122 research outputs found

    Data-Driven Process Development for Virus-Like Particles - Implementation of Process Analytical Technology, Molecular Modeling, and Machine Learning

    Get PDF
    Im Laufe des 20. Jahrhunderts stieg die Lebenserwartung deutlich an. Aus medizinischer Sicht trugen vor allem die umfassende Verbesserung der Hygiene und die Einführung von Impfprogrammen zu diesem Erfolg bei. Impfstoffe waren die ersten biologischen Produkte, die systematisch als medizinische Präparate eingesetzt wurden, und ebneten damit den Weg zur modernen pharmazeutischen Biotechnologie. Nach Insulin und menschlichem Wachstumshormon war eines der frühesten biotechnologisch hergestellten pharmazeutischen Produkte ein rekombinanter Impfstoff, im Speziellen ein virusähnliches Partikel (virus-like particle, VLP) auf Basis von rekombinantem Hepatitis-B-Oberflächenantigen. VLPs beinhalten keine infektiösen viralen Nukleinsäuren und sie ähneln dem Virus, von dem sie abgeleitet sind, wodurch sie eine Immunantwort induzieren können. Obwohl dieser Hepatitis-B-Impfstoff gegenwärtig noch verwendet wird, ist die heutige Anwendung von VLPs sehr unterschiedlich, wie aus zahlreichen präklinischen und klinischen Studien hervorgeht. VLPs werden als mögliche Impfstoffe gegen Infektionskrankheiten, immunologische Erkrankungen oder Krebs untersucht. Ihre starke Immunogenität wird für die Präsentierung von fremdantigenen Epitopen auf den VLPs genutzt, was sie zu chimären VLPs (chimeric virus-like particles, cVLPs) macht. Als solche induzieren sie nachweislich Immunantworten gegen Krebszellen und überwinden die natürliche immunologische Selbsttoleranz gegenüber Krebsantigenen. Allerdings ist ihr hohes Potenzial mit Herausforderungen verbunden, beispielsweise im Zusammenhang mit ihrem molekularen Design und dem Produktionsprozess. Das Ziel des molekularen Designs ist die Entwicklung immunogener und stabiler VLP-Kandidaten. Der Prozess, um geeignete VLP-Kandidaten zu finden, ist jedoch typischerweise empirisch und bringt Herausforderungen wie eine geringe Löslichkeit nach der Expression in rekombinanten Wirten oder unzureichende VLP-Immunogenität mit sich. Dem VLP-Produktionsprozess mangelt es an maßgeschneiderten Aufreinigungsmethoden, was im Vergleich zu etablierten biopharmazeutischen Produkten, wie z.B. monoklonalen Antikörpern, zu einer geringeren Produktivität führt. Hinzu kommt, dass bei der VLP-Prozessierung VLP-spezifische Prozessschritte, wie z.B. die Zerlegung und Reassemblierung der Partikel, entworfen werden müssen. Die Bewältigung dieser Herausforderungen würde von datengestützten Ansätzen wie der prozessanalytischen Technologie (process analytical technology, PAT), der molekularen Modellierung und dem maschinellen Lernen profitieren. Diese würden das Prozess- und Produktverständnis verbessern, den experimentellen Aufwand reduzieren und eine effiziente Überwachung und Steuerung der Prozesse ermöglichen. Daher war es Ziel dieser Arbeit, Antworten auf mehrere dieser Herausforderungen zu finden, indem datengestützte Ansätze implementiert wurden, um die Entwicklung maßgeschneiderter Prozessschritte zu begleiten. Im ersten Teil dieser Arbeit werden VLPs und ihre Produktionsprozesse besprochen, die Vorteile der Implementierung von PAT beschreiben, die Herausforderungen im Zusammenhang mit ihrem molekularen Design beleuchtet und die Möglichkeiten der Anwendung des maschinellen Lernens bei der VLP-Entwicklung und -Prozessierung aufgezeigt. Der zweite Teil dieser Arbeit beschreibt fünf Studien, die darauf abzielen, Antworten auf einige der mit dem VLP-Design und der biotechnologischen Verfahrenstechnik verbundenen Herausforderungen zu finden. Die erste Studie (Kapitel 3) befasst sich mit einem besonderen VLP-spezifischen Prozessschritt. Für eine verbesserte Stabilität, Homogenität und Immunogenität müssen VLPs zerlegt und wieder reassembliert werden. Ausgehend von einer Hoch-pH-Lösung, die zerlegte VLPs enthält, wird die Reassemblierung durch die Erhöhung der Ionenstärke und die Senkung des pH-Wertes erreicht. Die meisten Prozesse im Labormaßstab nutzen die Dialyse für diesen Pufferaustausch, während die Querstromfiltration (cross-flow filtration, CFF) für den Pufferaustausch besser skalierbar ist, den Pufferverbrauch reduziert und die Ausbeute verbessert. Im Vergleich zur Dialyse erfordert die CFF mehr technisches Wissen und Kenntnisse über den VLP-Reassemblierungssfortschritt während des Prozesses. Eine umfassende Überwachungsstrategie wäre daher sehr vorteilhaft, um eine (Beinahe-) Echtzeit-Kontrolle des VLP-Reassemblierungsprozesses durch CFF zu implementieren. In dieser ersten Studie wird ein Aufbau zur Überwachung der VLP-Reassemblierung durch CFF mittels einer Online-Messschleife mit zwei verschiedenen spektroskopischen Sensoren beschrieben. Eine mögliche Kontrollstrategie für den VLP-Assemblierungsprozess wurde in der Überwachung der statischen und dynamischen Lichtstreuung gesehen. Das Maximum des statischen Streulichtsignals fiel mit der maximalen VLP-Konzentration zusammen. Diese Information ist sehr wertvoll, da nach diesem VLP-Konzentrationsmaximum eine Degradationsphase beobachtet wurde, die vermieden werden sollte, um Ausbeute und Reinheit der VLPs zu optimieren. Die Analyse der zweiten Ableitung der ultravioletten und sichtbaren (ultraviolet and visible, UV/Vis) Spektren erwies sich als praktikable orthogonale Methode zur Überwachung der VLP-Assemblierung, insbesondere mit dem sogenannten a/b-Verhältnis. Das a/b-Verhältnis, welches sich im Zeitverlauf der Prozesse änderte, beschreibt die Solvatisierung von Tyrosin. Die Beobachtung der Veränderung des a/b-Verhältnisses deckt sich mit der Tatsache, dass Tyrosin 132 nach der Assemblierung in einer hydrophoben Tasche eingebettet wird. Zusätzlich konnte ein Modell der Regression der partiellen kleinsten Quadrate (partial least squares), das auf den aufgezeichneten UV/Vis-Spektren basiert, die VLP-Konzentrationen abschätzen mit dem Potential, als (Beinahe-) Echtzeitmodell angewendet zu werden. Die etablierte Überwachungsstragie wurde genutzt um optimale Prozessbedingungen für drei chimäre hepatitis B core antigen (HBcAg)- Konstrukte zu ermitteln. Dies resultierte in unterschiedlichen Prozesszeiten, um die maximale VLP-Konzentration zu erreichen. Das cVLP mit dem stärksten negativen Zetapotential assemblierte am spätesten, wahrscheinlich aufgrund abstoßender elektrostatischer Kräfte. Es erfordert daher Puffer mit höheren Ionenstärken für die Reassemblierung. Die Bedeutung des Zetapotenzials für die VLP-Prozessierung war Teil der Motivation für die zweite Studie (Kapitel 4). Das Zetapotential und andere biophysikalische Parameter können nur gemessen werden, wenn Material experimentell in ausreichenden Mengen produziert wurde. Es wäre daher wünschenswert, diese Parameter vorherzusagen, um Ressourcen zu sparen. Es wurde bereits gezeigt, dass Oberflächeneigenschaften aus dreidimensionalen (3-D) Strukturen abgeleitet werden können. 3-D-Strukturen neuartiger Moleküle sind jedoch nicht verfügbar und ihre experimentelle Erzeugung ist langwierig und mühsam. Eine Alternative ist die rechnergestützte 3-D-Strukturerzeugung mit Template-Modellierung und Molekulardynamik-Simulationen (MD). Dieser in silico Arbeitsablauf erfordert üblicherweise signifikante Benutzerinteraktion, Expertenwissen, um die Simulationen zu designen und zu steuern, und viel Rechenleistung. Um diese Limitationen zu überwinden, wurde in dieser Studie ein robuster und automatisierter Arbeitsablauf zur Erzeugung von 3-D Strukturen etabliert. Der Arbeitsablauf ist datenabhängig, minimiert Benutzerinteraktion und reduziert die benötigte Rechenleistung. Die Eingabe in den entwickelten Arbeitsablauf war eine Aminosäuresequenz und eine Strukturvorlage. Die Vorlage wurde automatisch von einer Proteinstrukturdatenbank heruntergeladen, bereinigt und die Struktur wurde Homologie-modelliert, gefolgt von einer Energieminimierung. Eine datenabhängige dreistufige MD-Simulation verfeinerte die Struktur, wobei ein kontinuierlich zunehmender Bereich des Moleküls simuliert wurde, bis schließlich das gesamte Molekül frei simuliert wurde. Der dreistufige MD-Simulationsansatz lieferte hierbei einen großen Beitrag zur Reduktion der benötigten Rechenleistung, in dem strukturell besonders unsichere Bereiche des Moleküls zunächst gesondert simuliert wurden. Oft werden MD-Simulationen nach einer bestimmten Simulationszeit beendet. In dieser Studie beendete die entwickelte datenabhängige Simulationskontrolle die Simulationen, wenn ein Stabilitätsfenster (Window of Stability, WoS) von 2 ns erreicht wurde, definiert durch die Wurzel der mittleren quadratischen Abweichung (root mean square deviation, RMSD) der Atomkoordinaten. Dies stellte sicher, dass die Fluktuationen der MD-Simulation zwischen allen simulierten Konstrukten innerhalb des genannten WoS am Ende der Simulation vergleichbar waren. Der Arbeitsablauf führte zu angemessenen Simulationszeiten (6,6-37,5 h) und einer hohen Gesamtstrukturqualität für die drei chimären HBcAg-Dimere. Um die Anwendbarkeit der Methode zu demonstrieren, wurde eine Fallstudie durchgeführt, in der die in silico Oberflächenladung von HBcAg-Dimeren mit dem experimentellen Zeta-Potential ganzer Kapside korreliert wurde, was eine hohe lineare Korrelation zeigte. Die Extraktion der Oberflächenladung aus dem WoS war robuster als aus einem einzelnen Simulationsschnappschuss, was die Nützlichkeit des entwickelten Ansatzes unterstreicht. Die dritte Studie (Kapitel 5) befasst sich mit dem Problem, dass VLPs häufig mit Technologien prozessiert werden, die ursprünglich für kleinere Produkte entwickelt wurden. Dies führt oft zu Prozesslimitationen wie geringe Bindekapazitäten von Chromatographieharzen, die im downstream process verwendet werden. Daher wurde eine neue Aufreinigungsstrategie entwickelt, die drei verschiedene größenselektive Methoden integriert, da sie für die selektive Abtrennung von VLPs von Verunreinigungen vielversprechend erschienen. Die Methoden waren Fällung/Rücklösung, CFF und Größenausschlusschromatographie (size exclusion chromatography, SEC). Es wurden drei Verfahrensvarianten entwickelt und untersucht, wobei die beste aus Fällung, Waschen und Rücklösung auf einer CFF-Einheit, gefolgt von einer Reinigung durch eine multimodale SEC-Säule bestand. Dieses Verfahren zeigte die höchste Reinheit sowie eine hohe Ausbeute und Produktivität. Die entwickelten Verfahren waren den in der Literatur beschriebenen Verfahren vergleichbar oder überlegen. Die Überwachung und Fraktionierung des Permeatstroms ermöglichte es zudem, produkthaltige Fraktionen für das selektive Vereinigen zu identifizieren. Auf diese Weise können Produktkonzentration- und Reinheit eingestellt werden. Eines der Hauptprobleme beim Molekulardesign von cVLPs ist, dass die Kandidaten bei der Expression oft unlöslich sind. Der Prozess zur Identifizierung unlöslicher VLP-Konstrukte ist typischerweise empirisch und deshalb Zeit- und Ressourcenintensiv. Diese Herausforderung kann mit einem Modell bewältigt werden, welches die Löslichkeit von cVLPs vorhersagt. In Kapitel 6 wurde ein Soft Ensemble Vote Classifier (sEVC) als Werkzeug auf Basis von maschinellem Lernen zur Vorhersage der cVLP-Löslichkeit entwickelt, basierend auf 568 verschiedenen Aminosäuresequenzen und 91 verschiedenen Hydrophobizitäts-Skalen. Das Ensemble-Modell aggregiert die Vorhersage der einzelnen Klassifikatoren, bei denen es sich um einstufige Entscheidungsbäume handelt. Diese wurden jeweils mit einem Hydrophobizitäts-Merkmal auf der Grundlage einer Hydrophobizitäts-Skala trainiert. Stratifizierte Trainingssatzprobenahme und Merkmalsauswahl kamen der Modellbildung zugute. Die besten Modelle wiesen einen Matthew-Korrelationskoeffizienten (Matthew’s correlation coefficient, MCC) von >0,6 auf, der mit den statistischen Größen von Löslichkeitsmodellen aus der Literatur vergleichbar oder diesen überlegen ist. Zusätzlich ermöglichte die Merkmalsauswahl (feature selection) die Identifizierung charakteristischer Eigenschaften (features) des untersuchten cVLP-Löslichkeitsproblems, wobei die Bedeutung verschiedener Aminosäuren für die cVLP-Löslichkeit hervorgehoben wurde. Die Analyse legte nahe, dass Arginin eine wichtige Rolle bei der Rekrutierung von VLP-Untereinheiten während der Kapsidassemblierung spielen könnte. Die letzte Studie baute auf dem Modell und den Ergebnissen von Kapitel 6 auf, mit dem Ziel, die Vorhersageergebnisse zu optimieren und mehr versteckte Informationen aus den Daten zu extrahieren. In der vorherigen Studie wurde eine systematische Fehlklassifikation beobachtet. Dies wurde mit einem Optimierungsalgorithmus angegangen, der die Vorhersage des Modells anpasste, wenn diese systematischen Fehlklassifikationen im Trainingsdatensatz beobachtet wurden. Eine zweite Optimierungsstrategie synthetisierte und optimierte Hydrophobizitäts-Skalen spezifisch für das vorgestellte cVLP-Löslichkeitsproblem. Dabei wurde die Bedeutung von Tryptophan als möglicher Disruptor der Proteinfaltung anhand der Daten vorgeschlagen. Das beste Modell, das mit den entwickelten Optimierungsworkflows erstellt wurde, zeigte einen MCC von 0,77 (Korrektklassifikationsrate von 0,88) in Bezug auf das externe Test-Set. Schließlich wurde das sEVC-Framework in einer Fallstudie evaluiert, um Ammoniumsulfatkonzentrationen vorherzusagen, wie sie für die VLP-Fällung erforderlich sind (wie auch in Kapitel 5 angewandt). Daher wurde das Modell so umgestaltet, dass es als Regressionswerkzeug fungiert. Es wurde mit Daten der Ammoniumsulfat-induzierten Fällung von zehn cVLPs bewertet. Die lineare Regression zeigte eine vielversprechende Korrelation mit einem R² von 0,69. Zusammenfassend lässt sich sagen, dass sowohl von dem Standpunkt der Prozessentwicklung als auch von der computergestützen Entwicklung aus eine Reihe von Methoden entwickelt wurde, die den Weg zu einem VLP-Plattformprozess ebnen könnten. Die Integration von datengesteuerten Ansätzen wie PAT, 3-D-Strukturmodellierung und maschinelles Lernen kann sowohl der Effizienz als auch dem Verständnis der VLP-Prozessierung in der biopharmazeutischen Industrie zugutekommen

    13th International Bologna Conference on Magnetic Resonance in Porous Media - Bologna 2016 Conference Handbook and Book of Abstracts

    Get PDF
    This conference series, founded at the University of Bologna in 1990 and now at the 13th edition, is devoted to the progress in Magnetic Resonance in Porous Media and in our understanding of Porous Media themselves, and to stimulate the contact among people from various parts of Academia and Industry. Researchers in Physics, Chemistry, Engineering, Life Sciences, Mathematics, Computer Sciences, and in Industrial Applications will benefit from exchange of ideas, experiences, and new approaches. Topics will include innovative techniques to study structure, behavior of fluids, and their interactions in every kind of natural and artificial porous materials, including rocks, cements, biological tissues, foodstuffs, wood, particle packs, sediments, pharmaceuticals, zeolites, and bioconstructs. New data acquisition and processing techniques are also expected to be strong features

    13th International Bologna Conference on Magnetic Resonance in Porous Media - Bologna 2016 Conference Handbook and Book of Abstracts

    Get PDF
    This conference series, founded at the University of Bologna in 1990 and now at the 13th edition, is devoted to the progress in Magnetic Resonance in Porous Media and in our understanding of Porous Media themselves, and to stimulate the contact among people from various parts of Academia and Industry. Researchers in Physics, Chemistry, Engineering, Life Sciences, Mathematics, Computer Sciences, and in Industrial Applications will benefit from exchange of ideas, experiences, and new approaches. Topics will include innovative techniques to study structure, behavior of fluids, and their interactions in every kind of natural and artificial porous materials, including rocks, cements, biological tissues, foodstuffs, wood, particle packs, sediments, pharmaceuticals, zeolites, and bioconstructs. New data acquisition and processing techniques are also expected to be strong features

    Exploration of quorum sensing peptides: the missing link between microbiome and cancer outcome?

    Get PDF
    The human microbiome was recently associated with diverse diseases. The explanation for this relationship is however not yet clarified. In this research, the interaction of quorum sensing peptides, produced by the bacteria, with human cancer cells was explored. First, the chemical characteristics of already known quorum sensing peptides (and analogues), their bacterial origin and quorum sensing related properties were summarized in the Quorumpeps database. The chemical diversity of these quorum sensing peptides was then analyzed, after which diverse model-peptides were selected for further research. After chemical synthesis of these peptides, the purity was investigated, next to the identity of the impurities. A thorough quality control is necessary to correctly interpret functional results. Eventually, the effect of the quorum sensing peptides on human cancer cell behaviour was investigated: we demonstrated that some quorum sensing peptides induced colon and breast cancer cell invasion and promoted angiogenesis; both processes can be linked to cancer metastasis. Some quorum sensing peptides were also found to pass the blood-brain barrier, indicating that these peptides can exert an effect on the brain tissue. Quorum sensing peptides can pass the intestinal barrier as well and thus reach the blood circulation; once they are present in the blood, they can interact with cells throughout the human body. The quorum sensing peptides were also found to remain sufficiently stable in human plasma. Moreover, the quorum sensing peptides demonstrated no haemolytic and no direct cell-killing effects. Finally, we reviewed the quality aspects of radiolabelled peptides as used not only in the biomedical research but also as diagnostics or therapeutics in the current shift towards personalized medicine

    Alternative protein sources for organic poultry

    Get PDF

    Bioengineering strategies for cancer therapy and modelling

    Get PDF
    Tese de doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células EstaminaisCancer is a global pandemic with a high incidence among the world population and effective treatments are for the most part elusive. The tumor microenvironment is a highly complex and heterotypic mixture of cells that interact to regulate central control mechanisms, driving immunosuppression and promoting both survival and invasion of cancer cells into surrounding tissues. It has been this complexity that has made finding effective therapeutics such a demanding task and therefore cancer still remains a burden worldwide in health as well as in economic terms. While the progression in the field of cancer research has been clear over the years, there are still several challenges that need to be addressed. Herein, two different sides to this disease are explored: treatment and in vitro models. Adoptive T cell therapy has shown impressive results, however not without its limitations. The use of the T cell mitogen IL-2 within culture systems is known to lead to early exhaustion of T cell subsets while high density of co-stimulating molecules has been linked to undesired immune responses. As an alternative, a nanoparticle system based on the natural polymer gellan-gum was proposed, with tailorable surface functionalization with co-stimulatory molecules. High levels of T cell expansion were observed over the studied period, with secreted IL-2 levels overcoming those of commercial alternatives. With this system, increased expression of cytotoxic molecules Granzyme B and Perforin were also detected in vitro. On the other spectrum, 3D cancer models have sustained a great number of developments observed by an increase in similarity towards native tissues; however, a requirement for even more complex architectures capable of better mimicking cellular interactions is still present. Therefore, an assembloid-based approach was proposed to develop a 3D in vitro melanoma model to further study cellular interactions. These heterotypic tumor assembloids presented a complex architecture capable of sustaining endothelial cell function as well as a high expression of stemness-related markers. These models were subjected to functionality assays where they showed a capacity for “cooperative invasion” which was coincident with an observed increased production of MMP-2. To further unravel the role of stromal cells in the invasive potential of cancer cells a 3D chemotaxis chamber was developed to study cellular interactions observed in the tumor microenvironment, where stem cells and fibroblasts showed to have a crucial role. Ultimately, this thesis allowed to explore biomedical engineering approaches to further contribute to the knowledge in the field opening new doors to be explored in the future.O cancro é uma pandemia global com uma elevada incidência e cujo desenvolvimento de tratamentos eficazes continua a ser difícil. O microambiente tumoral é uma mistura altamente complexa e heterotípica de células que interagem para regular mecanismos centrais que provocam imunossupressão promovendo a sobrevivência e invasão de células tumorais para os tecidos circundantes. É esta complexidade que tem tornado desafiante encontrar terapias eficazes, tornando esta doença um fardo a nível global em termos de saúde e economia. Enquanto a progressão na área da investigação oncológica tem sido clara ao longo dos anos, existem ainda vários desafios que precisam de serem encarados para permitir futuros desenvolvimentos. Aqui, foram exploradas duas vertentes diferentes desta doença: o tratamento e os modelos in vitro. A terapia celular adotiva tem demonstrado resultados impressionantes, no entanto não sem as suas limitações. O uso do mitogénio IL-2 nestes sistemas de cultura é conhecido por levar rapidamente à exaustão das células T, enquanto o uso de moléculas co-estimulatórias em elevadas densidades está associado a respostas imunes não desejadas. Como alternativa, foi proposto um sistema de nanopartículas baseado no polímero natural goma gelana e funcionalizado com moléculas co estimulatórias. Foram observados elevados níveis de expansão de células T e quantidade de IL-2 secretada superior à de alternativas comerciais. Foi ainda verificado in vitro um aumento de expressão das moléculas citotóxicas Grazima B e Perforina. No outro espectro, têm sido desenvolvidos modelos tumorais 3D com uma cada vez maior similaridade para tecidos nativos; no entanto, a necessidade de arquiteturas ainda mais complexas capazes de melhor representar interações celulares persiste. Assim, foi proposta uma abordagem baseada em “assemblóides” para obter modelos 3D in vitro de melanoma para estudar interações celulares. Estes “assemblóides” tumorais heterotípicos apresentaram uma arquitetura complexa capaz de suportar a função de células endoteliais, bem como a elevada expressão de marcadores de pluripotência. Estes modelos foram sujeitos a ensaios de funcionalidade onde mostraram a capacidade de “invasão cooperativa” que foi coincidente com uma produção aumentada de MMP-2. Para tornar mais claro o papel das células estaminais no potencial invasivo de células tumorais, uma câmara 3D de quimiotaxia foi desenvolvida para estudar as interações celulares observadas no microambiente tumoral onde as células estaminais e fibroblastos mostraram ter um papel determinante. Em última análise, esta tese permitiu explorar abordagens da engenharia biomédica de forma a contribuir para o conhecimento da área e abrir novas portas a serem exploradas no futuro
    corecore