Bioengineering strategies for cancer therapy and modelling

Abstract

Tese de doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células EstaminaisCancer is a global pandemic with a high incidence among the world population and effective treatments are for the most part elusive. The tumor microenvironment is a highly complex and heterotypic mixture of cells that interact to regulate central control mechanisms, driving immunosuppression and promoting both survival and invasion of cancer cells into surrounding tissues. It has been this complexity that has made finding effective therapeutics such a demanding task and therefore cancer still remains a burden worldwide in health as well as in economic terms. While the progression in the field of cancer research has been clear over the years, there are still several challenges that need to be addressed. Herein, two different sides to this disease are explored: treatment and in vitro models. Adoptive T cell therapy has shown impressive results, however not without its limitations. The use of the T cell mitogen IL-2 within culture systems is known to lead to early exhaustion of T cell subsets while high density of co-stimulating molecules has been linked to undesired immune responses. As an alternative, a nanoparticle system based on the natural polymer gellan-gum was proposed, with tailorable surface functionalization with co-stimulatory molecules. High levels of T cell expansion were observed over the studied period, with secreted IL-2 levels overcoming those of commercial alternatives. With this system, increased expression of cytotoxic molecules Granzyme B and Perforin were also detected in vitro. On the other spectrum, 3D cancer models have sustained a great number of developments observed by an increase in similarity towards native tissues; however, a requirement for even more complex architectures capable of better mimicking cellular interactions is still present. Therefore, an assembloid-based approach was proposed to develop a 3D in vitro melanoma model to further study cellular interactions. These heterotypic tumor assembloids presented a complex architecture capable of sustaining endothelial cell function as well as a high expression of stemness-related markers. These models were subjected to functionality assays where they showed a capacity for “cooperative invasion” which was coincident with an observed increased production of MMP-2. To further unravel the role of stromal cells in the invasive potential of cancer cells a 3D chemotaxis chamber was developed to study cellular interactions observed in the tumor microenvironment, where stem cells and fibroblasts showed to have a crucial role. Ultimately, this thesis allowed to explore biomedical engineering approaches to further contribute to the knowledge in the field opening new doors to be explored in the future.O cancro é uma pandemia global com uma elevada incidência e cujo desenvolvimento de tratamentos eficazes continua a ser difícil. O microambiente tumoral é uma mistura altamente complexa e heterotípica de células que interagem para regular mecanismos centrais que provocam imunossupressão promovendo a sobrevivência e invasão de células tumorais para os tecidos circundantes. É esta complexidade que tem tornado desafiante encontrar terapias eficazes, tornando esta doença um fardo a nível global em termos de saúde e economia. Enquanto a progressão na área da investigação oncológica tem sido clara ao longo dos anos, existem ainda vários desafios que precisam de serem encarados para permitir futuros desenvolvimentos. Aqui, foram exploradas duas vertentes diferentes desta doença: o tratamento e os modelos in vitro. A terapia celular adotiva tem demonstrado resultados impressionantes, no entanto não sem as suas limitações. O uso do mitogénio IL-2 nestes sistemas de cultura é conhecido por levar rapidamente à exaustão das células T, enquanto o uso de moléculas co-estimulatórias em elevadas densidades está associado a respostas imunes não desejadas. Como alternativa, foi proposto um sistema de nanopartículas baseado no polímero natural goma gelana e funcionalizado com moléculas co estimulatórias. Foram observados elevados níveis de expansão de células T e quantidade de IL-2 secretada superior à de alternativas comerciais. Foi ainda verificado in vitro um aumento de expressão das moléculas citotóxicas Grazima B e Perforina. No outro espectro, têm sido desenvolvidos modelos tumorais 3D com uma cada vez maior similaridade para tecidos nativos; no entanto, a necessidade de arquiteturas ainda mais complexas capazes de melhor representar interações celulares persiste. Assim, foi proposta uma abordagem baseada em “assemblóides” para obter modelos 3D in vitro de melanoma para estudar interações celulares. Estes “assemblóides” tumorais heterotípicos apresentaram uma arquitetura complexa capaz de suportar a função de células endoteliais, bem como a elevada expressão de marcadores de pluripotência. Estes modelos foram sujeitos a ensaios de funcionalidade onde mostraram a capacidade de “invasão cooperativa” que foi coincidente com uma produção aumentada de MMP-2. Para tornar mais claro o papel das células estaminais no potencial invasivo de células tumorais, uma câmara 3D de quimiotaxia foi desenvolvida para estudar as interações celulares observadas no microambiente tumoral onde as células estaminais e fibroblastos mostraram ter um papel determinante. Em última análise, esta tese permitiu explorar abordagens da engenharia biomédica de forma a contribuir para o conhecimento da área e abrir novas portas a serem exploradas no futuro

    Similar works