12 research outputs found

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Advanced Computer Technologies for Integrated Agro-Hydrologic Systems Modeling: Coupled Crop and Hydrologic Models for Agricultural Intensification Impacts Assessment

    Get PDF
    Coupling hydrologic and crop models is increasingly becoming an important task when addressing agro-hydrologic systems studies. Either for resources conservation or cropping systems improvement, the complex interactions between hydrologic regime and crop management components requires an integrative approach in order to be fully understood. Nevertheless, the literature offers limited resources on models’ coupling that targets environmental scientists. Indeed, major of guides are are destined primarily for computer specialists and make them hard to encompass and apply. To address this gap, we present an extensive research to crop and hydrologic models coupling that targets earth agro-hydrologic modeling studies in its integrative complexity. The primary focus is to understand the relationship between agricultural intensification and its impacts on hydrologic balance. We provided documentations, classifications, applications and references of the available technologies and trends of development. We applied the results of the investigation by coupling the DREAM hydrologic model with DSSAT crop model. Both models were upgraded either on their code source (DREAM) or operational base (DSSAT) for interoperability and parallelization. The resulting model operates at a grid base and daily step. The model is applied southern Italy to analyze the effect of fertilizer application on runoff generation between 2000 and 2013. The results of the study show a significant impacts of nitrogen application on water yield. Indeed, nearly 71.5 thousand cubic-meter of rain water for every kilogram of nitrogen and per hectare is lost as a reduction of runoff coefficient. Furthermore, a significant correlation between the nitrogen applications amount and runoff is found at a yearly basis with Pearson’s coefficient of 0.93

    Across Space and Time Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    The present volume includes 50 selected peer-reviewed papers presented at the 41st Computer Applications and Quantitative Methods in Archaeology Across Space and Time (CAA2013) conference held in Perth (Western Australia) in March 2013 at the University Club of Western Australia and hosted by the recently established CAA Australia National Chapter. It also hosts a paper presented at the 40th Computer Applications and Quantitative Methods in Archaeology (CAA2012) conference held in Southampton

    JTIT

    Get PDF
    kwartalni

    Contextualized and personalized location-based services

    Get PDF
    Advances in the technologies of smart mobile devices and tiny sensors together with the increase in the number of web resources open up a plethora of new mobile information services where people can acquire and disseminate information at any place and any time. Location-based services (LBS) are characterized by providing users with useful and local information, i.e. information that belongs to a particular domain of interest to the user and can be of use while the user remains in a particular area. In addition, LBS need to take into account the interactions and dependencies between services, user and context for the information filtering and delivery in order to fulfill the needs and constraints of mobile users. We argue that consequently it brings up a series of technical challenges in terms of data semantics and infrastructure, context-awareness and personalization, as well as query formulation and answering etc. They can not be simply extended from existing traditional data management strategies. Instead, they need a new solution. Firstly, we propose a semantic LBS infrastructure on the basis of the modularized ontologies approach. We elaborate a core ontology which is mainly composed of three modules describing the services, users and contexts. The core ontology aims at presenting an abstract view (a model) of all information in LBS. In contrast, data describing the instances (of services user and actual contextual data) are stored in three independent data stores, called the service profiles, user profiles and context profiles. These data are semantically aligned with the concepts in the core ontology through a set of mappings. This approach enables the distributed data sources to be maintained in a autonomous manner, which is well adapted to the high dynamics and mobility of the data sources. Secondly, we separately address the function, features, and our modelling approach of the three major players, i.e. service, context and user in LBS. Then, we define a set of constructs to represent their interactions and inter-dependencies and illustrate how these semantic constructs can contribute to personalized and contextualized query processing. Service classes are organized in a taxonomy, which distinguishes the services by their business functions. This concept hierarchy helps to analyze and reformulate the users' queries. We introduce three new kinds of relationships in the service module to enhance the semantics of interactions and dependencies between services. We identify five key components of contexts in LBS and regard them as a semantic contextual basis for LBS. Component contexts are related together by specific composition relationships that can describe spatio-temporal constraints. A user profile contains personal information about a given user and possibly a set of self-defined rules, which offer hints on what the user likes or dislikes, and what could attract him or her. In the core ontology clustering users with common features can help the cooperative query answering. Each of the three modules of the core ontology is an ontology in itself. They are inter-related by relationships that link concepts belonging to two different modules. The LBS fully benefits from the modularized structure of the core ontology. It allows restricting the search space, as well as facilitating the maintenance of each module. Finally, we studied the query reformulation and processing issues in LBS. How to make the query interface tangible and provide rapid and relevant answers are typical concerns in all information services. Our query format not only fully obeys the "simple, tangible and effective" golden-rules of user-interface design, but also satisfies the needs of domain-independent interface and emphasizes the importance of spatio-temporal constraints in LBS. With pre-defined spatio-temporal operators, users can easily specify in their queries the spatio-temporal availability they need for the services they are looking for. This allows eliminating most of irrelevant answers that are usually generated by keyword-based approaches. Constraints in the various dimensions (what, when, where and what-else) can be expressed by a conjunctive query, and then be smoothly translated to RDF-patterns. We illustrate our query answering strategy by using the SPARQL syntax, and explain how the relaxation can be done with rules specified in the query relaxation profile
    corecore