65 research outputs found

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1−p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    Partitioning a graph into highly connected subgraphs

    Full text link
    Given k≥1k\ge 1, a kk-proper partition of a graph GG is a partition P{\mathcal P} of V(G)V(G) such that each part PP of P{\mathcal P} induces a kk-connected subgraph of GG. We prove that if GG is a graph of order nn such that δ(G)≥n\delta(G)\ge \sqrt{n}, then GG has a 22-proper partition with at most n/δ(G)n/\delta(G) parts. The bounds on the number of parts and the minimum degree are both best possible. We then prove that If GG is a graph of order nn with minimum degree δ(G)≥c(k−1)n\delta(G)\ge\sqrt{c(k-1)n}, where c=2123180c=\frac{2123}{180}, then GG has a kk-proper partition into at most cnδ(G)\frac{cn}{\delta(G)} parts. This improves a result of Ferrara, Magnant and Wenger [Conditions for Families of Disjoint kk-connected Subgraphs in a Graph, Discrete Math. 313 (2013), 760--764] and both the degree condition and the number of parts are best possible up to the constant cc

    Some local--global phenomena in locally finite graphs

    Full text link
    In this paper we present some results for a connected infinite graph GG with finite degrees where the properties of balls of small radii guarantee the existence of some Hamiltonian and connectivity properties of GG. (For a vertex ww of a graph GG the ball of radius rr centered at ww is the subgraph of GG induced by the set Mr(w)M_r(w) of vertices whose distance from ww does not exceed rr). In particular, we prove that if every ball of radius 2 in GG is 2-connected and GG satisfies the condition dG(u)+dG(v)≥∣M2(w)∣−1d_G(u)+d_G(v)\geq |M_2(w)|-1 for each path uwvuwv in GG, where uu and vv are non-adjacent vertices, then GG has a Hamiltonian curve, introduced by K\"undgen, Li and Thomassen (2017). Furthermore, we prove that if every ball of radius 1 in GG satisfies Ore's condition (1960) then all balls of any radius in GG are Hamiltonian.Comment: 18 pages, 6 figures; journal accepted versio
    • …
    corecore