14 research outputs found

    PRIS: Practical robust invertible network for image steganography

    Full text link
    Image steganography is a technique of hiding secret information inside another image, so that the secret is not visible to human eyes and can be recovered when needed. Most of the existing image steganography methods have low hiding robustness when the container images affected by distortion. Such as Gaussian noise and lossy compression. This paper proposed PRIS to improve the robustness of image steganography, it based on invertible neural networks, and put two enhance modules before and after the extraction process with a 3-step training strategy. Moreover, rounding error is considered which is always ignored by existing methods, but actually it is unavoidable in practical. A gradient approximation function (GAF) is also proposed to overcome the undifferentiable issue of rounding distortion. Experimental results show that our PRIS outperforms the state-of-the-art robust image steganography method in both robustness and practicability. Codes are available at https://github.com/yanghangAI/PRIS, demonstration of our model in practical at http://yanghang.site/hide/

    RAWIW: RAW Image Watermarking Robust to ISP Pipeline

    Full text link
    Invisible image watermarking is essential for image copyright protection. Compared to RGB images, RAW format images use a higher dynamic range to capture the radiometric characteristics of the camera sensor, providing greater flexibility in post-processing and retouching. Similar to the master recording in the music industry, RAW images are considered the original format for distribution and image production, thus requiring copyright protection. Existing watermarking methods typically target RGB images, leaving a gap for RAW images. To address this issue, we propose the first deep learning-based RAW Image Watermarking (RAWIW) framework for copyright protection. Unlike RGB image watermarking, our method achieves cross-domain copyright protection. We directly embed copyright information into RAW images, which can be later extracted from the corresponding RGB images generated by different post-processing methods. To achieve end-to-end training of the framework, we integrate a neural network that simulates the ISP pipeline to handle the RAW-to-RGB conversion process. To further validate the generalization of our framework to traditional ISP pipelines and its robustness to transmission distortion, we adopt a distortion network. This network simulates various types of noises introduced during the traditional ISP pipeline and transmission. Furthermore, we employ a three-stage training strategy to strike a balance between robustness and concealment of watermarking. Our extensive experiments demonstrate that RAWIW successfully achieves cross-domain copyright protection for RAW images while maintaining their visual quality and robustness to ISP pipeline distortions

    Voice Modeling Methods for Automatic Speaker Recognition

    Get PDF
    Building a voice model means to capture the characteristics of a speaker®s voice in a data structure. This data structure is then used by a computer for further processing, such as comparison with other voices. Voice modeling is a vital step in the process of automatic speaker recognition that itself is the foundation of several applied technologies: (a) biometric authentication, (b) speech recognition and (c) multimedia indexing. Several challenges arise in the context of automatic speaker recognition. First, there is the problem of data shortage, i.e., the unavailability of sufficiently long utterances for speaker recognition. It stems from the fact that the speech signal conveys different aspects of the sound in a single, one-dimensional time series: linguistic (what is said?), prosodic (how is it said?), individual (who said it?), locational (where is the speaker?) and emotional features of the speech sound itself (to name a few) are contained in the speech signal, as well as acoustic background information. To analyze a specific aspect of the sound regardless of the other aspects, analysis methods have to be applied to a specific time scale (length) of the signal in which this aspect stands out of the rest. For example, linguistic information (i.e., which phone or syllable has been uttered?) is found in very short time spans of only milliseconds of length. On the contrary, speakerspecific information emerges the better the longer the analyzed sound is. Long utterances, however, are not always available for analysis. Second, the speech signal is easily corrupted by background sound sources (noise, such as music or sound effects). Their characteristics tend to dominate a voice model, if present, such that model comparison might then be mainly due to background features instead of speaker characteristics. Current automatic speaker recognition works well under relatively constrained circumstances, such as studio recordings, or when prior knowledge on the number and identity of occurring speakers is available. Under more adverse conditions, such as in feature films or amateur material on the web, the achieved speaker recognition scores drop below a rate that is acceptable for an end user or for further processing. For example, the typical speaker turn duration of only one second and the sound effect background in cinematic movies render most current automatic analysis techniques useless. In this thesis, methods for voice modeling that are robust with respect to short utterances and background noise are presented. The aim is to facilitate movie analysis with respect to occurring speakers. Therefore, algorithmic improvements are suggested that (a) improve the modeling of very short utterances, (b) facilitate voice model building even in the case of severe background noise and (c) allow for efficient voice model comparison to support the indexing of large multimedia archives. The proposed methods improve the state of the art in terms of recognition rate and computational efficiency. Going beyond selective algorithmic improvements, subsequent chapters also investigate the question of what is lacking in principle in current voice modeling methods. By reporting on a study with human probands, it is shown that the exclusion of time coherence information from a voice model induces an artificial upper bound on the recognition accuracy of automatic analysis methods. A proof-of-concept implementation confirms the usefulness of exploiting this kind of information by halving the error rate. This result questions the general speaker modeling paradigm of the last two decades and presents a promising new way. The approach taken to arrive at the previous results is based on a novel methodology of algorithm design and development called “eidetic design". It uses a human-in-the-loop technique that analyses existing algorithms in terms of their abstract intermediate results. The aim is to detect flaws or failures in them intuitively and to suggest solutions. The intermediate results often consist of large matrices of numbers whose meaning is not clear to a human observer. Therefore, the core of the approach is to transform them to a suitable domain of perception (such as, e.g., the auditory domain of speech sounds in case of speech feature vectors) where their content, meaning and flaws are intuitively clear to the human designer. This methodology is formalized, and the corresponding workflow is explicated by several use cases. Finally, the use of the proposed methods in video analysis and retrieval are presented. This shows the applicability of the developed methods and the companying software library sclib by means of improved results using a multimodal analysis approach. The sclib®s source code is available to the public upon request to the author. A summary of the contributions together with an outlook to short- and long-term future work concludes this thesis

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    2015, UMaine News Press Releases

    Get PDF
    This is a catalog of press releases put out by the University of Maine Division of Marketing and Communications between January 2, 2015 and December 31, 2015

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore