253 research outputs found

    Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films

    Get PDF
    Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low Gilbert damping and absence of Ohmic loss. Magnetic order of MIs can be manipulated and even switched by spin-orbit torques (SOTs) generated through spin Hall effect and Rashba-Edelstein effect in heavy metal/MI bilayers. SOTs on MIs are more intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how SOTs scale with the film thickness. Here, we observe the critical role of dimensionality on the SOT efficiency by systematically studying the MI layer thickness dependent SOT efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We first show that the TmIG thin film evolves from two-dimensional to three-dimensional magnetic phase transitions as the thickness increases, due to the suppression of long-wavelength thermal fluctuation. Then, we report the significant enhancement of the measured SOT efficiency as the thickness increases. We attribute this effect to the increase of the magnetic moment density in concert with the suppression of thermal fluctuations. At last, we demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up to 15 nm. The switching current density is comparable with those of heavy metal/ferromagnetic metal cases. Our findings shed light on the understanding of SOTs in MIs, which is important for the future development of ultrathin MI-based low-power spintronics

    Thermal Spin Orbit Torque with Dresselhaus Spin Orbit Coupling

    Full text link
    Based on the spinor Boltzmann equation, we obtain a temperature dependent thermal spin-orbit torque in terms of the local equilibrium distribution function in a two dimensional ferromagnet with Dresselhaus spin-orbit coupling. We also derive the continuity equation of spin accumulation and spin current, the spin diffusion equation in Dresselhaus ferromagnet, which contains the thermal spin orbit torque under local equilibrium assumption. This temperature dependent thermal spin-orbit torque originates from the temperature gradient applied to the system. it is also sensitive to temperature due to the local equilibrium distribution function therein. In the spin diffusion equation, we can single out the usual spin-orbit torque as well as the spin transfer torque, which is conceded to our previous results. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Dresselhaus spin-orbit coupling driven by temperature gradient, those torques including thermal spin-orbit torque are demonstrated numerically.Comment: 19pages,6figure

    DEMANDS FOR SPIN-BASED NONVOLATILITY IN EMERGING DIGITAL LOGIC AND MEMORY DEVICES FOR LOW POWER COMPUTING

    Get PDF
    Miniaturization of semiconductor devices is the main driving force to achieve an outstanding performance of modern integrated circuits. As the industry is focusing on the development of the 3nm technology node, it is apparent that transistor scaling shows signs of saturation. At the same time, the critically high power consumption becomes incompatible with the global demands of sustaining and accelerating the vital industrial growth, prompting an introduction of new solutions for energy efficient computations.Probably the only radically new option to reduce power consumption in novel integrated circuits is to introduce nonvolatility. The data retention without power sources eliminates the leakages and refresh cycles. As the necessity to waste time on initializing the data in temporarily unused parts of the circuit is not needed, nonvolatility also supports an instant-on computing paradigm.The electron spin adds additional functionality to digital switches based on field effect transistors. SpinFETs and SpinMOSFETs are promising devices, with the nonvolatility introduced through relative magnetization orientation between the ferromagnetic source and drain. A successful demonstration of such devices requires resolving several fundamental problems including spin injection from metal ferromagnets to a semiconductor, spin propagation and relaxation, as well as spin manipulation by the gate voltage. However, increasing the spin injection efficiency to boost the magnetoresistance ratio as well as an efficient spin control represent the challenges to be resolved before these devices appear on the market. Magnetic tunnel junctions with large magnetoresistance ratio are perfectly suited as key elements of nonvolatile CMOS-compatible magnetoresistive embedded memory. Purely electrically manipulated spin-transfer torque and spin-orbit torque magnetoresistive memories are superior compared to flash and will potentially compete with DRAM and SRAM. All major foundries announced a near-future production of such memories.Two-terminal magnetic tunnel junctions possess a simple structure, long retention time, high endurance, fast operation speed, and they yield a high integration density. Combining nonvolatile elements with CMOS devices allows for efficient power gating. Shifting data processing capabilities into the nonvolatile segment paves the way for a new low power and high-performance computing paradigm based on an in-memory computing architecture, where the same nonvolatile elements are used to store and to process the information

    Electrical control of magnetism by electric field and current-induced torques

    Full text link
    While early magnetic memory designs relied on magnetization switching by locally generated magnetic fields, key insights in condensed matter physics later suggested the possibility to do it electrically. In the 1990s, Slonczewzki and Berger formulated the concept of current-induced spin torques in magnetic multilayers through which a spin-polarized current may switch the magnetization of a ferromagnet. This discovery drove the development of spin-transfer-torque magnetic random-access memories (STT-MRAMs). More recent research unveiled spin-orbit-torques (SOTs) and will lead to a new generation of devices including SOT-MRAMs. Parallel to these advances, multiferroics and their magnetoelectric coupling experienced a renaissance, leading to novel device concepts for information and communication technology such as the MESO transistor. The story of the electrical control of magnetization is that of a dance between fundamental research (in spintronics, condensed matter physics, and materials science) and technology (MRAMs, MESO, microwave emitters, spin-diodes, skyrmion-based devices, components for neuromorphics, etc). This pas de deux led to major breakthroughs over the last decades (pure spin currents, magnetic skyrmions, spin-charge interconversion, etc). As a result, this field has propelled MRAMs into consumer electronics products but also fueled discoveries in adjacent research areas such as ferroelectrics or magnonics. Here, we cover recent advances in the control of magnetism by electric fields and by current-induced torques. We first review fundamental concepts in these two directions, then discuss their combination, and finally present various families of devices harnessing the electrical control of magnetic properties for various application fields. We conclude by giving perspectives in terms of both emerging fundamental physics concepts and new directions in materials science.Comment: Final version accepted for publication in Reviews of Modern Physic

    Magnetism, symmetry and spin transport in van der Waals layered systems

    Get PDF
    The discovery of an ever-increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin–orbit coupling and topological systems, calls for some guiding principles to tailor and optimize novel spin transport and optical properties at their interfaces. Here, we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals magnetism and spin–orbit coupling effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D-materials-based van der Waals heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin–orbit torque phenomena combine at interfaces with well-defined symmetries and how this dictates the nature and figures of merit of spin–orbit torque and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom

    Magnetism, symmetry and spin transport in van der Waals layered systems

    Get PDF
    The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimize novel spin transport and optical properties at their interfaces. Here we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals (vdW) magnetism and SOC effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D materials-based vdW heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin-orbit torque (SOT) phenomena combine at interfaces with well-defined symmetries, and how this dictates the nature and figures-of-merit of SOT and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.Comment: 26 pages, 5 figures, 1 table and 1 textbo

    Making Atomic-Level Magnetism Tunable with Light at Room Temperature

    Full text link
    The capacity to manipulate magnetization in two-dimensional dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2, where M = V, Fe, Cr; T = W, Mo; X = S, Se, Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2, V-WSe2, V-MoS2). This phenomenon is attributed to excess holes in the conduction and valence bands, as well as carriers trapped in magnetic doping states, which together mediate the magnetization of the semiconducting layer. In 2D-TMD heterostructures such as VSe2/WS2 and VSe2/MoS2, we demonstrate the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism. This effect is attributed to photon absorption at the TMD layer (e.g., WS2, MoS2) that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel direction for designing 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices

    Spin-orbit torques due to warped topological insulator surface states with an in-plane magnetization

    Full text link
    We investigate the extrinsic spin-orbit torque (SOT) on the surface of topological insulators (TIs), which are characterized by two-dimensional warped Dirac surface states, in the presence of an in-plane magnetization. The interplay between extrinsic spin-orbit scattering and the in-plane magnetization results in a net spin density leading to a SOT. Previous theory suggested that the SOT could only be generated by an out-of-plane magnetic field component, and any in-plane magnetic contribution could be gauged away. However, we demonstrate theoretically that with an in-plane magnetization, the SOT can be finite in TIs due to extrinsic spin-orbit scattering. In the case of a TI model with a linear dispersion relation, the skew scattering term is zero, and the extrinsic spin-orbit scattering influences the side-jump scattering, leading to a finite SOT in TIs. However, when considering the warping term, finite intrinsic and skew scattering terms will arise, in addition to modifications to other scattering terms. We further show that the SOT depends on the azimuthal angles of the magnetization and an external electric field. By adjusting the extrinsic spin-orbit strength, Fermi energy, magnetization strength and warping strength, the resulting SOTs can be maximized. These findings shed light on the interplay between spin-orbit coupling and magnetization in TIs, offering insights into the control and manipulation of spin currents in these systems.Comment: 18 pages, 5 figure
    corecore