9,150 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Aerial obstacle detection with 3D mobile devices

    Get PDF
    In this paper, we present a novel approach for aerial obstacle detection (e.g. branches or awnings) using a 3D smartphone in the context of the visually impaired (VI) people assistance. This kind of obstacles are especially challenging because they cannot be detected by the walking stick or the guide dog. The algorithm captures the 3D data of the scene through stereo vision. To our knowledge, this is the first work that presents a technology able to obtain real 3D measures with smartphones in real time. The orientation sensors of the device (magnetometer and accelerometer) are used to approximate the walking direction of the user, in order to look for the obstacles only in such direction. The obtained 3D data are compressed and then linearized for detecting the potential obstacles. Potential obstacles are tracked in order to accumulate enough evidence to alert the user only when a real obstacle is found. In the experimental section, we show the results of the algorithm in several situations using real data and helped by VI users.J.M. Sáez and M.A. Lozano are supported by the University of Alicante research grant GRE10-21. F. Escolano is supported by the project TIN2012-32839 of the Spanish Government

    A multimodal smartphone interface for active perception by visually impaired

    Get PDF
    The diffuse availability of mobile devices, such as smartphones and tablets, has the potential to bring substantial benefits to the people with sensory impairments. The solution proposed in this paper is part of an ongoing effort to create an accurate obstacle and hazard detector for the visually impaired, which is embedded in a hand-held device. In particular, it presents a proof of concept for a multimodal interface to control the orientation of a smartphone's camera, while being held by a person, using a combination of vocal messages, 3D sounds and vibrations. The solution, which is to be evaluated experimentally by users, will enable further research in the area of active vision with human-in-the-loop, with potential application to mobile assistive devices for indoor navigation of visually impaired people
    corecore