitrary VASS language from any language in the classes (i), (ii), and (iii). This generalizes all previous results, including (iv)
    corecore