5,382 research outputs found

    Recent Progress on Deep Blue Aerosol Algorithm as Applied TO MODIS, SEA WIFS, and VIIRS, and Their Intercomparisons with Ground Based and Other Satellite Measurements

    Get PDF
    The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends

    Global Retrieval of Aerosol Properties from Sources to Sinks By MODIS

    Get PDF
    Mineral dust and smoke aerosols play an important role in both climate forcing and oceanic productivity throughout the entire year. Due to the relatively short lifetime (a few hours to about a week), the distributions of these airborne particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of dust and smoke properties. However, despite their importance, the high spatial resolution satellite measurements of these aerosols near their sources have been lacking, In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as MODIS and SeaWiFS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over land, including desert and semi-desert regions. The comparisons show reasonable agreements between these two. Our results show that the dust plumes lifted from the deserts near India/Pakistan border, and over Afghanistan, and the Arabian Peninsula are often observed by MODIS to be transported along the Indo-Gangetic Basin and mixed with the fine mode pollution particles generated by anthropogenic activities in this region, particularly during the pre-monsoon season (April-May). These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments

    Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources

    Get PDF
    We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls

    Science Writers' Guide to Terra

    Get PDF
    This guide was produced for science writers and the media and provides research profiles, as well as extensive background and contact information for NASA’s Terra spacecraft. Terra’s launch marked a new era of comprehensive monitoring of the Earth's atmosphere, oceans and continents from a single space-based platform. Data from the five Terra instruments are creating continuous, long-term records of the state of the land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. Educational levels: Informal education

    Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    Get PDF
    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction
    • …
    corecore